Mathématiques BCPST 1

Polynômes réels

Règles de calcul

Exercice 1

On définit le polynôme P par :

$$P: x \mapsto (x+1)^5 - x^5$$

Déterminer le degré de P et son coefficient dominant.

Exercice 2

Pour tout $n \in \mathbb{N}$, on pose :

$$P_n: x \mapsto \prod_{k=0}^n \left(1 + x^{2^k}\right)$$

- 1. Pour tout $n \in \mathbb{N}$, développer P_n .
- 2. Pour tout $n \in \mathbb{N}$, développer le polynôme Q_n défini par :

$$Q_n : x \mapsto (1 - x)P_n(x)$$

Exercice 3

Résoudre l'équation :

(E):
$$\forall x \in \mathbb{R}, (x^2 + x + 1)P''(x) - 12P(x) = 0$$

où l'inconnue P est un polynôme réel.

Exercice 4

Résoudre l'équation :

(E):
$$\forall x \in \mathbb{R}, P(x^2) = (x^2 + 1)P(x)$$

où l'inconnue P est un polynôme réel.

Racines et factorisation

Exercice 5

Soit P un polynôme réel tel que :

$$\forall x \in \mathbb{R}, P(x+1) = P(x)$$

- 1. Démontrer que, pour tout $n \in \mathbb{N}$, P(n) = P(0).
- 2. En déduire que P est constant.

Exercice 6

On définit les polynômes P et Q par :

$$P: x \mapsto x^5 + 3x^4 - x^3 - 11x^2 - 12x - 4$$

$$0: x \mapsto (x+1)^2(x-2)$$

Montrer que P est factorisable par Q.

Exercice 7

On définit le polynôme réel P par :

$$P: x \mapsto 2x^5 - 2x^4 - 2x + 2$$

Factoriser P au maximum.

Exercice 8

Soit $n \in \mathbb{N}^*$.

Déterminer α et β pour que le polynôme P défini par $P: x \mapsto \alpha x^{n+1} + \beta x^n + 1$ admette 1 comme racine au moins double.

Exercice 9

Exercice à la limite du programme.

Soient p, q et r trois entiers naturels.

Montrer que $P: x \mapsto x^{3p+2} + x^{3q+1} + x^{3r}$ se factorise par $Q: x \mapsto x^2 + x + 1$.

Exercice 10

Soit $n \in \mathbb{N}$. On pose :

$$P: x \mapsto \sum_{k=0}^{n} \frac{x^k}{k!}$$

Montrer que P n'a pas de racine multiple.

Exercice 11

Exercice à la limite du programme.

Le but de cet exercice est de factoriser le polynôme P défini par :

$$P: x \mapsto x^6 + 2x^4 + 2x^2 + 1$$

- 1. Soit $\alpha \in \mathbb{C}$ une racine de P.
 - (a) Montrer que $\alpha \neq 0$.
 - (b) Montrer que $-\alpha$ est aussi une racine de P.
 - (c) Montrer que $\frac{1}{\alpha}$ est aussi racine de P.
- 2. (a) Pour $z \in \mathbb{C}^*$, développer $\left(z + \frac{1}{z}\right)^3$.
 - (b) On définit $\beta = (\alpha + \frac{1}{\alpha})$ et $Q: x \mapsto x^3 x$.

 α est une racine de $P \Leftrightarrow \beta$ est une racine de Q.

3. Déterminer les racines de Q, puis factoriser P.

Approfondissement

Exercice 12

On définit les polynômes de Tchebychev par :

$$\begin{cases} T_0 = 1 \\ T_1 : x \mapsto x \\ \forall n \in \mathbb{N}, T_{n+2} : x \mapsto 2xT_{n+1}(x) - T_n(x) \end{cases}$$

- 1. Expliciter T_2 et T_3 .
- 2. Montrer que, pour tout $n \in \mathbb{N}$ et pour tout $x \in \mathbb{R}$:

$$T_n\Big(\cos(x)\Big)=\cos(nx)$$

On pourra raisonner par récurrence sur n.

- 3. Pour tout $n\in \mathbb{N}^*,$ déterminer le degré et le coefficient dominant de $T_n.$
- 4. Pour tout $n \in \mathbb{N}^*$, résoudre l'équation $T_n(y) = 0$ d'inconnue $y \in [-1, 1]$.
- 5. Si $n \in \mathbb{N}^*$, en déduire toutes les racines de T_n et factoriser T_n .

Exercice 13

On définit le polynôme réel P par :

$$P: x \mapsto ax^2 + bx + c$$

(avec $a \neq 0$)

On note α et β les deux racines éventuellement complexes et éventuellement non distinctes de P.

- 1. Exprimer $\alpha + \beta$ et $\alpha\beta$ en fonction de a, b et c.
- 2. On souhaite résoudre le système :

$$(S) : \begin{cases} u+v = 2 \\ uv = 2 \end{cases}$$

- (a) Montrer que : (u, v) est solution de (S) si et seulement si u et v sont les racines d'un polynôme que l'on déterminera.
- (b) Résoudre (S).

Exercice 14

On pose $a = e^{\frac{2i\pi}{5}}$, $S = a + a^4$ et $T = a^2 + a^3$

- 1. Représenter graphiquement α , α^2 , α^3 , α^4 et α^5 .
- 2. Démontrer que S et T sont les racines d'un polynôme de degré 2 que l'on déterminera.
- 3. Montrer que $S = 2\cos\left(\frac{2\pi}{5}\right)$ et $T = 2\cos\left(\frac{4\pi}{5}\right)$.
- 4. En déduire les valeur de :
 - (a) $\cos\left(\frac{2\pi}{5}\right)$.
 - (b) $\cos\left(\frac{4\pi}{5}\right)$.
 - (c) $\cos\left(\frac{\pi}{5}\right)$.