Mathématiques BCPST 1

Suites réelles usuelles

Suites arithmétiques et géométriques

Exercice 1

Dans chacun des cas suivants, donner l'expression du terme général de la suite (\mathfrak{u}_n) :

- 1. (u_n) est arithmétique, de premier terme $u_0=3$ et de raison 5 .
- 2. (u_n) est arithmétique, de premier terme $u_0=-6$ et de raison 10 .
- 3. (u_n) est arithmétique, de premier terme $u_1 = 2$ et de raison 4
- 4. (u_n) est géométrique, de premier terme $u_0=3$ et de raison 5 .
- 5. $(\mathfrak{u}_\mathfrak{n})$ est géométrique, de premier terme $\mathfrak{u}_0 = -6$ et de raison 10 .
- 6. (u_n) est géométrique, de premier terme $u_1=2$ et de raison 4 .

Exercice 2

Calculer les sommes suivantes :

1.
$$S = 3 + 6 + 9 + 12 + \dots + 57 + 60$$

2.
$$S' = \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \frac{1}{256} + \frac{1}{512} + \frac{1}{1024}$$

Suites arithmético-géométriques

Exercice 3

Soit (u_n) la suite définie par :

$$\left\{ \begin{array}{l} \mathfrak{u}_0 = -1 \\ \forall \mathfrak{n} \in \mathbb{N} \,, \ \mathfrak{u}_{\mathfrak{n}+1} = -3\mathfrak{u}_{\mathfrak{n}} + 2 \end{array} \right.$$

Exprimer u_n en fonction de n pour tout $n \in \mathbb{N}$.

Exercice 4

Soit (u_n) la suite définie par :

$$\left\{ \begin{array}{l} u_0=\frac{1}{4} \\ \forall n\in\mathbb{N}\,,\; u_{n+1}=\frac{1}{2}\,u_n+\frac{1}{4} \end{array} \right.$$

- 1. Donner l'expression de \mathfrak{u}_n en fonction de \mathfrak{n} pour tout $\mathfrak{n} \in \mathbb{N}.$
- 2. Calculer la somme des $\mathfrak n$ premiers termes de la suite $(\mathfrak u_{\mathfrak n})$ en fonction de $\mathfrak n\in\mathbb N.$

Suites récurrentes linéaires d'ordre 2

Exercice 5

Expliciter la suite de Fibonacci qui est la suite $(\mathfrak{u}_n)_{n\in\mathbb{N}}$ définie par :

$$\left\{ \begin{array}{l} u_0=0\\ u_1=1\\ \forall n\in\mathbb{N}\,,\ u_{n+2}=u_{n+1}+u_n \end{array} \right.$$

Exercice 6

Soit (u_n) une suite définie par :

$$\left\{ \begin{array}{l} u_0 \in \mathbb{R} \\ u_1 \in \mathbb{R} \\ \forall n \in \mathbb{N} \,, \ 2u_{n+2} - 12u_{n+1} + 18u_n = 0 \end{array} \right.$$

Exprimer u_n en fonction de n, de u_0 et de u_1 pour tout $n \in \mathbb{N}$.

Exercice 7

On considère la suite (u_n) définie par :

$$\left\{ \begin{array}{l} u_0=4\\ u_1=2\\ \forall n\in\mathbb{N}\,,\ u_{n+2}=2u_{n+1}+3u_n \end{array} \right.$$

- 1. Exprimer le terme général de la suite $(\mathfrak{u}_{\mathfrak{n}})$ en fonction de $\mathfrak{n}.$
- $$\label{eq:sum} \begin{split} \text{2. Pour tout } n \in \mathbb{N}, \, \text{on pose } S_n &= u_0 + \dots + u_n \,\,. \\ & \text{Exprimer, pour tout } n \in \mathbb{N}, \, S_n \,\, \text{en fonction de } n. \end{split}$$

Exercice 8

On considère la suite (u_n) définie par :

$$\left\{ \begin{array}{l} u_0 = 3 \\ u_1 = \frac{1}{6} \\ \forall n \in \mathbb{N} \,, \ n \geqslant 2 \,, \ 6u_n = u_{n-1} + u_{n-2} \end{array} \right.$$

- 1. Exprimer le terme général de la suite (\mathfrak{u}_n) en fonction de $\mathfrak{n}.$
- 2. Pour tout $n \in \mathbb{N}$, on pose $S_n = u_0 + \cdots + u_n$. Exprimer, pour tout $n \in \mathbb{N}$, S_n en fonction de n.

