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1 Généralités
1. Un peu de logique
Exercice 1. Soit x ∈ Q et soit y ∈ R.

1. Montrer que y ∈ Q ⇒ x+ y ∈ Q.

2. Montrer que y /∈ Q ⇒ x+ y /∈ Q. On pourra raisonner par contraposée.

3. En déduire que y ∈ Q ⇔ x+ y ∈ Q.

Exercice 2. Soit a, b deux rationnels. Montrer que si a+ b
√

2 = 0 alors a = 0 et b = 0.
On pourra raisonner par l’absurde.
On se souviendra que

√
2 /∈ Q.

Exercice 3. Soient x ∈ R et ε ∈ R∗
+ deux réels. Montrer que ∀ε > 0, |x| ⩽ ε =⇒ x = 0.

Est-ce que cela change quelque chose de considérer ∀ε > 0, |x| < ε =⇒ x = 0 ?

Exercice 4. Soient a ∈ N et b ∈ N∗. Montrer qu’il existe un unique couple (q, r) ∈ N×N
avec 0 ⩽ r ⩽ b − 1 tel que a = bq + r. On commencera par chercher ce que peuvent
valoir q et r s’ils existent et on vérifiera ensuite que ça fonctionne (raisonnement dit par
≪ analyse-synthèse ≫).
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2. Quelques résolutions d’équations pour voir si on a perdu la main
Exercice 5. Résoudre dans R les équations suivantes :

(E1) x2 − 8x+ 11 = 4

(E2) |x− 1| = 2x− 3

(E3) |x− 5| = |4 − x2|

(E4)
√
x− 3 +

√
x = 3

(E5) x4 − 2x2 − 15 = 0

Exercice 6. Résoudre dans R les inéquations suivantes :

(I1) x2 − x > 2

(I2)
√
x− 1 ⩾

√
4x− 1

(I3)
√
x+ 1
x+ 2 < 1

Exercice 7. 1. Résoudre dans R l’équation x+ 2
x− 2 − x− 2

x+ 2 = 8x
x2 − 4 .

2. Résoudre dans R l’équation 3 − x

3 + x
− 1 = 2 − x

2 + x
+ 1 − x

1 + x
.

3. Résoudre dans R l’équation 1
1 − x

x− 1
+ x = 0.

4. Résoudre dans R l’inéquation 3x+ 2
x2 − 3x+ 2 < 1.

5. Résoudre dans R l’inéquation 2 < x− 3
x− 5 ⩽ 3.

6. Résoudre dans R l’inéquation x2 − 3x ⩾
∣∣∣x2 − 5x+ 4

∣∣∣.
Rappelons si besoin que

√
2 ≃ 1, 41 . . .

Exercice 8. 1. Soit m un réel. Résoudre dans R l’équation d’inconnue x,

(2mx− 3)2 = (x+m)2.

2. On note a, b et c trois nombres réels deux à deux distincts. Résoudre dans R l’équation :

ax

(a− b)(a− c) + bx

(b− c)(b− a) + cx

(c− a)(c− b) = 1.

3. Soient m, p deux réels. Résoudre dans R l’équation d’inconnue x,

(x+m)2 − (x− p)2 = m+ p.

Exercice 9. 1. Soit α ∈ R. Peut-on trouver un réel m tel que l’équation

2m
x+ 2 = m− 5

x− 1

admette α pour solution.
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2. Comment choisir m ∈ R pour que l’équation suivante d’inconnue x admette deux
racines distinctes réelles strictement positives.

3x2 − 5x+m+ 7 = 0.

3. Comment choisir m ∈ R pour que l’équation suivante d’inconnue x admette deux
racines distinctes réelles strictement positives.

(m− 3)x2 + (1 − 2m)x+m+ 1 = 0.

4. Comment choisir m ∈ R pour que l’inéquation suivante d’inconnue x admette R
comme ensemble solution.

(m+ 3)x2 − 2(m+ 1)x− (m+ 1) > 0.

Exercice 10. 1. Résoudre dans R l’équation
√
x2 − 3x+ 8 = x− 4.

2. Résoudre dans R l’inéquation
√
x2 + x+ 4 > 3.

3. Résoudre dans R l’équation
√

4 +
√
x4 + x2 = 2 − x.

4. Résoudre dans R l’inéquation
√
x+ 1 −

√
x ⩾

1
2 .

5. Résoudre dans R l’inéquation (x4 + 2x2 − 3)(x5 + x3 − 2x)
x4 + 3x2 − 10 ⩾ 0.

Exercice 11. Résoudre les équations suivantes dans R d’inconnue x :

1. ln
(
x(3x+ 5)

)
= ln

(
2(x+ 3)(x− 7)

)
.

2. 2x4 + 5x2 − 8 = (x2 + 2)2.

3. ln2(x) − 4 ln(x) + 3 = 0.

4. e2x − 8 = 2ex.

5. ex + e1−x = e+ 1.

6. Résoudre x
√

x = (
√
x)x d’inconnue x ∈ R+. On prendra la convention que x0 = 1

pour tout x ∈ R.

3. Pour s’assurer qu’on maitrise bien les réels
Exercice 12. Soit E un sous-ensemble de R. Traduire à l’aide de quantificateurs les
assertions suivantes et, pour chaque propriété, donner deux ensembles qui la vérifient.

• 0 est un majorant de E.

• 1 n’est pas un minorant de E.

• π est le maximum de E.

• E est majoré.

• E n’est pas minoré.

• E est borné.

• E n’est pas borné.
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Exercice 13. Soient x et y deux réels tels que −1 ⩽ x ⩽ 2 et 2 ⩽ y ⩽ 4. Encadrer du
mieux possible x+ y, x− y, xy, x

y
et lorsque x ̸= 0, y

x
.

Exercice 14. Pour chacune des sous-parties de R suivantes dire

• si elle est majorée. Si c’est le cas préciser sa borne supérieure et étudier l’existence
éventuelle d’un maximum.

• si elle est minorée. Si c’est le cas préciser sa borne inférieure et étudier l’existence
éventuelle d’un minimum.

A =]2, e2[∪{10} B =
{
k cos

(
kπ

2

)
, k ∈ N

}
C =

{ 1
n2 n ⩾ 3

}
D = Q∗

+ E =
{
x ∈ R , ∃n ∈ N∗ , x = (−1)n

√
n

}

F =
{

pq

p2 + q2 + 1 , (p, q) ∈ (N∗)2
}

G =
{cos(n)

n
, n ∈ N∗

}
Exercice 15. Soit (a, b) ∈ R2. Montrer que

max(a, b) = 1
2(a+ b+ |a− b|)

Exercice 16. Soit A la fonction définie sur R par A(x) = |x− 3| + |x| + |x+ 8|.

1. Exprimer A sans utiliser de valeur absolue en distinguant les différentes valeurs pos-
sibles de x.

2. Résoudre dans R :

a. A(x) = 2.
b. A(x) = −7.
c. A(x) > 0.
d. A(x) = 4x− 20.

Exercice 17. 1. Résoudre sur R l’équation |2x+ 7| = 1.

2. Résoudre sur R l’équation |3x− 9| = |x− 1|.

3. Résoudre sur R l’équation
|2x− 8| + |x− 1| = 9.

Exercice 18 (A propos de la partie entière). 1. Soient x et y deux réels tels que x ⩽ y.
Montrer que ⌊x⌋ ⩽ ⌊y⌋.

2. Soit x ∈ R, simplifier ⌊x⌋ + ⌊−x⌋.

3. Résoudre les équations suivantes :

a. ⌊2x+ 7⌋ = 1.
b. ⌊−4x+ 2⌋ = 10.

4. Montrer que, pour tout x ∈ R, 2⌊x⌋ ⩽ ⌊2x⌋.

Exercice 19. Soit n ∈ N. Calculer la partie entière de n3

n+ 1. On essaiera de mettre
n3

n+ 1 sous la forme an2 + bn+ c+ d

n+ 1 où a, b, c et d sont des entiers à identifier.
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Exercice 20. Soit (x, y) ∈ R2 et n ∈ N∗, montrer que

0 ⩽ ⌊nx⌋ − n⌊x⌋ ⩽ n− 1

⌊x⌋ + ⌊x+ y⌋ + ⌊y⌋ ⩽ ⌊2x⌋ + ⌊2y⌋

Exercice 21. 1. Montrer que ∀(a, b) ∈ R2, ab ⩽
1
2(a2 + b2).

2. En déduire que pour tout (x, y, z) ∈ R3
+, 8xyz ⩽ (x+ y)(x+ z)(y + z).

4. Récurrences
Exercice 22 (Suite de Fibonacci). Soit F la suite définie par F0 = 0, F1 = 1 et pour
n ⩾ 0, Fn+2 = Fn+1 + Fn. Montrez que pour tout n ∈ N on a

F2n+1 = F 2
n + F 2

n+1 et F2n+2 = Fn+1(Fn + Fn+2).

Exercice 23. On considère la suite (un)n∈N∗ définie par u1 = 6 et un+1 = u2
n − 2.

Montrer que
∀n ∈ N∗, un = (1 +

√
2)(2n) + (1 −

√
2)(2n).

Exercice 24. 1. Développez (a+ b)3.

2. Montrez que pour tout entier n supérieur ou égal à 3

(n+ 1)3 ⩽ 3n3.

3. Montrez que pour tout entier naturel n, on a 3n ⩾ n3.

Exercice 25. Montrez que pour tout entier naturel n il existe a et b entiers relatifs tels
que n = 9a+ 4b en procédant par récurrence.

Exercice 26. Montrer que tout entier n ∈ N∗ s’écrit de manière unique sous la forme
n = 2p(2q + 1) avec (p, q) ∈ N2.
On notera P(n) la propriété ≪ ∃(p, q) ∈ N2, n = 2p(2q + 1) ≫. et on fera une récurrence
forte.

2 Sommes et produits
Exercice 1. Montrez les égalités suivantes pour tout n entier naturel supérieur ou égal
à 0.

1.
n∑

k=1
k · k! = (n+ 1)! − 1.

2.
n∑

k=1
(−1)kk2 = (−1)n(n2 + n)

2 .

3.
n∑

k=1
(−1)kk3 = (−1)n(4n3 + 6n2 − 1) + 1

8 .

4. Pour les amateurs de calculs longs :
n∑

k=1
(−1)k−1k6 = (−1)n−1n

6 + 3n5 − 5n3 + 3n
2 .

Exercice 2. Soit n ∈ N.
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1. Exprimer en fonction de n :

Sn =
n∑

k=0
(2k)2.

2. En déduire une expression de

Tn =
n∑

k=0
(2k + 1)2.

