Fiche nº 21. Manipulation des fonctions usuelles

Réponses

Corrigés

21.1 a)
$$|x+2| = 3 \iff x+2 = 3 \text{ ou } x+2 = -3 \iff x=1 \text{ ou } x=-5$$

21.1 b) Géométriquement la seule solution est l'abscisse du milieu des points d'abscisse -2 et 3.

$$|x+2| = |x-3| \iff (x+2)^2 = (x-3)^2 \iff 4x+4 = -6x+9 \iff 10x=5 \iff x = \frac{1}{2}$$

21.2 a) Si $x \ge -1$ est solution alors x+1=4 ou encore x=3 et 3 est bien une solution.

21.2 b) L'étude de $x \mapsto \sqrt{x} + \sqrt{x+1}$ montre qu'il y a une et une seule solution.

de plus
$$\sqrt{x} + \sqrt{x+1} = 2 \Longrightarrow \left(\sqrt{x} + \sqrt{x+1}\right)^2 = 4 \Longrightarrow 2x + 1 + 2\sqrt{x(x+1)} = 4 \Longrightarrow 2\sqrt{x(x+1)} = -2x + 3 \Longrightarrow 4x(x+1) = 4x^2 - 12x + 9 \Longrightarrow x = \frac{9}{16}$$

21.3 a) Soit
$$x \in \mathbb{R}$$
. Alors on a les équivalences $3^x = \frac{9^x}{2} \Leftrightarrow \ln(3^x) = \ln\left(\frac{9^x}{2}\right) \Leftrightarrow x \ln(3) = 2x \ln(3) - \ln(2) \Leftrightarrow x = \frac{\ln(2)}{\ln(3)}$

21.3 b) Soit
$$x \in \mathbb{R}$$
. Alors on a les équivalences $4^x = 2 \times 2^x \Leftrightarrow 2x \ln(2) = (x+1)\ln(2) \Leftrightarrow 2x = x+1 \Leftrightarrow x=1$.

21.3 c) Soit
$$x \in \mathbb{R}$$
.

Alors on a l'équivalence $2^x = 3.4^x \Leftrightarrow x \ln(2) = \ln(3) + 2x \ln(2) \Leftrightarrow x = -\frac{\ln(3)}{\ln(2)}$

21.3 d) Soit $x \in \mathbb{R}$. Alors

$$\begin{aligned} 10^{2x} &= 4 \times 5^x \times 9^{\frac{x}{2}} \Leftrightarrow \ln(10^{2x}) = \ln(4 \times 5^x \times 9^{\frac{x}{2}}) \Leftrightarrow 2x \ln(10) = \ln(4) + x \ln(5) + \frac{x}{2} \ln(9) \\ &\Leftrightarrow x \left(2 \ln(5) + 2 \ln(2) - \ln(5) - \frac{2 \ln(3)}{2} \right) = \ln(4) \Leftrightarrow x = \frac{\ln(4)}{2 \ln(2) + \ln(5) - \ln(3)} = \frac{\ln(4)}{\ln(20/3)}. \end{aligned}$$

21.4 a) Soit $x \in \mathbb{R}$. Posons $X = 2^x$. Alors $2^x + 4^x = 4 \Leftrightarrow X + X^2 - 4 = 0$. Cette équation a pour discriminant 1 + 16 = 17, d'où deux racines, $\frac{-1 \pm \sqrt{17}}{2}$. Seule la racine $\frac{\sqrt{17} - 1}{2}$ est positive, donc $2^x + 4^x = 4 \Leftrightarrow 2^x = \frac{\sqrt{17} - 1}{2} \Leftrightarrow 2^x = \frac{\sqrt{17} - 1}{2}$

 $x \ln(2) = \ln\left(\frac{\sqrt{17} - 1}{2}\right) \Leftrightarrow x = \frac{\ln\left(\frac{\sqrt{17} - 1}{2}\right)}{\ln(2)}.$

21.4 b) Soit $x \in \mathbb{R}$. Notons $X = 4^x$. Alors $16^x - 3 \times 4^x + 2 = 0 \Leftrightarrow X^2 - 3X + 2 = 0 \Leftrightarrow (X - 1)(X - 2) = 0 \Leftrightarrow 4^x = 1$ ou $4^x = 2 \Leftrightarrow x = 0$ ou $x = \frac{1}{2}$.

21.4 c) Soit $x \in \mathbb{R}$. Posons $X = 3^x$.

Alors on a l'équivalence $2 \times 9^x - 3^x - 3 = 0 \Leftrightarrow 2X^2 - X - 3 = 0$. Cette équation a pour discriminant $1 + 4 \times 2 \times 3 = 25$, donc les deux solutions de l'équation sont $\frac{1 \pm 5}{4}$, i.e. $\frac{3}{2}$ et -1. La seule solution positive est $\frac{3}{2}$, donc $2 \times 9^x - 3^x - 3 \Leftrightarrow 3^x = \frac{3}{2} \Leftrightarrow x \ln(3) = \ln(3) - \ln(2) \Leftrightarrow x = 1 - \frac{\ln(2)}{\ln(3)}$.

21.4 d) Soit $x \in \mathbb{R}$. Posons $X = 3^x$.

Alors on a l'équivalence $3^x + 3^{2x} - 1 = 0 \Leftrightarrow X^2 + X - 1 = 0$. Cette équation a pour discriminant 1 + 4 = 5, donc les deux solutions de l'équation sont $\frac{-1 \pm 5}{2}$. La seule solution positive est $\frac{\sqrt{5} - 1}{2}$, donc $3^x + 3^{2x} - 1 = 0 \Leftrightarrow 3^x = \frac{\sqrt{5} - 1}{2} \Leftrightarrow x \ln(3) = \ln\left(\frac{\sqrt{5} - 1}{2}\right)$.

21.5 a) Géométriquement : ce sont les abscisses des points sur le disque ouvert de centre 3 et de rayon 1.

 $|x-3| < 1 \iff -1 < x-3 < 1 \iff 2 < x < 4$

21.5 b) $|2x+1| \ge 2 \iff 2x+1 \le -2$ ou $2x+1 \ge 2 \iff x \le -\frac{3}{2}$ ou $x \ge \frac{1}{2}$

21.6 a) On n'oublie pas que $2^x = e^{x \ln(2)}$. Donc la dérivée de $x \mapsto 2^x$ est $x \mapsto \ln(2).2^x$.

21.6 c) On écrit que $x^x = e^{x \ln(x)}$. Ainsi la dérivée de la fonction est $x \mapsto (\ln(x) + 1)e^{x \ln(x)}$.

21.6 d) Fonction dérivable sur $]-\infty$; .0[et sur $]0;+\infty[$.

$$f'(x) = -\frac{1}{x^2} \frac{1}{1 + \left(\frac{1}{x}\right)^2} = -\frac{1}{1 + x^2}$$

21.6 e) La fonction est dérivable sur \mathbb{R}^* et sa dérivée est $x \mapsto \frac{1}{1+x^2} + \frac{-1}{x^2} \frac{1}{1+\left(\frac{1}{x}\right)^2} = \frac{1}{1+x^2} - \frac{1}{x^2+1} = 0$.