Mathématiques BCPST 1

DM 3 - Correction

Exercice 1

1. Dans toute cette question, z désigne un nombre complexe.

• Résolution $de(E_1)$

L'équation (E_1) est en fait l'équation z = 1.

L'ensemble des solutions de (E_1) est $\{1\}$. (E_1) a une seule solution.

Graphiquement, la solution de cette équation est représentée ci-dessous, par le point A:



• Résolution de (E₂)

L'équation (E_2) est en fait l'équation $z^2 = 1$.

L'ensemble des solutions de (E_2) est $\{1, -1\}$. (E_2) a deux solutions.

Graphiquement, les solutions de cette équation sont représentées ci-dessous, par les points A et B:

• Résolution de (E₃)

L'équation (E_3) est en fait l'équation $z^3 = 1$.

Pour résoudre cette équation, on passe sous forme exponentielle : on écrit $z = re^{i\theta}$ avec r > 0 et $\theta \in \mathbb{R}$.

$$z^3 = 1$$

$$\Leftrightarrow$$
 $\mathbf{r}^3 e^{3i\theta} = 1e^{i \times 0}$

$$\Leftrightarrow \left\{ \begin{array}{ll} r^3 & = & 1 \\ 3\,\theta & \equiv & 0[2\pi] \end{array} \right.$$

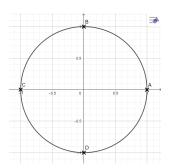
$$\Leftrightarrow \left\{ \begin{array}{ll} \mathfrak{r} & = & 1 & (\operatorname{car}\,\mathfrak{r} > 0) \\ \mathfrak{\theta} & \equiv & 0 \left[\, \frac{2\pi}{3} \, \right] \end{array} \right.$$

L'ensemble des solutions de (E_3) est $\{1, j, \bar{j}\}$. (E_3) a trois solutions.

Graphiquement, les solutions de cette équation sont représentées ci-dessous, par les points A, B et C :

Mathématiques BCPST 1

• Résolution de (E₄)


L'équation (E_4) est en fait l'équation $z^4 = 1$. On résout :

$$\Leftrightarrow$$
 $z^2 = 1$ ou $z^2 = -1$

$$\Leftrightarrow z = 1 \text{ ou } z = -1 \text{ ou } z = i \text{ ou } z = -i$$

L'ensemble des solutions de (E_4) est $\{1\,,\,-1\,,\,\mathfrak{i}\,,\,-\mathfrak{i}\}$. (E_4) a quatre solutions.

Graphiquement, les solutions de cette équation sont représentées ci-dessous, par les points A, B, C et D:

2. Soit $z \in \mathbb{C}$.

Solit
$$Z \in \mathcal{C}$$
.

On écrit $z = re^{i\theta}$ avec $r > 0$ et $\theta \in \mathbb{R}$.

 $(E_n) \Leftrightarrow (re^{i\theta})^n = 1$
 $\Leftrightarrow r^n e^{in\theta} = 1 e^{i \times 0}$
 $\Leftrightarrow \begin{cases} r^n = 1 \\ n\theta \equiv 0 [2\pi] \end{cases}$
 $\Leftrightarrow \begin{cases} r = 1 \\ \theta \equiv 0 \left[\frac{2\pi}{n}\right] \end{cases}$
 $\Leftrightarrow \begin{cases} r = 1 \\ \theta \equiv \frac{2k\pi}{n}, k \in \mathbb{Z} \end{cases}$

L'ensemble des solutions de (E_n) est $\left\{1,e^{\frac{2i\pi}{n}},e^{\frac{4i\pi}{n}},\ldots,e^{\frac{2(n-1)i\pi}{n}}\right\}$ et (E_n) a donc n solutions.

Exercice 2

```
def moyenne(L):
    n = len(L)
    s = 0
    for e in L:
        s + = e
    if s/n >= 10 :
        return True
    return False
```