3. Que vaut Sn + Tn ? Aurait-il été possible de le déterminer sans répondre aux deux
questions précédentes ? Justifier.

Exercice 3. Calculer les sommes suivantes pour n ∈ N∗

1.
n∑

k=0

(1
2

)k

2.
n+1∑
k=1

(−3)k 3.
n+2∑
k=1

(1
2

)k

4.
n+1∑
k=2

22k 5.
n∑

k=0

2k

3k−1 6.
n+3∑
k=2

22k−1

5k+3 .

Exercice 4. Calculer les sommes suivantes, pour n ∈ N, n ⩾ 1 :

1.
n∑

k=0
k(k + 1).

2.
n∑

k=1
ln
(

1 + 1
k

)
.

3.
n∑

k=1

k

(k + 1)! .

Exercice 5. Calculer les expressions suivantes où n ∈ N, avec n ⩾ 1 (et n ⩾ 2 pour
certains). Le résultat ne devra pas utiliser le signe ∑ ou ∏.

A =
n∑

k=2

1
k(k − 1) ; B =

n∑
k=2

4k − 2
k(k2 − 1) ;

C =
n∏

k=1

(
1 + 1

k

)
; D =

n∏
k=1

2k
2k + 1;

E =
n∑

i=1

n∑
j=i+1

(i+ j); F =
n∑

i=1

n∑
j=i

i(n− j).

Exercice 6. Soit n ∈ N∗. Calculer les sommes suivantes.

1.
n∑

q=0

q∑
p=0

2p.

2.
n∑

j=0

n∑
i=j

2i−j .

3.
n∑

i=1

n∑
j=i

1
j

.

4.
n∑

i=1

n∑
j=i

i

j
.
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Exercice 7. Résoudre dans R l’équation :

1 + x

x+ 1 +
(

x

x+ 1

)2
+ · · · +

(
x

x+ 1

)7
= 0.

Exercice 8. Quelques manipulations sur les coefficients binomiaux. Calculer les sommes
suivantes :

1. S0 =
n∑

p=0

(
n

p

)
.

2. S1 =
n∑

p=0
p

(
n

p

)
.

3. S2 =
n∑

p=0
p(p− 1)

(
n

p

)
.

4. S3 =
n∑

p=0
p2
(
n

p

)
.

5. S4 =
n∑

p=0

1
p+ 1

(
n

p

)
.

6. S5 =
p∑

k=0

(
n

k

)(
n− k

p− k

)
avec p ∈ {0, . . . , n}.

7. S6 =
k∑

p=0
(−1)p

(
n

n− p

)(
n− p

n− k

)
avec k ∈ {0, . . . , n}.

Exercice 9. Soit n ∈ N et x ∈ R. On note

Sn =
n∑

k=0

(
2n
2k

)
x2k et Tn =

n−1∑
k=0

(
2n

2k + 1

)
x2k+1.

Déterminer Sn et Tn. On pourra s’intéresser à Sn + Tn et à Sn − Tn.

Exercice 10. Montrer que ∀n ∈ N, 2n−1 ⩽ n! ⩽ nn (on prendra la convention que
00 = 1.)

Exercice 11. On considère la suite (un)n∈N∗ définie par u1 = u2 = 1 et ∀n ∈ N∗,

un+2 = n(un+1 + un).

Montrer que, pour tout n ∈ N∗, un = (n− 1)!.

Exercice 12. Montrez que pour tout n entier naturel, n
5

5 + n4

2 + n3

3 − n

30 est un entier
naturel.
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3 Trigonométrie
Exercice 1. Donner les valeurs exactes des quantités suivantes :

1. cos
(2π

3

)
.

2. sin
(7π

6

)
.

3. cos
(11π

6

)
.

4. cos
(13π

6

)
.

5. sin
(3π

4

)
.

6. cos
(4π

3

)
.

7. cos
(13π

4

)
.

8. tan
(4π

3

)
.

9. tan
(5π

6

)
.

Exercice 2. Résoudre les équations suivantes :

1. cos(x) =
√

2
2 .

2. sin(x) = −1
2.

3. cos(3x) = −
√

3
2 .

4. sin(2x) =
√

2
2 .

5. cos(2x) = cos(x).

6. sin(3x) = − cos(x).

7. cos2(x) = 3
4.

Exercice 3. 1. En remarquant que π

12 = π

3 − π

4 , déterminer cos
(
π

12

)
.

2. De la même façon, déterminer sin
(
π

12

)
.

Exercice 4. 1. En remarquant que π

4 = 2π8 , déterminer cos
(
π

8

)
.

2. En déduire sin
(
π

8

)
.
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Exercice 5. On note a = cos
(
π

5

)
, b = cos

(2π
5

)
et c = cos

(4π
5

)
.

1. Exprimer b en fonction de a2.

2. a. Exprimer c en fonction de a.
b. Exprimer c en fonction de b2.
c. En déduire une autre relation entre a et b.

3. Exprimer a+ b en fonction de a2 et b2. En déduire la valeur de a− b.

4. Déterminer la valeur de a.

5. En déduire sin
(
π

5

)
.

Exercice 6. 1. Soit a un réel tel que tan(a) et tan
(
π

2 − a

)
existent. Que vaut tan

(
π

2 − a

)
?

2. a. Soient a et b deux réels tels que tan(a), tan(b) et tan(a+ b) existent. Montrer que
tan(a+ b) = tan(a) + tan(b)

1 − tan(a) tan(b) .

b. (bonus) Est-il imaginable d’avoir tan(a) tan(b) = 1 dans les conditions précédentes ?

c. En déduire tan
(
π

12

)
(sans chercher les valeurs correspondantes pour le sinus et

le cosinus).

3. a. Soit a un réel tel que tan(a) et tan(2a) existent. Établir une expression de tan(2a)
en fonction de tan(a).

b. En déduire la valeur de tan
(

π
8
)

(sans chercher les valeurs correspondantes pour le
sinus et le cosinus).

4 Ensembles et dénombrement
1. Théorie des ensembles
Exercice 1. Soient A et B deux parties d’un ensemble E . Que peut-on dire de A et B
si A ∪B = A ∩B ?

Exercice 2. Soit E un ensemble, X, Y et Z trois sous ensembles de E .

1. Exprimez les ensembles suivants de manière plus simple.

a. A = (X ∩ Y ) ∪ (X ∩ Y ).
b. B = (X ∪ Y ) ∩ (X ∪ Y ).
c. C = (X ∩ Y ) ∪ (X ∩ Y ) ∪ (X ∩ Y ) ∪ (X ∩ Y ).
d. D = (X ∪ Y ) ∩ (X ∪ Y ) ∩ (X ∪ Y ) ∩ (X ∪ Y ).

2. Démontrez les relations suivantes.

a. X ⊂ Y ⇐⇒ X = X ∩ Y .
b. X ∩ Y ⊂ (X ∩ Z) ∪ (Y ∩ Z).
c. (X ∪ Z) ∩ (Y ∪ Z) = (X ∩ Z) ∪ (Y ∩ Z).
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d. (Z ∪X) ∩ (X ∪ Y ) ∩ (Y ∪ Z) = (X ∪ Z) ∩ (Y ∪ Z).

Exercice 3. Soit E un ensemble, A, B et C trois sous ensembles de E . Montrer que

1. (A ⊂ (B ∩ C) et (B ∪ C) ⊂ A) =⇒ (A = B = C).

2. ((A ∪B = A ∪ C) et (A ∩B = A ∩ C)) =⇒ (B = C).
On pourra commencer par montrer que A ∪B = A ∪ C =⇒ A ∩B = A ∩ C.

Exercice 4. Soient A et B deux parties d’un ensemble de E.

1. Comparer P(A ∩B) et P(A) ∩ P(B).

2. Comparer P(A ∪B) et P(A) ∪ P(B).

2. Les dénombrements classiques
Exercice 5. Une suite de 10 questions est posée à un candidat qui doit répondre par
oui ou par non. De combien de façons peut-il répondre à cette liste de questions

1. si toutes les questions doivent recevoir une réponse ?

2. si certaines peuvent rester sans réponse ?

Exercice 6. Dans une classe de 48 élèves, tout le monde se serre la main en arrivant le
matin. Combien de poignées de mains sont échangées ?

Exercice 7. Dans un repère (O,−→i ,−→j ), de combien de façon peut-on se rendre du point
O au point A de coordonnées (3, 4) sachant qu’on ne peut se déplacer que de deux façons
différentes : se déplacer selon le vecteur −→

i ou −→
j (donc un pas vers la droite ou un pas

vers le haut).

Exercice 8. La finale du 800m aux JO 2016 est disputée par huit coureurs dont trois
Kényans. On se souviendra qu’un podium est constitué de trois coureurs et que l’ordre
est important !

1. Combien y a-t-il de podiums différents ?

2. Combien y a-t-il de podiums différents comprenant les trois coureurs Kényans ?

3. Combien y a-t-il de podiums différents comprenant au moins un Kényan ?

4. Combien y a-t-il de podiums différents comprenant exactement un Kényan ?

5. Combien y a-t-il de podiums différents comprenant exactement deux Kényans ?

Note culturelle : La course a été gagnée par le détenteur du record mondial et olympique
de l’époque (1 minute 40 secondes et 91 centièmes, toujours non dépassé à l’heure où
j’écris ces lignes) David Rudisha en 1 minute 42 secondes et 15 centièmes qui représentait
le Kenya, c’était le seul Kényan sur le podium (les deux autres étaient classés 5 et 7).

Exercice 9. Un groupe de 7 amis se retrouvent pour sortir ensemble.

1. De combien de façons peuvent-ils s’asseoir sur les 7 fauteuils d’un rang d’une salle de
cinéma ?

2. De combien de façons peuvent-ils s’asseoir autour d’une table ronde où se trouvent
un fauteuil de président et 6 chaises ?
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3. De combien de façons peuvent-ils s’asseoir autour d’une table ronde où se trouvent 7
chaises ?

Exercice 10. Soient n, p deux entiers non nuls tels que 1 ⩽ p ⩽ n. Dans une assemblée
de n personnes, on élit p représentants, et parmi ces p représentants un président.

1. Déterminer le nombre de choix possibles en commençant par élire les p représentants.

2. Déterminer le nombre de choix possibles en commençant par élire le président puis
les représentants restant.

3. En déduire : p
(
n

p

)
= n

(
n− 1
p− 1

)
.

4. Le retrouver par le calcul.

Exercice 11. Soient n, p deux entiers non nuls tels que 1 ⩽ p ⩽ n. Une urne contient n
boules numérotées de 1 à n. On tire au hasard et simultanément p boules.

