Mathématiques BCPST 1

DM2 (22 septembre - Correction)

Exercice

1. • Relation de récurrence de (v_n)

Soit
$$n \in \mathbb{N}$$
.

Soit
$$n \in \mathbb{N}$$
.
 $v_{n+2} = u_{n+3} + 2u_{n+2}$ (définition de v_n)
 $= 3u_{n+1} - 2u_n + 2u_{n+2}$ (relation de récurrence de (u_n))
 $= 2u_{n+2} + 3u_{n+1} - 2u_n$ (on fait apparaître v_{n+1})
 $= 2(u_{n+2} + 2u_{n+1}) - (u_{n+1} + 2u_n)$
 $= 2v_{n+1} - v_n$
Pour tout $n \in \mathbb{N}$, $v_{n+2} = 2v_{n+1} - v_n$

• Terme général de (ν_n)

 (v_n) est une suite récurrente linéaire d'ordre 2 sans second membre.

→ Equation caractéristique

On résout :

$$x^2 - 2x + 1 = 0$$

$$\Leftrightarrow (x - 1)^2 = 0$$

Cette équation a donc une unique solution qui est 1.

 \rightarrow Terme général

Il existe deux réels λ et μ tels que, pour tout $n \in \mathbb{N} : \nu_n = (\lambda + \mu n) \times 1^n = \lambda + \mu n$

 \rightarrow Constantes

On détermine λ et μ en résolvant :

$$\begin{cases} \nu_0 = \lambda \\ \nu_1 = \lambda + \mu \times 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} 3 = \lambda \\ 3 = \lambda + \mu \end{cases}$$

$$\Leftrightarrow \begin{cases} \lambda = 3 \\ \mu = 0 \end{cases}$$

 \rightarrow Conclusion

Pour tout $n \in \mathbb{N}$, $v_n = 3$.

2. • Terme général de (u_n)

D'après les calculs précédents et la définition de (v_n) , pour tout $n \in \mathbb{N}$, on a : $u_{n+1} = -2u_n + 3$. Donc la suite (u_n) est arithmético-géométrique.

 \rightarrow Point fixe

On résout :
$$x = -2x + 3 \Leftrightarrow 3x = 3 \Leftrightarrow x = 1$$

 \rightarrow Suite auxiliaire

On définit la suite (w_n) par : $\forall n \in \mathbb{N}$, $w_n = u_n - 1$.

On sait que la suite (w_n) est géométrique de raison -2 et de premier terme $w_0 = u_1 - 1 = 3$.

Donc, pour tout $n \in \mathbb{N}$, $w_n = 3 \times (-2)^n$.

- Conclusion

Pour tout $n \in \mathbb{N}$, $u_n = 3 \times (-2)^n + 1$.

BCPST 1Mathématiques

• <u>Somme</u>

Soit
$$n \in \mathbb{N}$$
.

$$S_n = \sum_{k=0}^n u_k$$

$$= \sum_{k=0}^n 3 \times (-2)^n + 1$$

$$= 3 \sum_{k=0}^n (-2)^n + \sum_{k=0}^n 1$$

$$= 3 \left(\frac{1 - (-2)^{n+1}}{1 - (-2)} \right) + n + 1$$

$$= -(-2)^{n+1} + n + 2$$
Pour tout $n \in \mathbb{N}$, $S_n = -(-2)^{n+1} + n + 2$.