Extrait G2E 2009

A. STADE NAUTIQUE

1. CABINE DE SAUNA

Le complexe sportif du stade nautique comporte une cabine de sauna, de volume constant $V = 14 \text{ m}^3$. Initialement elle renferme de l'air se trouvant dans les mêmes conditions que l'air extérieur, c'est-à-dire à la pression $P_0 = 1$ bar et à la température $t_0 = 20^{\circ}\text{C}$. Un radiateur, fonctionnant à sa puissance maximale, P = 10 kW, permet d'atteindre rapidement, une température intérieure $t_1 = 80^{\circ}\text{C}$, après quoi on maintient cette température constante en réduisant la puissance du radiateur.

En régime permanent, la température du sauna est égale à t_1 , sauf le corps de la personne se trouvant dans la cabine. Cette personne doit maintenir la température de sa peau à t_2 = 37°C, et ceci uniquement grâce à l'évaporation de l'eau perdue par transpiration.

La capacité thermique totale de la cabine, air non compris, est C = 70 kJ/K.

On donne les capacités thermiques massiques de l'air : c_v = 0,72 J/g.K, c_p = 1 J/g.K, sa masse volumique sous 1 bar et à 20°C : μ = 1,3 g/L.

La chaleur latente de vaporisation de l'eau est $L_v = 2400 \text{ J/g}$.

- 1.1. Calculer la durée T qui permet d'atteindre la température t₁ en supposant que la cabine soit parfaitement étanche et adiabatique.
- 1.2. Déterminer la pression finale dans la cabine.
- 1.3. On estime que les pertes thermiques sont caractérisées par un flux :

$$\Phi = A (t_1 - t_0)$$
 avec A = 70 W/K.

La durée calculée précédemment est-elle surestimée ou sous-estimée ?

- 1.4. À quelle fraction de la puissance maximale le radiateur doit-il fonctionner pour maintenir la température de 80°C ?
- 1.5. Le transfert de puissance entre le corps humain et l'air du sauna est donné par :

$$\Phi' = B (t_2 - t_1)$$
 avec B = 14,2 W/K.

Quelle est la perte de masse de la personne lors d'une séance de 10 min ?