1. Combien y a-t-il de tirages possibles ?

2. Soit k un entier de [[1;n]]. Combien y a-t-il de tirages dont le plus grand numéro est
k ?

3. En déduire la formule suivante :
n∑

k=p

(
k − 1
p− 1

)
=
(
n

p

)
.

4. Reprendre les deux premières questions dans le cadre d’un tirage avec remise.

Exercice 12. On jette simultanément trois dés cubiques dont les faces sont numérotées
de 1 à 6.

1. Dénombrer les résultats possibles si les dés sont identiques.

2. On suppose que les dés sont de couleurs différentes.

a. Dénombrer les résultats possibles.
b. Dénombrer les résultats comportant 3 numéros différents.
c. Dénombrer les résultats comportant au moins une fois le chiffre 1.
d. Dénombrer les résultats comportant exactement 2 fois le chiffre 3.

3. Pour aller plus loin
Exercice 13. Un vieil agriculteur possède 5 champs distincts : c1, c2, c3, c4, c5. Il désire
léguer à ses trois enfants en respectant la règle suivante : chaque enfant doit recevoir au
moins un champ. Combien de possibilités a-t-il de rédiger son testament ?

Exercice 14. On dispose d’un ensemble de six boules que l’on distingue uniquement
par leur couleur : blanche, rouge, bleue, verte, jaune, noire. On répartit ces six boules
en trois lots de telle sorte que chaque lot contienne au moins une boule.
Combien d’ensembles distincts de trois lots peut-on ainsi former, étant entendu que deux
ensembles de trois lots sont distincts s’il existe dans l’un au moins un lot n’appartenant
pas à l’autre.
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Exercice 15. Soit E un ensemble de cardinal n avec n ⩾ 1.

1. Combien y a-t-il de couples (A,B) de parties de E telles que A ∩B = ∅ ?

2. Combien y a-t-il de couples (A,B) de parties de E telles que A ∪B = E ?

3. Combien y a-t-il de triplets (A,B,C) de parties de E tels que A ∪B ∪ C = E ?

Exercice 16. On considère r boules que l’on veut placer dans dans n urnes numérotées
de 1 à n, chaque urne pouvant contenir de 0 à r boules.

1. Donner les différentes répartitions possibles pour n = 2 et r = 3, les r boules étant
numérotées de 1 à 3.

2. On revient au cas général : les r boules sont numérotées de 1 à r et les n urnes de 1
à n, donner le nombre de répartitions possibles.

3. Les r boules sont indiscernables, donner le nombre de répartitions possibles.

4. Toujours dans le cas où les r boules sont indiscernables, combien y a-t-il de répartition
sans urne vide ?

Exercice 17. Notons S3 l’ensemble des permutations de E = {1, 2, 3}, c’est-à-dire les
bijections de E dans E.

1. Déterminer le nombre d’éléments de S3 laissant un unique élément de E invariant.
On appelle ces éléments des transpositions de E.

2. Déterminer le nombre d’éléments de S3 ne laissant aucun élément de E invariant.

3. Déterminer le nombre d’éléments de S3 laissant exactement deux éléments de E in-
variant.

Exercice 18. Soit n un entier naturel et p un entier naturel non nul.

1. Montrer que le nombre a(n, p) de p-uplets (x1, x2, . . . , xp) de Np tels que

x1 + 2x2 + · · · + pxp = n

est égal au nombre de p-uplets (y1, y2, . . . , yp) de Np tels que{
y1 ⩾ y2 ⩾ · · · ⩾ yp

y1 + y2 + · · · + yp = n.

On pourra remarquer que

x1 + 2x2 + · · · + pxp = x1 + x2 + . . .+ xp + x2 + . . . xp + x3 . . .+ xp + . . .+ xp

2. Calculer a(0, p) et a(n, 1).

3. Montrer que pour tous entiers naturels n et p avec n ⩾ p on a :

a(n, p) = a(n− p, p) + a(n, p− 1).
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5 Nombres complexes
1. Exercices de base
Exercice 1. Déterminer le module et un argument des nombres complexes suivants (ou
de manière équivalente, les mettre sous forme polaire) :

1. 3
2 i.

2. −3.

3. −1
2 +

√
3

2 i.

4. −2i.

5. 1 + i

1 − i
.

6.
(

i

1 + i

)4
.

7. −3(cos(θ) + i sin(θ)).

8. 2(cos(2θ) − i sin(2θ)).

Exercice 2. Résoudre les équations suivantes d’inconnues x ∈ R :

1. cos(x) + sin(x) = 1.

2. cos(x) − sin(x) =
√

6
2 .

Exercice 3. 1. Déterminer le module de 1 + 4i
2 − 2i .

2. Mettre sous forme algébrique 1 − i
√

3
−1 − i

√
3

.

3. Mettre sous forme algébrique 1 − i

1 + i
√

3
.

4. Module de
(√

2
2 − i

√
2

2

)
(1 − i).

5. Déterminer le module et un argument de 1 − i
√

3
−1 − i

√
3

.

6. Déterminer le module et un argument de
√

2 − i
√

2
1 − i

√
3

.

7. Déterminer le module et un argument de
√

2 + i
√

2
3 + i

√
3

.

Exercice 4. 1. Déterminer le module et un argument de 1 + eiθ, θ ∈ [0, π[.

2. Déterminer le module et un argument de 1 − eiθ, θ ∈]0, π[.

3. Déterminer la partie réelle de eiθ + eiφ

eiθ − eiφ
avec θ − φ /∈ {2kπ/k ∈ Z}.
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Exercice 5. Déterminer le module et un argument de eeiθ .
Exercice 6. Linéariser les expressions suivantes :

1. A(x) = cos4(x).

2. B(x) = cos3(x) sin2(x).

3. C(x) = sin5(x). En déduire les solutions de sin(5x) − 5 sin(3x) + 10 sin(x) = 0.

Exercice 7. Exprimer les quantités suivantes en fonction de cos(x) et sin(x).

1. A(x) = cos(4x).

2. B(x) = cos(3x) sin(x).

3. C(x) = sin(5x).

Exercice 8. Déterminer parties imaginaires et réelles de (
√

3 − i)17, (1 − i
√

3)−23,(
1 − i

√
3√

2 + i
√

2

)24

.

2. Equations du second degré
Exercice 9. Résoudre les équations suivantes :

1. z2 + 9 = 0.

2. z2 − z + 1 = 0.

3. z2 + z + 4 = 0.

4. 3z2 − 6z + 6 = 0.

5. 4z2 + 4z
√

3 + 4 = 0.

6. z4 + z2 + 1 = 0.

3. Equations diverses
Exercice 10. Résoudre :

1. z2 − 2iz + 2 − 4i = 0. On pourra remarquer que (2 + 4i)2 = −12 + 16i.

2. z3 − i = 6(z + i). On pourra remarquer que z3 − i = z3 − (−i)3.

3. z8 = 1 − i√
3 − i

.

4. z4−(3−2i)z2+(8+6i) = 0. On notera que (3−6i)2 = −27−36i et que (2−i)2 = 3−4i.

5. 5z − 2 |z| = 5 + 20i. Avec 762 = 5776...

Exercice 11. Résoudre z9 = 1
z3 .

Exercice 12. Déterminer les racines cubiques de −1 + i

4 . Montrer que l’une d’entre elles
a une puissance quatrième réelle.
Exercice 13. Résoudre l’équation (z−1)3+(z−1)2(z+1)+(z−1)(z+1)2+(z+1)3 = 0.
Exercice 14. Résoudre 1 + 2z + 2z2 + 2z3 + . . .+ 2zn−1 + zn = 0, n ∈ N∗.

Exercice 15. Résoudre z7 +
(

7
2

)
z5 +

(
7
4

)
z3 + 7z = 0.
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4. Manipulations diverses
Exercice 16. Soit (un)n∈N la suite définie par u0 = 0 et u1 = 2i et pour tout n ∈ N,
un+2 = 2un+1 − 2un.

1. Simplifier (1 + i)n − (1 − i)n.

2. Montrer que, ∀n ∈ N, un =
√

2n+2
i sin

(
nπ

4

)
.

Exercice 17. Soient a, b ∈ C de module 1, avec a ̸= b. Montrer que a+ b

a− b
est un

imaginaire pur.

Exercice 18. Soient a, b ∈ C de module 1, avec ab ̸= −1. Montrer que a+ b

1 + ab
est un

réel.
Exercice 19. Montrer que pour tout a, b complexes, |a|+ |b| ⩽ |a+ b|+ |a− b|. Discuter
le cas d’égalité.

Exercice 20. Soit z ∈ C avec |z| ̸= 1. Montrer que
∣∣∣∣∣1 − zn+1

1 − z

∣∣∣∣∣ ⩽ 1 − |z|n+1

1 − |z|
.

Exercice 21. 1. Simplifier
(√

2
2 + i

√
2

2

)32

.

2. Simplifier
( 1 − i

1 + i
√

3

)24
.

Exercice 22. Soit z ∈ C avec |z| = 1. Montrer que l’on a |1 + z| ⩾ 1 ou
∣∣1 + z2∣∣ ⩾ 1.

Exercice 23. Soient a, b ∈ C avec ab ̸= 1. Montrer que

(|a| = 1 ou |b| = 1) ⇐⇒
∣∣∣∣ a− b

1 − ab

∣∣∣∣ = 1.

Exercice 24. 1. Calculer S =
n∑

k=−n

exp(ikx).

2. Calculer C1 =
n∑

k=0
cos(a+ kb) et S1 =

n∑
k=0

sin(a+ kb).

3. Calculer C2 =
n∑

k=0

(
n

k

)
cos(ak) et S2 =

n∑
k=0

(
n

k

)
sin(ak).

4. Calculer C3 =
n∑

k=0
cosk(x) cos(kx).

Exercice 25. Soit x ∈ C \ [−1, 1]. Montrer qu’il existe un unique z ∈ C avec |z| > 1 tel
que x = 1

2

(
z + 1

z

)
.

Exercice 26. Résoudre (z + i)n = (z − i)n pour n ∈ N∗.

Exercice 27. On note z0 = exp
(

2iπ
5

)
.

1. Montrer que z4
0 + z3

0 + z2
0 + z0 + 1 = 0.

2. En déduire que z0 vérifie
(
z0 + 1

z0

)2
+
(
z0 + 1

z0

)
− 1 = 0.

3. Simplifier
(
z0 + 1

z0

)
et en déduire la valeur de cos

(2π
5

)
.
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6 Élements d’analyse
1. Applications
Exercice 1. On note f, g deux applications de R −→ R définies pour tout x ∈ R par

f(x) = 1 + x et g(x) = 1 + x2.

