Mathématiques BCPST 1

3. T														
Nom:	 		 				 							

Interrogation 2 - Mardi 24 septembre 2024

Logique, raisonnements et ensembles

- 1. Soient P et Q deux assertions. Donner la table de vérité de l'assertion $P\Rightarrow Q.$
- Soient A et B deux ensembles.
 Donner la définition de "A est inclus dans B".

- 5. Enoncer les lois de Morgan pour des ensembles.
- 2. Donner la liste des types de raisonnements classiques.
- 6. Soient $n \in \mathbb{N}^*$ et E_1, \ldots, E_n des ensembles. Donner la définition de $E_1 \times \cdots \times E_n$.

3. Soit E un ensemble.

Pour tout $x \in E$, on définit une assertion P(x).

- (a) Le contraire de " $\forall x \in E, P(x)$ " est :
- (b) Le contraire de " $\exists x \in E, P(x)$ " est :

Suites réelles usuelles

1. Donner la définition d'une suite arithmétique.

2. Donner la proposition sur l'expression du terme général d'une suite arithmétique (avec les deux formules).

3. Soient (\mathfrak{u}_n) une suite arithmétique et $\mathfrak{m},\mathfrak{n}\in\mathbb{N}$ avec $\mathfrak{m}\leqslant\mathfrak{n}.$ Compléter :

$$u_m + \cdots + u_n =$$

4. Donner la définition d'une suite géométrique.

5. Donner la proposition sur l'expression du terme général d'une suite géométrique (avec les deux formules).

6. Soient (u_n) une suite géométrique de raison $q\neq 1$ et $m,n\in \mathbb{N}$ avec $m\leqslant n.$ Compléter :

$$\mathfrak{u}_\mathfrak{m} + \cdots + \mathfrak{u}_\mathfrak{n} =$$

7. Soit (\mathfrak{u}_n) une suite récurrente linéaire d'ordre 2 sans second membre.

On note Δ le discriminant de l'équation caractéristique associée à (u_n) .

(a) On suppose que $\Delta > 0$ et on note r_1 et r_2 les solutions de l'équation caractéristique.

Donner l'expression du terme général de (u_n) .

(b) On suppose que $\Delta = 0$ et on note r la solution de l'équation caractéristique.

Donner l'expression du terme général de (u_n) .

Méthodes de calcul

1. Enoncer la propriété de linéarité de la somme.

$$\label{eq:continuous} \begin{split} 2. \ \operatorname{Soit} \ (\mathfrak{m},\mathfrak{n}) \in \mathbb{N}^2 \ \operatorname{avec} \ \mathfrak{m} \leqslant \mathfrak{n}. \\ \operatorname{Soient} \ \mathfrak{a}_{\mathfrak{m}}, \dots, \mathfrak{a}_{\mathfrak{n}+1} \ \operatorname{des} \ \operatorname{r\'eels}. \end{split}$$

$$\operatorname{Compléter}: \textstyle\sum\limits_{k=m}^{n} (\alpha_{k+1} - \alpha_k) =$$

3. Soit $n \in \mathbb{N}^*$. Compléter :

(a)
$$\sum_{k=1}^{n} k =$$

(b)
$$\sum_{k=1}^{n} k^2 =$$

4. Soit $(\mathfrak{m},\mathfrak{n}) \in \mathbb{N}^2$ avec $\mathfrak{m} \leqslant \mathfrak{n}$. Soient $\mathfrak{a}_{\mathfrak{m}},\ldots,\mathfrak{a}_{\mathfrak{n}}$ et $\mathfrak{b}_{\mathfrak{m}},\ldots,\mathfrak{b}_{\mathfrak{n}}$ des réels.

Compléter:

$$\prod_{k=m}^n \Big(\, a_k \, b_k \, \Big) =$$

5. Soient k et n deux entiers naturels.

Donner la définition du coefficient binomial $\binom{n}{k}$ (en traitant bien tous les cas).

6. Enoncer la formule du triangle de Pascal.

7. Enoncer la formule du binôme de Newton.