Mathématiques BCPST 1

Approfondissement

Exercice 9

On considère la suite (u_n) définie par :

$$\left\{ \begin{array}{l} u_0=1 \\ \forall n \in \mathbb{N} \, , \ u_{n+1}=\frac{u_n-4}{u_n-3} \end{array} \right.$$

- 1. (a) On définit la fonction f par $f(x) = \frac{x-4}{x-3}$. Etudier les variations de f sur son ensemble de définition. On précisera (sans justifier) les limites.
 - (b) Démontrer par récurrence que : $\forall n \in \mathbb{N}, "u_n \text{ existe et } u_n < 2".$
- 2. On définit la suite (v_n) par :

$$\forall n \in \mathbb{N} \,, \; \nu_n = \frac{1}{u_n - 2}$$

- (a) Démontrer que, pour tout $n \in \mathbb{N}$, ν_n existe.
- (b) Démontrer que (v_n) est arithmétique.
- (c) En déduire l'expression de u_n en fonction de n.

Exercice 10

Soient (\mathfrak{u}_n) et (\mathfrak{v}_n) les suites définies par $\mathfrak{u}_0=1,\,\mathfrak{v}_0=2$ et, pour tout $\mathfrak{n}\in\mathbb{N}$:

$$u_{n+1} = 3u_n + 2v_n$$
 et $v_{n+1} = 2u_n + 3v_n$

- 1. Montrer que la suite $(u_n v_n)$ est constante.
- 2. Prouver que (\mathfrak{u}_n) est une suite arithméticogéométrique.
- 3. Exprimer les termes généraux des suites (u_n) et (ν_n)

Exercice 11

Déterminer le terme général de la suite (u_n) définie par :

$$\left\{ \begin{array}{l} u_0 = 1 \\ u_1 = 2 \\ \forall n \in \mathbb{N} \, , \ u_{n+2} = \sqrt{2 \, u_{n+1}^2 + 3 \, u_n^2} \end{array} \right.$$

Exercice 12

On définit la suite (x_n) par :

$$\left\{ \begin{array}{l} x_0 = 0 \\ x_1 = 1 \\ x_2 = 2 \\ \forall n \in \mathbb{N} \,, \ x_{n+3} = 2 \, x_{n+2} + x_{n+1} - 2 \, x_n \end{array} \right.$$

On définit la suite (u_n) par :

$$\forall n \in \mathbb{N}, \ u_n = x_{n+1} - x_n$$

- 1. Montrer que la suite (\mathfrak{u}_n) est récurrente linéaire d'ordre 2 et en déduire son terme général.
- 2. Déterminer le terme général de la suite (x_n) . On pourra considérer $u_0+\cdots+u_{n-1}$.

Exercice 13

On définit la suite (\mathfrak{u}_n) par :

$$\left\{ \begin{array}{l} u_0=1\\ u_1=2\\ \forall n\in\mathbb{N}\,,\ u_{n+2}-u_{n+1}-6u_n=2^n \end{array} \right.$$

- 1. Déterminer α pour que la suite (t_n) de terme général $t_n = \alpha 2^n$ vérifie la même relation de récurrence que (u_n) .
- 2. Montrer que $(u_n t_n)$ est une suite récurrente linéaire d'ordre 2 sans second membre.
- 3. En déduire le terme général de (u_n) .

Exercice 14

Soit $(u_n)_{n\in\mathbb{N}}$ une suite.

Démontrer que :

 (u_n) est arithmétique $\Leftrightarrow \forall n \in \mathbb{N}, \, u_{n+1} = \frac{u_n + u_{n+2}}{2}$