Préciser f ◦ g et g ◦ f . A-t-on f ◦ g = g ◦ f ?

Exercice 2. On considère f et g deux applications de Z dans Z définies par :

f(x) = x

2 si x est pair, f(x) = x− 1
2 si x est impair

g(x) = 2x si x est pair, g(x) = 2x+ 1 si x est impair.

1. f et g sont-elles injectives ? surjectives ? bijectives ?

2. Mêmes questions pour g ◦ f et f ◦ g.

Exercice 3. Soient E,F et G trois ensembles non vides. On considère les applications
suivantes : f de E dans F , g de F dans G. Montrer les implications suivantes.

1. g ◦ f injective =⇒ f injective.

2. g ◦ f injective et f surjective sur F =⇒ g injective.

3. g ◦ f surjective sur G =⇒ g surjective sur G.

4. g ◦ f surjective sur G et g injective =⇒ f surjective sur F .

Exercice 4. Soient E,F et G trois ensembles non vides. On considère les applications
suivantes : f de E dans F , g de F dans G et h de G dans E. Montrer les implications
suivantes.

1. On suppose que h ◦ g ◦ f et g ◦ f ◦ h sont des surjections et que f ◦ h ◦ g est une
injection. Montrer que f, g et h sont des bijections.

2. On suppose que h◦g◦f et g◦f ◦h sont des injections et que f ◦h◦g est une surjection.
Montrer que f, g et h sont des bijections.

Exercice 5. Soient E,F deux ensembles et soit f une application de E dans F .

1. Montrer que ∀(A,B) ∈ (P(E))2, on a f(A ∩B) ⊂ f(A) ∩ f(B).

2. Montrer que f est injective si et seulement si ∀(A,B) ∈ (P(E))2, f(A ∩B) = f(A) ∩
f(B).

Exercice 6. Soit E un ensemble non vide et a un élément de E. On considère l’appli-
cation de P(E) dans lui-même définie par :

∀X ⊂ E, f(X) =
{

X \ {a} si a ∈ X et
X ∪ {a} si a /∈ X.

1. Montrer que f est bijective.

2. Calculer f ◦ f . Qu’en pensez-vous ?
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2. Etudes de fonction
Exercice 7. Déterminer les ensembles de définition et de dérivabilité puis calculer la
dérivée des fonctions f suivantes définies par :

1. f(x) = cos3(x).

2. f(x) = cos(3x).

3. f(x) = 1
cos(2x) .

4. f(x) = tan(x2) (je vous épargne la détermination de l’ensemble de dérivabilité).

5. f(x) = x

ln(x) .

6. f(x) =
(2x− 1

5x+ 1

)7
.

7. f(x) = ex

x
.

8. f(x) = ln(1 + x)
x

.

9. f(x) = xx+2.

10. f(x) = x ln(x).

11. f(x) = ln(ln(x)).

12. f(x) = x ln(|x|).

13. f(x) = esin(3x).

14. f(x) =
√
x3 + 6x2.

Exercice 8. Etudier le sens de variation des fonctions suivantes (on pourra montrer que
la fonction est dérivable, la dériver et étudier le signe de la dérivée) et préciser les limites
aux bornes de l’ensemble de définition (si vous vous en souvenez) et tracer l’allure de la
courbe :

1. f définie sur R par f(x) = xe−x.

2. f définie sur R par f(x) = xe−2x2
.

3. f définie sur R∗
+ par f(x) = x ln(x).

Exercice 9. Montrer que pour tout x ∈] − 1,+∞[, ln(1 + x) ⩽ x.

Exercice 10. Montrer que pour tout x ∈ R+, sin(x) ⩽ x et pour tout x ∈ R−, sin(x) ⩾
x.

Exercice 11. Etudier le signe des fonctions suivantes (on pourra parfois s’aider de leur
sens de variation) :

1. f définie sur R par ∀x ∈ R, f(x) = 1 − x− e−x.

Exercice 12. Montrer que pour tout x ∈ R, on a 1 + x+ x2

2 + x3

6 ⩽ ex.
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Exercice 13. 1. Soit f une fonction périodique et monotone sur R. Montrer que f est
constante.

2. Montrer que la fonction f définie sur R par : f(x) = sin(x
2 ) − sin(x

3 ) est périodique
et en donner une période.

Exercice 14. Soit f une fonction définie sur R. On définit sur R les fonctions g et h
par, ∀x ∈ R :

g(x) = f(x) + f(−x)
2 et h(x) = f(x) − f(−x)

2 .

Etudier la parité de g et de h. Exprimer f en fonction de g et h.

Exercice 15. Soit f une fonction dérivable sur R. Montrer les implications suivantes :

1. f paire =⇒ f ′ impaire.

2. f impaire =⇒ f ′ paire.

3. f périodique =⇒ f ′ périodique.

Exercice 16. Chercher si les fonctions suivantes sont majorées, minorées et dire si elles
admettent un maximum ou un minimum global sur E :

1. E = R et f : x 7−→ 1
x2 + x+ 1.

2. E =]0,+∞[ et f : x 7−→ x⌊ 1
x⌋.

Exercice 17. On définit sur R les fonctions sh et ch par, ∀x ∈ R,

sh(x) = ex − e−x

2 et ch(x) = ex + e−x

2 .

1. Etudier la parité de ch et sh.

2. Montrer que ∀x ∈ R, ch2(x) − sh2(x) = 1.

3. Donner l’expression de ch(a+ b) et sh(a+ b) en fonction de ch(a), ch(b), sh(a) et sh(b)
où a et b sont deux réels.

4. Donner l’ensemble de dérivabilité et la dérivée de sh et ch.

5. En déduire le sens de variation de sh puis de ch.

6. Sur un même graphe, tracer l’allure des courbes représentatives de ses deux fonctions.
On fera attention à la position respective de chaque courbe.
Les questions suivantes nécessitent d’avoir vu la définition d’application surjective et
injective du chapitre sur les applications. Je laisse ces questions dans ce chapitre car
elles concluent cet exercice que je vous conseille de reprendre une fois ces définitions
apprises.

7. Montrer que la fonction sh est injective (sans utiliser de théorème). On pourra considérer
deux réels x et x′ tels que sh(x) = sh(x′) puis étudier sh(x) − sh(x′) en le factorisant
du mieux de vos possibilités.

8. Montrer que sh est surjective sur R.

9. Déterminer, pour tout y ∈ R l’expression de sh−1(y).
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10. Est-ce que ch est injective ? surjective sur R ? Bijective de R dans R ? Si elle est
bijective, exhiber sa réciproque.

Exercice 18. Déterminer les dérivées partielles des fonctions suivantes. On ne s’intéressera
ni à l’ensemble de définition, ni à la dérivabilité des fonctions considérées.

1. f(x, y) = 1 + xy + y2 + 3x3y2.

2. f(x, y) = xy + 2x
y

+ y

3 − x
.

3. f(x, y) = e1+xy+y2 .

4. f(x, y) = xye1−xy.

5. f(x, y) = ln(x+ y) + x2.

6. f(x, y) = ln(1 + xy2).

7. f(x, y) = xexy.

8. f(x, y) = x2

1 + y2 .

9. f(x, y) = xy2

1 + x2 .

10. f(x, y) = x+ y

1 + xy
.

3. Déterminer des primitives
Exercice 19. Déterminer une primitive de chacune des fonctions suivantes après avoir
précisé sur quel intervalle vous travaillez :

1. x 7−→ (x− 1)
√
x.

2. x 7−→ x+ 3
x+ 1. On pourra poser u = x+ 1.

3. x 7−→ ex

1 + ex
. On pourra poser u = ex.

4. x 7−→ x ln(x)

5. u : x 7−→ sin(x)
cos(x) + sin(x) et v : x 7−→ cos(x)

cos(x) + sin(x) toutes deux définies sur

l’intervalle
[
0, π2

]
. Peut-on étendre ce résultat à un autre ensemble que

[
0, π2

]
?

Exercice 20. Déterminer toutes les primitives de chacune des fonctions suivantes et
préciser sur quel intervalle vous travailez :

1. x 7−→ x
√

1 + x. On pourra utiliser le changement de variables u = x+ 1.

2. x 7−→ 1
1 − x2 sur l’intervalle ] − 1, 1[

20 / 82



3. x 7−→ (2x− 1)e3x.

4. x 7−→ x sin(x) cos(x).

5. x 7−→ ln(x)
x2 .

Exercice 21. Soit f une fonction continue paire définie sur R. Montrer que la fonction
F définie sur R par, pour tout x ∈ R, F (x) =

∫ x

0
f(t)dt est impaire. On pourra utiliser

le changement de variable u = −t.

7 Suites usuelles

Exercice 1. Soit (un)n∈N une suite réelle arithmétique. On note Sn =
n∑

k=1
uk.

1. Sachant que u80 = 393 et u15 = 133, calculer u1 et S80.

2. Sachant que u15 = 143 et u1 = 3, calculer S15.

3. Sachant que u1 = 5, déterminer l’entier n tel que un = −16 et Sn = −77
2 .

Exercice 2. Soit (un)n∈N une suite géométrique de raison q ∈ R. On note Sn =
n∑

k=0
uk.

1. Si u0 = 1 et q = −3, calculer la somme des 25 premiers termes, c’est-à-dire S24.

2. Si u1 = 12 et q = −1
2, calculer S15.

3. Si u1 = 2 et u4 = 54, calculer q et S4.

Exercice 3. Soit (un)n∈N une suite telle que u0 = 1 et pour tout n ∈ N, un+1 =
√

4un.

1. Montrer que cette suite est bien définie (c’est-à-dire que l’on peut bien calculer tous
les un) et strictement positive.

2. Calculer les 5 premiers termes de la suite, et donner les résultats sous la forme d’une
puissance de 2.

3. On pose vn = ln(un) − ln(4). Justifier que l’on définit bien une suite (vn)n∈N ainsi.
Déterminer sa nature et en déduire l’expression de vn en fonction de n.

4. Exprimer, pour n ∈ N, un en fonction de n et déterminer lim
n→+∞

un.

Exercice 4. Pour les suites (un)n∈N suivantes, exprimer un en fonction de n pour tout
n ∈ N, et déterminer leur limite respective.

1. u0 = 3, et pour tout n ∈ N, un+1 = 1
2un − 5.

2. u1 = 1, et pour tout n ∈ N∗, un+1 = −2un + 1.

3. u2 = 2, et pour tout n ∈ N, un+1 = 2un + 3.

Exercice 5. Soit (un)n∈N∗ une suite telle que u1 = 1 et pour tout n ∈ N∗, 5un+1 = un+8.
Déterminer l’expression de un en fonction de n ∈ N∗.
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Exercice 6. Soit (un)n∈N une suite réelle.

1. Montrer que si (un)n∈N est une suite arithmétique, alors ∀n ∈ N∗, un = un+1 + un−1
2 .

2. Réciproquement, montrer que si ∀n ∈ N∗, un = un+1 + un−1
2 , alors (un)n∈N est une

suite arithmétique.

Exercice 7. Soit (un)n∈N une suite arithmétique dont aucun de ses termes n’est nul.
Montrer que, pour tout n ∈ N :

n∑
k=0

1
ukuk+1

= n+ 1
u0un+1

.

Exercice 8. On considère la suite définie par u0 = λ avec λ ∈ R, et pour tout n de N,
un+1 = 2un − n− 2 . (1)

1. Déterminer une suite arithmétique (wn)n∈N satisfaisant à la relation de récurrence
(1).

2. On pose vn = un − wn ; démontrer que la suite (vn) est géométrique et préciser sa
raison.

3. Exprimer un en fonction de n.

Exercice 9. Soit (un)n∈N la suite définie par u0 = −2 et la relation de récurrence,
∀n ∈ N, un+1 = 2un

3 − un

1. Démontrer que la suite u est bien définie et que ∀n ∈ N, un < 0.

2. Considérons la suite auxiliaire (vn)n∈N définie par vn = un

1 − un

a. Justifier que que la suite (vn)n∈N est bien définie.
b. Démontrez que (vn)n∈N est une suite géométrique.
c. En déduire l’expression de un en fonction de n.

Exercice 10. Pour les suites suivantes, exprimer un en fonction de n ∈ N.

1. u0 = 1, u1 = −1 et pour tout n ∈ N : 2un+2 + 3un+1 − 2un = 0.

2. u0 = 0, u1 = 2 et pour tout n ∈ N : un+2 = 2un+1 − un.

3. u0 = −1, u1 = 0 et pour tout n ∈ N : 3un+2 − 7un+1 = −2un.

4. u0 = 0, u1 = 1 et pour tout n ∈ N : un+2 = −4un.

5. u0 = 0, u1 = 1 et pour tout n ∈ N : un+2 = −un+1 − un.

6. u0 = 2, u1 = 5 et pour tout n ∈ N : un+2 − 4un+1 = −4un + 1. Pour ce dernier, on
pourra chercher quelle limite ℓ est possible et étudier la suite (un − ℓ).

Exercice 11. Soient et (un)n∈N une suite définie par u0 = 1, u1 = e et pour tout n ∈ N
un+2 = un+1u

2
n. Exprimer un en fonction de n (et calculer la limite de la suite (un) si

vous savez déjà faire).

22 / 82



Exercice 12. On se propose d’étudier un exemple de suite récurrente linéaire d’ordre 3
à l’aide d’une suite auxiliaire. On considère la suite (un)n∈N définie par u0 = u1 = 0 et
u2 = 1 et la relation de récurrence

∀n ∈ N, un+3 = 4un+2 − 5un+1 + 2un

1. Calculer u3, u4 et u5.

2. Rédiger une fonction python permettant de calculer le terme un de cette suite pour
n ⩾ 3.

3. On définit la suite (vn)n∈N par ∀n ∈ N, vn = un+1 − un.
Montrer que : ∀n ∈ N, vn+2 = 3vn+1 − 2vn.

4. En déduire une expression explicite de vn pour n ∈ N.

5. Montrer que ∀n ∈ N, un+1 − un = 2n − 1.

6. En déduire une expression explicite pour un

(On pourra ajouter des égalités déduites de la question précédente concernant uk+1 −
uk pour k allant de 0 à n− 1 et le calculer de deux façons différentes. Autrement dit

calculer
n−1∑
k=0

uk+1 − uk de deux façons différentes.).

Exercice 13. On considère les suites (un)n∈N et (vn)n∈N définies par u0 = 2, v0 = −3
et pour tout n ∈ N par : 

un+1 = −un − vn

vn+1 = 4
3un + 5

3vn.

1. Montrer que (un)n∈N vérifie une récurrence linéaire d’ordre 2.

2. En déduire une expression de un en fonction de n ∈ N.

3. Déterminer une expression de vn en fonction de n ∈ N.

8 Systèmes linéaires
Exercice 1. Résoudre les systèmes suivants :

1.
{

2x+ 3y = 1
5x+ 7y = 3

2.
{

4x− 2y = 5
−6x+ 3y = 1

3.


2x+ 3y = 3
x− 2y = 5
2x+ y = 1

4.
{

2x+ 4y = 10
3x+ 6y = 15
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5.


2x+ y − 3z = −1
3x− 2y + 2z = 5
5x− 3y − z = 4

6.


2x+ 3y − 2z = 3
2x+ 3y + 8z = 13
4x− y + 4z = 7

7.


x+ 2y + 3z = 3
2x+ 3y + 8z = 1
3x+ 2y + 17z = 1

8.


2x− 3y − z = 1
x+ y + 2z = 3
x+ 2y + 3z = 4

9.


x+ 2y − 3z + 2t = 2
2x+ 5y − 8z + 6t = 5
3x+ 4y − 5z + 2t = 4

10.


x+ y − z = 1

2x+ 3y + αz = 3
x+ αy + 3z = 2

avec α réel.

Exercice 2. Pour quelle(s) valeur(s) de λ les systèmes suivants ont-ils une infinité de
solutions ? Déterminer les ensembles solutions dans ce cas.

(S1)


(2 − λ)x +4y = 0

x +(−1 − λ)y = 0

(S2)


(1 − λ)x +y = 0

(1 − λ)y = 0

(S3)


(5 − λ)x −6y = 0

3x +(−6 − λ)y = 0

(S4)



(1 − λ)x +2z = 0

(1 − λ)y = 0

x +y −λz = 0

(S5)



(1 − λ)x −2y +2z = 0

−2x +(1 − λ)y +2z = 0

−2x −2y +(5 − λ)z = 0
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9 Équations différentielles
1. Premier ordre
Exercice 1. 1. Résoudre l’équation d’inconnue y ∈ C1(R), ∀x ∈ R, y′(x) − 3y(x) = 0

avec y(0) = −2.

2. Résoudre l’équation d’inconnue y ∈ C1(R), ∀x ∈ R, y′(x) + 2y(x) = 6 avec y(0) = 0.

3. Résoudre l’équation d’inconnue y ∈ C1(R), ∀x ∈ R, y′(x)+y(x) = 4ex avec y(0) = −2.

4. Résoudre l’équation d’inconnue y ∈ C1(] − 1,+∞[), ∀x ∈] − 1,+∞[, (1 + x)y′(x) +
xy(x) = 0 avec y(0) = 2.

5. Résoudre l’équation d’inconnue y ∈ C1(]−2,+∞[), ∀x ∈]−2,+∞[, (2+x)y′(x)+y(x) =
1 avec y(0) = 2.

Exercice 2. Résoudre les équations différentielles suivantes d’inconnue y une fonction
C1(R) :

1. ∀x ∈ R, y′(x) − 2y(x) = (x− 1)e2x.

2. ∀x ∈ R, y′(x) + 2y(x) = x2 − 2x+ 3.

Exercice 3. La vitesse de dissolution d’un comprimé est proportionnelle à la quantité
restante dans l’eau. On place un comprimé de 20g dans l’eau et au bout de 5 minutes il
en reste 10g. Au bout de combien de temps ne restera-t-il que 1g ?

Exercice 4. Le taux d’accroissement d’une bactérie est proportionnel à la quantité de
bactéries présentes. La quantité double au bout de 50 heures. Au bout de combien de
temps triple-t-elle ?

Exercice 5. Trouver toutes les fonctions f de classe C1 sur R∗
+ telles que, pour tout réel

x ∈ R∗
+, on ait :

xf ′(x) + 2f(x) = x

x2 + 1 .

Pour les exercices suivants, nous sommes aux limites du programmes de BCPST :
résoudre des équations en découpant l’intervalle sur lequel on travaille pour pouvoir ap-
pliquer les théorèmes puis essayer de voir ce qui marche en recollant l’intervalle ne figure
pas au programme, mais ça ne demande pas de connaissance supplémentaire particulière
et il est arrivé que ça tombe. En résumé, il n’est pas forcément très utile d’approfondir
le sujet, mais avoir déjà croisé le cas est rassurant.

Exercice 6. Résoudre sur R l’équation (E) : (x + 1)y′ = y d’inconnue y une fonction
C1(R).

Exercice 7. On cherche à résoudre sur R l’équation (E) : xy′ − 2y = x2 d’inconnue y
une fonction C1(R).

1. Résoudre (E) sur R∗
+.

2. Résoudre (E) sur R∗
−.

3. En déduire les solutions C1 sur R.

Exercice 8. On cherche à résoudre sur R l’équation (E) : (1−x2)y′ −xy = 0 d’inconnue
y une fonction C1(R).
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1. Résoudre (E) sur ] − ∞,−1[.

2. Résoudre (E) sur ] − 1, 1[.

3. Résoudre (E) sur ]1,+∞[.

4. En déduire les solutions C1 sur R.

Exercice 9. Trouver les fonctions f continues sur R telles que, ∀x ∈ R,

3
∫ x

0
f(t)dt = 2xf(x).

Exercice 10. 1. Résoudre sur R+ l’équation y′ = −3y2 d’inconnue y ∈ C1(R+) qui ne
s’annule pas et vérifie y(0) = 2. On utilisera la méthode de séparation des variables.

2. Résoudre sur R+ l’équation y′ + 2y2 = 0 d’inconnue y ∈ C1(R+) qui ne s’annule pas
et vérifie y(0) = 1.

Exercice 11. On considère l’équation y′ = y

(
1 − y

K

)
d’inconnue y ∈ C1(R+) qui ne

s’annule pas et vérifie ∀t ∈ R+, 0 < y(t) < K et y(0) = K

2 .

Quelle est la fonction recherchée ? On posera, pour tout t ∈ R+, z(t) = 1
y(t) et on

cherchera une équation différentielle linéaire du premier ordre suivie par z.

Exercice 12. On note y(t) la taille (enmm, t s’exprime en mois) d’une tumeur bénigne. 1

On a mesuré que, sans soin, la taille de la tumeur suit l’équation différentielle y′ =
y ln

( 1
2y

)
(E1). Si on la traite, elle suit l’équation y′ = y − 2y2 (E2).

Au temps t = 0, on a y(0) = 1
8.

1. Résoudre (E1). On supposera que y ne s’annule pas et ne vaut jamais 1
2. On utilisera

la méthode de séparation des variables et on essaiera de reconnaitre une dérivée de
composition.

2. Et résoudre (E2). On posera, pour tout t ∈ R+, z(t) = 1
y(t) et on cherchera une

équation différentielle linéaire du premier ordre suivie par z.

3. Est-ce que le traitement à une influence sur la taille finale de la tumeur ?

4. Il est bon d’enlever la tumeur avant qu’elle ait doublé sa taille. Combien de temps
a-t-on pour le faire sans traitement ? Avec traitement ? Combien de temps nous fait
gagner le traitement ? On comparera les deux modèles. Quel est le plus prudent ?

2. Second ordre
Exercice 13. 1. On considère l’équation différentielle d’inconnue y ∈ C2(R),

∀x ∈ R, y′′(x) + y′(x) − 2y(x) = 10 cos(x)

avec y(0) = −3 et y′(0) = 4. On cherchera une solution particulière sous la forme
yp(x) = a cos(x) + b sin(x) où (a, b) ∈ R2.

1. Merci à Wikipedia pour m’avoir donné cette idée d’exercice en m’apprenant que cette équation
différentielle pouvait servir à modéliser la croissance des tumeurs. Le cadre a été simplifié. Toutes mes
excuses pour le contexte peu joyeux.
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2. On considère l’équation différentielle d’inconnue y ∈ C2(R),

∀x ∈ R, y′′(x) + 4y′(x) + 4y(x) = 4e−2x

avec y(0) = 1 et y′(0) = 1. On cherchera une solution particulière sous la forme
yp(x) = ax2e−2x où a ∈ R.

3. On considère l’équation différentielle d’inconnue y ∈ C2(R),

∀x ∈ R, y′′(x) + 2y′(x) + 2y(x) = 2x2 + 6x+ 6

avec y(0) = 1 et y′(0) = 2. On cherchera une solution particulière sous la forme
yp(x) = ax2 + bx+ c où (a, b, c) ∈ R3.

Exercice 14. On souhaite résoudre l’équation ∀x ∈ R, y′′(x)+y(x) = cos(x)+sin(2x)
d’inconnue y ∈ C2(R).

1. Résoudre sur R ∀x ∈ R, y′′(x) + y(x) = 0

2. Déterminer une solution particulière de ∀x ∈ R, y′′(x)+y(x) = cos(x) sous la forme
f(x) = λx sin(x).

3. Déterminer une solution particulière de ∀x ∈ R, y′′(x) + y(x) = sin(2x) sous la
forme ∀x ∈ R, g(x) = λ cos(2x) + µ sin(2x).

4. En déduire les solutions C2(R) de ∀x ∈ R, y′′(x) + y(x) = cos(x) + sin(2x).

Exercice 15. On souhaite résoudre l’équation y′′+2y′−3y = sin(2x)+ex+e4x d’inconnue
y ∈ C2(R).

1. Déterminer λ et µ pour que f(x) = λ cos(2x)+µ sin(2x) soit une solution particulière
de y′′ + 2y′ − 3y = sin(2x).

2. Déterminer ν pour que g(x) = νxex soit solution de y′′ + 2y′ − 3y = ex.

3. Déterminer α pour que h(x) = αe4x soit solution de y′′ + 2y′ − 3y = e4x.

4. En déduire les solutions C2(R) de y′′ + 2y′ − 3y = sin(2x) + ex + e4x.

Exercice 16. Déterminer toutes les fonctions C1(R) telles que, ∀x ∈ R, f ′(x) = f(−x).

Exercice 17. 1. Résoudre l’équation différentielle d’inconnue z une fonction C2(R) :
z′′ − z = 0.

2. Résoudre alors l’équation différentielle d’ordre 4 d’inconnue y une fonction C4(R) :

y(4) − 2y′′ + y = 0.

On pourra se ramener à une équation différentielle linéaire d’ordre deux dont on
cherchera une solution particulière sous la forme : x 7−→ axex + bxe−x.
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3. Autres équations, pour s’entrainer
Exercice 18 (Equations homogènes). Résoudre les équations différentielles suivantes
sur R d’inconnue y une fonction C1(R) :

1. y′ − 3y = 0 avec y(0) = 2.

2. 3y′ − 4y = 0 avec y(0) = −1.

3. y′ = 3y avec y(3) = e3.

4. y′ = 5
7y sans condition initiale.

Exercice 19 (Equations non homogènes). Résoudre les équations différentielles sui-
vantes sur R d’inconnue y une fonction C1(R) :

1. y′ − 2y = 1 avec y(0) = 2.

2. y′ − 4y = −3 avec y(0) = 2.

3. 3y′ − 4y = 3 avec y(0) = −1.

4. y′ = 2y − 3.

5. y′ = 3y + 2 avec y′(0) = 1

6. y′ = 3
4y + 3

7. y′ − 4y = ex avec y(0) = 2.

8. 3y′ − 4y = x avec y(0) = −1.

9. y′ = 2y + e2x.

10. y′ = 3y + x2.

11. y′ = 3
4y + cos(x) sans condition initiale.

Exercice 20. Résoudre les équations différentielles suivantes d’inconnue y une fonction
C1(I) où I est l’intervalle précisé :

1. ∀x ∈ I = R, y′(x) + exy(x) = 0.

2. ∀x ∈ I = R, (1 + x2)y′(x) − 2xy(x) = x.

3. ∀x ∈ I =] − 2,+∞[, (2 + x)y′(x) = 2 − y(x).

4. ∀x ∈ I =] − 1,+∞[, (1 + x)y′(x) + y(x) = (1 + x) sin(x).

Exercice 21 (Equations homogènes). Résoudre les équations différentielles suivantes
sur R d’inconnue y une fonction C2(R) :

1. y′′ + y′ − 2y = 0 avec y(0) = 2 et y′(0) = 0.

2. y′′ − 2y′ − 3y = 0.

3. 6y′′ + y′ − y = 0 avec y(0) = 1 et y′(0) = 1.

4. y′′ − y′ = 0 avec y(0) = 0 et y′(0) = 1.

28 / 82



5. y′′ − 2y′ + y = 0 avec y(0) = 0 et y′(0) = 1.

6. y′′ − y = 0 avec y(0) = 1 et lim
x→+∞

y(x) = 0.

7. y′′ + y′ = y.

8. y′′ − y′ + y = 0 avec y(0) = 1 et y′(0) = 1.

9. y′′ − 4y′ + 4y = 0 avec y(0) = 1 et y′(0) = 1.

10. y′′ + y = 0 avec y impaire et y′(0) = 1.

11.
√

2y′′ + 2y′ +
√

2y = 0.

Exercice 22 (Equations non homogènes). Résoudre les équations différentielles sui-
vantes sur R d’inconnue y une fonction C2(R) :

1. y′′ + y′ − 2y = 1.

2. y′′ − y′ + 2y = −1 avec y(0) = 1 et y′(0) = 1.

3. y′′ −
√

2y′ + y = 1.

4. y′′ − y′ + y = −1 avec y(0) = 0 et y′(0) = 1.

5. y′′ − y′ + 2y = ex. On cherchera une solution particulière sous la forme x 7→ λex.

6. y′′−
√

2y′+y = x2. On cherchera une solution particulière sous la forme d’un polynôme
de degré 2.

7. y′′ − y′ + y = cos(3x). On cherchera une solution particulière sous la forme f(x) =
λ cos(3x) + µ sin(3x).

10 Matrices
Exercice 1. Considérons les matrices :

A =

1 −2 3
2 0 −4
2 1 1

 , B =

2 1 −2
1 3 0
0 0 5

 , C =

 0 −2 1
−2 1 2

3
1 −1 0

 ,

D =

 1 3
−2 −1
1 5

 , E =
(

2 1 1
−1 2 1

)
, F =

(
1 3
2 1

)
,

G =
(

2 0
7 −4

)
, H =

(
1 0
2 1

)
.

1. Calculer les matrices suivantes :

a. K = 2A+ 3B − C.

b. L = 3(A− 2B) + 2(3B + C) − (2A+ C).
c. M = (A− 2(C +A−B)) + (4A− 3C) − (2B − 5C − 3A).
d. N = (5A− 3C + 2(2B − 3A+ 4C)) + (A− 4B − 5C).
e. P = 3C − 2A+B.
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2. Calculer les produits suivants lorsque c’est possible : AB, BA, AD, AE, EA, ED,
DE et EBD.

3. Résoudre dans M3(R) les équations d’inconnue X suivantes :

a. A− 2X = B.

b. 2A+ 3(X −B) − C = 5(X + C) − 3B.

4. Résoudre dans M2(R) les systèmes suivants :

a.
{

X − Y = F
2X + Y = G.

b.


X − Y + Z = ED
X + Y + 2Z = H
X + 2Y − Z = G.

Exercice 2. Considérons les matrices de M2(K) où K = R ou C :

A =
(

1 1
0 1

)
, B =

(
1 0
1 1

)
.

1. Montrer que, si une matrice M ∈ M2(K) s’écrit comme combinaison linéaire de A
et B (c’est-à-dire qu’il existe a et b réels tels que M = aA + bB), alors a et b sont
uniques.

2. Montrer que M =
(
x z
y t

)
est une combinaison linéaire de A et B si et seulement si

x = t = y + z.

Exercice 3. Soit A =

−3 2 1
0 −3 1
0 0 −3

. Calculer An.

Exercice 4. Calculer An pour tout n ∈ N∗ dans les cas suivants :

1. A =
(
a b
0 a

)
.

2. A =

0 0 1
0 1 0
1 0 0

.

3. A =
(
a b
b a

)
. Le découpage astucieux est d’exprimer A en tant que combinaison

linéaire de I2 et de B =
(

1 1
1 1

)
.

Exercice 5. Soit A =

5 2 2
2 5 2
2 2 5

 et B = A− 3I3.

Montrer que, pour tout n ∈ N, An = 3n−1

2 (3n − 1)B + 3nI3. Il pourra être utile de
calculer B2, puis Bk pour k ∈ N∗ (mais pas forcément : ça dépend de la preuve que vous
choisirez de faire).
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Exercice 6. Soit a ∈ R. On note A =

−1 1 1
a 1 1

−a 0 0

.

1. Est-ce que A est inversible ?

2. Calculer A2, A3.

3. Déterminer An pour tout n ∈ N∗.

Exercice 7 (Même genre que le précédent). Soit A =

−5 2 2
−3 1 1
−9 4 4

.

1. A est-elle inversible ?

2. Calculer A2 et A3.

3. En déduire la valeur de An pour tout n ∈ N∗.

Exercice 8. 1. Considérons la matrice A =

−1 −1 −1
−1 0 0
2 0 1

. Calculer A3. En déduire

que A est inversible et donner A−1.

2. Soit A =

2 1 −4
0 1 −2
1 1 −3

. Calculer A3. En déduire que A n’est pas inversible.

3. Soit A =

1 0 2
1 2 −2
1 −1 −1

. Calculer A3 − 2A2 − 5A + 10I3. En déduire que A est

inversible et donner son inverse.

4. Soient n ∈ N∗ et d ∈ N. Soient A une matrice carrée de Mn(K) et P =
d∑

i=0
αiX

i un

polynôme tel que P (A) = 0. Montrer que si α0 ̸= 0 alors A est inversible et donner
son inverse.

Exercice 9. Soient A =

−1 1 1
2

−2 2 1
2

−2 1 3
2

 et P =

1 0 1
0 1 1
4 −2 1

.

1. a. Montrer que la matrice P est inversible et calculer son inverse.
b. Calculer la matrice D = P−1AP . Que remarque-t-on ?
c. Exprimer A en fonction de P , P−1 et D.
d. Montrer que pour tout entier naturel n, on a An = PDnP−1.

2. On dit qu’une suite de matrices (Mn)n∈N de Mp,q(R) converge si les suites de chaque
coefficient de Mn convergent. La matrice des limites obtenue est dite la matrice limite
de la suite (Mn)n∈N.

a. Calculer An.
b. La suite (An)n∈N est-elle convergente ? Si oui, en donner la limite.
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Exercice 10. Déterminer les inverses des matrices suivantes, s’ils existent.

A ==
(

2 5
−6 −16

)
.

B ==
(

3 1
1 −2

)
.

C ==
(

−2 5
6 −15

)
.

D ==

 0 −1 0
1 1 −1

−2 −1 0

 .

E ==

0 1 −1
1 0 −1
1 0 1

 .

F ==

−2 −2 2
−1 2 2
1 −2 3

 .

G ==

1 2 −1
1 0 −1
3 −1 1

 .

H ==

2 1 −1
1 0 −1
3 −1 1

 .
Exercice 11. Pour chacune des matrices suivantes, déterminer les valeurs du paramètre
λ pour lesquelles la matrice n’est pas inversible.

1. Aλ =

3 − λ −2 2
3 −2 − λ 3
2 −2 3 − λ

 .

2. Bλ =

2 − λ 1 −7
2 3 − λ −8
2 2 −7 − λ

 .

3. Cλ =

2 − λ −1 1
−4 5 − λ −2
−6 6 −3 − λ

 .
Exercice 12. Soit n un entier naturel non nul.
Soit A = (aij)1⩽i⩽n

1⩽j⩽n
∈ Mn(K). On note Tr(A) =

n∑
i=1

aii (la somme des coefficients

diagonaux) la trace de A.

1. a. Montrer que pour toutes matrices A et B de Mn(K), Tr(A+B) = Tr(A)+Tr(B).
b. Montrer que pour toute matrice A de Mn(K) et tout scalaire λ ∈ K, Tr(λA) =
λTr(A).
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2. Montrer que pour toutes matrices A et B de Mn(K), Tr(AB) = Tr(BA).

3. En déduire qu’il n’existe pas de couple de matrices A et B appartenants à Mn(K) tel
que AB −BA = In.

Exercice 13. On note A =
(

3 2
−2 −1

)
. On se propose de calculer les puissances de A

de deux façons différentes.

1. 1ère méthode.

a. Exprimer A comme combinaison linéaire de I et de N =
(

1 1
−1 −1

)
.

b. Calculer An pour tout n ∈ N.

2. 2ème méthode

a. Exprimer A2 comme une combinaison linéaire de A et I.
b. En déduire qu’il existe deux suites réelles (un)n∈N et (vn)n∈N telles que

∀n ∈ N, An = unA+ vnI.

Pour cela, on pourra exprimer un+1 en fonction de un et vn et faire de même pour
vn+1.

c. Exprimer un et vn en fonction de n.
d. En déduire An pour tout n ∈ N.

11 Suites réelles
Exercice 1. Soit (un)n∈N∗ une suite telle que u1 = 1 et pour tout n ∈ N∗, un+1 =√

12 + un.

1. Montrer que cette suite est bien définie (c’est-à-dire que l’on peut bien calculer tous
les un).

2. Etudier son sens de variation. On pourra commencer par calculer u1, u2, u3.

3. Montrer que pour tout n ∈ N∗, 0 < un < 4.

4. Montrer que (un)n∈N∗ converge et déterminer sa limite.

Exercice 2. Etudier la suite (un)n∈N définie par son premier terme u0 et pour tout
n ∈ N, un+1 = un − e−un (sens de variation et limite éventuelle).

Exercice 3. Soit (un)n∈N la suite définie par son premier terme u0 ∈ [0, 12] et un+1 =√
12 − un.

1. Montrer que la suite (un)n∈N est bien définie et que ∀n ∈ N, un ∈ [0, 12].

2. En supposant que (un)n∈N converge vers un réel ℓ, déterminer ℓ.

3. Montrer que ∀n ∈ N, |un+1 − ℓ| ⩽ 1
3 |un − ℓ|.

4. En déduire que ∀n ∈ N, |un − ℓ| ⩽ 1
3n

|u0 − ℓ|.
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5. Montrer que la suite (un)n∈N est convergente et lim
n→+∞

un = ℓ.

Exercice 4. Soit (un)n∈N une suite telle que u0 = 0 et pour tout n ∈ N,

un+1 = 2(un + 5)
3(un + 1) .

1. Dresser le tableau de variations de la fonction f définie sur R+ par

f(x) = 2(x+ 5)
3(x+ 1) .

2. Montrer que la suite (un)n∈N est bien définie et que ∀n ∈ N∗, un ∈
[2

3 ,
10
3

]
.

3. Déterminer la seule limite possible de la suite (un)n∈N.

4. Montrer que pour tout n ∈ N∗,

|un+1 − ℓ| ⩽ 3
5 |un − ℓ|

où ℓ est la seule limite possible trouvée à la question précédente.
En déduire que ∀n ∈ N∗,

|un − ℓ| ⩽
(3

5

)n−1
|u1 − ℓ| ,

Montrer que la suite (un)n∈N est convergente et déterminer sa limite.

5. Retrouver graphiquement ce résultat.

Exercice 5. Donner le sens de variation de la suite (un)n∈N définie par son premier
terme u0 ∈ R et, pour tout n ∈ N, un+1 = un − u2

n et étudier sa convergence. On
discutera selon les valeurs de u0.

Exercice 6. Donner le sens de variation de la suite réelle (un)n∈N définie par son premier
terme u0 ∈ R et, pour tout n ∈ N, un+1 = un(1 + un) et étudier sa convergence. On
discutera selon les valeurs de u0.

Exercice 7. Soient (un)n∈N et (vn)n∈N deux suites telles que u0 < v0 et pour tout
n ∈ N :

un+1 = 2un + vn

3 ; vn+1 = un + 2vn

3 .

1. Exprimer un+1 − vn+1 en fonction un − vn et en déduire lim
n→+∞

un − vn.

2. Exprimer un et vn en fonction de n, u0 et v0.

3. Déterminer la limite de chaque suite.

Exercice 8. Déterminer les équivalents simples des suites dont le terme général est
donné ci-dessous et en déduire leur limite éventuelle :

1. n

n3 + 1.

2. 5n2 + 1
n3 .
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3. n7 + n3 + 1
n6 + n2 − 12.

4. n4 + 1
3n4 + n3 + 12n2 − 72n+ 1.

5. e
−n + n

n2 .

6. en + n

n+ ln(n) .

Exercice 9. Les suites (un)n∈N et (vn)n∈N dont le terme général est donné ci-dessous
sont-elles équivalentes lorsque n tend vers +∞ ?

1. un = n2 − 2n+ 1 et vn = 2n3.

2. un = n4 + 3n3 − 2n+ 1 et vn = n4 + n.

3. un = n2 − 2n+ 1 et vn = 2n2 − 3n+ 2.

4. un = n5 − 3n3 et vn = n4.

Exercice 10 (Constante d’Euler, un classique). Soient (un)n⩾2 et (vn)n⩾2 deux suites
réelles définies pour tout n ⩾ 2 par

un =
(

n−1∑
k=1

1
k

)
− ln(n) et vn =

(
n∑

k=1

1
k

)
− ln(n).

1. Montrer que pour tout x ∈] − 1; +∞[, on a ln(1 + x) ⩽ x.

2. Montrer que (un)n⩾2 et (vn)n⩾2 sont deux suites adjacentes.

3. En déduire que (vn)n⩾2 converge vers une limite que nous noterons γ.

4. Montrer que
n∑

k=1

1
k

∼ ln(n).

5. En montrant que ∀n ⩾ 2, un ⩽ γ ⩽ vn écrire une fonction gamma(eps) qui renvoie la
valeur de γ à eps près.

Le nombre γ est appelé constante d’Euler.

Exercice 11. Pour n ∈ N∗, on pose

un =
( n∑

p=1

1
√
p

)
− 2

√
n+ 1

et
vn =

( n∑
p=1

1
√
p

)
− 2

√
n.

1. Montrer que les suites (un)n∈N∗ et (vn)n∈N∗ sont adjacentes. On notera ℓ leur limite
commune.

2. Vérifier que, pour tout n ∈ N∗, on a |un − ℓ| ⩽ 1√
n

.

3. Ecrire un programme en Python qui donne une valeur approchée de ℓ à 10−2 près.
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4. Déterminer un équivalent de Sn =
n∑

p=1

1
√
p

en +∞.

Exercice 12. Soient a et b deux réels strictement positifs avec a < b. On pose u0 = a,
v0 = b et pour tout n ∈ N, 2

un+1
= 1
un

+ 1
vn

et vn+1 = un + vn

2 .

1. Montrer que pour tout n ∈ N, a ⩽ un ⩽ b et a ⩽ vn ⩽ b.

2. Soit n ∈ N. Exprimer un+1 en fonction de un et vn.

3. Montrer que, ∀n ∈ N, vn+1 − un+1 ⩽
1
2(vn − un) et un ⩽ vn.

4. En déduire, ∀n ∈ N, vn − un ⩽
b− a

2n
.

5. Montrer que ces deux suites (un)n∈N et (vn)n∈N convergent vers la même limite.

Exercice 13. Soient (a, b) ∈ (R∗
+)2 avec a < b, (un)n∈N et (vn)n∈N deux suites réelles

définies par u0 = a, v0 = b et

∀n ∈ N, un+1 = √
unvn et vn+1 = un + vn

2 .

1. Montrer que pour tout n ∈ N, a ⩽ un ⩽ b et a ⩽ vn ⩽ b.

2. Montrer que, ∀n ∈ N, vn+1 − un+1 ⩽
1
2(vn − un) et un ⩽ vn.

3. En déduire, ∀n ∈ N, vn − un ⩽
b− a

2n
.

4. Montrer que ces deux suites (un)n∈N et (vn)n∈N convergent vers la même limite.

Exercice 14. On note (un)n∈N la suite obtenue en posant u0 = 2 et un+1 = 2 − 1
un

1. Démontrer que la suite (un)n∈N est bien définie et montrer qu’elle est minorée par 1.

2. Etudier le sens de variation de la suite (un)n∈N

3. Montrer que la suite (un)n∈N est convergente et déterminer sa limite

4. Calculer les premiers termes de la suite (un)n∈N, en déduire une conjecture sur la
valeur de un en fonction de n. Retrouver les résultats précédents.

Exercice 15. Soit (un) une suite définie par u0 ⩾ 1 et un+1 = f(un) avec f la fonction
définie sur R∗

+ par f(x) = x2 + 2
x

.

1. Montrer que (un)n∈N est bien définie et que pour tout n, un ⩾ 1.

2. Déterminer le sens de variation de (un).

3. Prouver que la suite (un) ne converge pas. En déduire lim
n→+∞

un = +∞.

Exercice 16. Soit (un)n∈N une suite réelle définie par u0 = 0, u1 = 1
2 et pour tout

n ∈ N,
un+2 = 1

3(1 + un+1 + u3
n).
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1. Montrer que ∀n ∈ N, un ∈ [0, 1].

2. Etudier le sens de variation de (un)n∈N.

3. Montrer que (un)n∈N converge et déterminer sa limite.

On donne
√

5 − 1
2 ≃ 0, 618...

Exercice 17 (Pour s’entrainer à manipuler la définition de limite). On note (un)n∈N
une suite d’entiers convergente vers ℓ ∈ R.

1. Montrer que ℓ ∈ N. On pourra raisonner par l’absurde et utiliser la définition de limite
en choisissant ε avec pertinence.

2. En déduire qu’il existe un n0 ∈ N, tel que ∀n ⩾ n0, un = ℓ. On pourra ici encore
utiliser la définition de limite avec un ε bien choisi.

3. Conclure.

12 Polynômes
1. Factorisation de polynômes
Exercice 1. Résoudre les équations suivantes d’inconnues x réel :

1. 2x2 − 24 = 8x.

2. 2x2 + (6 − 2
√

3)x = 6
√

3.

3. 7x2 − 12x+ 1 = 0.

4. 3x2 + 6x− 8 = x2 − x+ 1.

5. x2 − (2 −m)x+ 1 = 0 avec m réel.

6. x4 − 2x2 + 1 = 0.

Exercice 2. Factorisez les polynômes suivants au mieux de vos possibilités :

1. P = X3 − 2X2 +X − 2

2. P = X4 −X3 −X + 1

3. P = 2X3 + 8X2 − 14X − 20

4. P = 2X3 − 3X2 + 1.

5. P = X4 −X3 − 3X2 +X + 2

6. P = 3X4 +X3 − 9X2 − 9X − 2.

7. P = 2X4 + 21X3 + 50X2 − 3X − 70.

8. P = 6X3 − 5X2 − 3X + 2.

9. P = X4 − 4X3 + 4X2 +X − 2

10. P = 3X4 + 3X3 − 3X − 3

11. P = 2X3 + 6X2 + 3X − 2
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12. P = X3 − 4X2 + 5X − 2.

13. P = 2X4 − 18X2 + 8X + 24.

14. P = X3 − 8.

15. P = 27X3 − 1.

16. P = mX3 + (1 −m)X + 1 en discutant selon les valeurs de m.

Exercice 3. Etudier le signe des polynômes suivants :

1. 4X2 + 33X − 27.

2. X2 + (4 −
√

2)X − 4
√

2.

3. X3 + 2X2 − 7X + 4.

Exercice 4. Montrez que les polynômes suivants peuvent s’exprimer comme le carré
d’un polynôme à déterminer.

1. P = X4 + 4X3 + 12X2 + 16X + 16.

2. Q = X4 + 2X3 + 3X2 + 2X + 1.

3. R = X6 + 2X5 + 3X4 + 4X3 + 3X2 + 2X + 1.

2. Exercices plus théoriques
Exercice 5. Soient a, b, c trois réels distincts. Soit P ∈ R[X] défini par la relation
suivante :

P (X) = a
(X − b)(X − c)
(a− b)(a− c) + b

(X − a)(X − c)
(b− a)(b− c) + c

(X − a)(X − b)
(c− a)(c− b) .

1. Soit Q défini par Q(X) = P (X) −X. Calculer Q(a), Q(b) et Q(c).

2. Quel peut être le degré maximal de Q ? En déduire une expression simple de Q puis
de P .

3. Soient (α, β, γ) ∈ K3. Pouvez-vous donner un polynôme R de degré inférieur ou égal
à 2 tel que R(a) = α,R(b) = β et R(c) = γ ? Existe-t-il beaucoup de polynômes qui
conviennent ?

Exercice 6. On considère la suite de polynômes (Pn) définie par :

P0 = 1 et ∀n ∈ N∗, Pn = 1+X

1! +· · ·+X(X + 1) × · · · × (X + n− 1)
n! =

n∑
k=0

k−1∏
i=0

(X + i)

k!

1. Écrire P1, P2, P3 sous forme factorisée.

2. En déduire une factorisation de Pn en produits de facteurs irréductibles.

Exercice 7. 1. Déterminer les polynômes de K[X] tels que P (−X) = P (X) (c’est-à-dire
∀x ∈ K, P (−x) = P (x))

2. Déterminer les polynômes de K[X] tels que P (−X) = −P (X) (c’est-à-dire ∀x ∈
K, P (−x) = −P (x))
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3. Déterminer les polynômes de K[X] tels que : P (X + 1) = P (X) (c’est-à-dire ∀x ∈
K, P (x+ 1) = P (x))

4. Déterminer les polynômes de R[X] tels que : P (0) = 0 et pour tout x ∈ R, P (x) =
P (1 − cos(x))

Exercice 8. Montrez qu’un polynôme non constant P ∈ R[X] ne peut être périodique
(c’est-à-dire qu’il n’existe pas T ∈ R∗

+ tel que pour tout x réel P (x+ T ) = P (x)).

13 Probabilités
1. Avec du dénombrement
Exercice 1. Une urne contient 9 boules numérotées de 1 à 9. On tire deux boules
de cette urne. Calculer la probabilité d’obtenir deux numéros de même parité dans les
différents cas suivants :

1. On tire les deux boules simultanément.

2. On tire une boule, on ne la remet pas, puis on tire la deuxième (tirage sans remise).

3. On tire une boule, on la remet, puis on tire la deuxième (tirage avec remise).

4. Commentez.

Exercice 2. On lance deux dés équilibrés, l’un après l’autre et on considère les événements
suivants :
A : ≪ le premier dé donne un résultat pair ≫.
B : ≪ le deuxième dé donne un résultat impair ≫.
C : ≪ les deux dés donnent des résultats de même parité ≫.

1. Calculer P (A ∩B ∩ C) et P (A)P (B)P (C).

2. Calculer P (A ∩B) et P (A)P (B).

3. De la même façon, calculer P (A ∩ C) et P (A)P (C) puis P (B ∩ C) et P (B)P (C).

4. Commentez.

Exercice 3. On tire successivement sans remise 4 jetons d’une boite qui en contient n,
n ⩾ 4 numérotés de 1 à n. Quelle est la probabilité des événements suivants :

1. Le plus petit numéro tiré est 1.

2. Le plus petit numéro tiré est 2.

3. Le plus petit numéro est k, k ∈ [[1;n]].

4. Le plus grand numéro tiré est k.

5. Reprendre les deux dernières questions en supposant que l’on fait des tirages avec
remise.

Exercice 4. Une urne contient n boules (n ⩾ 16). 10 boules sont rouges, n − 10 sont
blanches. On tire simultanément et au hasard 10 boules.

1. Quelle est la probabilité pn de l’événement : ≪ quatre boules exactement sont rouges ≫ ?
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2. Pour quelle(s) valeur(s) de n pn est-elle maximale ? On pourra s’aider d’une simulation
informatique avant d’essayer de la trouver.

Exercice 5. Cinq boules numérotées de 1 à 5 sont réparties dans 3 urnes numérotés de
1 à 3. Chaque urne peut contenir entre 0 et 5 boules.

1. Combien y a-t-il de répartitions possibles ?

2. Quelle est la probabilité qu’une seule urne contienne toutes les boules ?

3. Quelle est la probabilité que deux urnes exactement contiennent toutes les boules ?

4. En déduire la probabilité qu’au moins une urne soit vide.

5. Retrouver cette probabilité directement en utilisant les événements Ui : ≪ l’urne i est
vide ≫.

Exercice 6 (Les allumettes de Banach). Le mathématicien Stefan Banach 2 est un peu
distrait. Il fume beaucoup et a dans ses poches deux boites de N allumettes chacune.
Chaque fois qu’il a besoin d’une allumette, il en prend une au hasard dans l’une des
boites sans jamais se souvenir de la quantité d’allumettes restantes.

1. Quelle est la probabilité que, lorsqu’il prend la dernière allumette d’une boite, l’autre
boite en contienne encore k ?

2. Décidément distrait, il se rend compte qu’une boite est vide, non pas quand il prend
la dernière allumette, mais quand il essaie d’en prendre une et qu’elle n’en contient
plus. Quelle est alors la probabilité qu’il en reste k dans la deuxième boite ?

Exercice 7. Deux joueurs A et B jouent une partie en 2n manches indépendantes.
La probabilité que A gagne une manche vaut p ∈]0; 1[, la probabilité que B gagne une
manche vaut q = 1 − p. Le vainqueur est celui qui a gagné le plus de manches.

1. Quelle est la probabilité que la partie soit nulle ?

2. Quelle est la probabilité que A gagne la partie ? On laissera le résultat sous la forme
d’une somme.

3. Montrer que p > 1
2 si et seulement si la probabilité que A gagne la partie est stricte-

ment supérieure à la probabilité que B gagne la partie.

Exercice 8. En vue d’estimer la taille d’une population de N animaux, on effectue les
opérations suivantes : on capture simultanément a animaux que l’on marque et que l’on
relâche parmi les autres. Quelques temps plus tard, on capture n animaux et on observe
que k d’entre eux sont marqués. On supposera N supérieur à n+ a.

1. On veut calculer la probabilité p(N) de tirer un échantillon de n animaux parmi
lesquels k sont marqués.

a. Déterminer le nombre d’échantillons de taille n.
b. Déterminer le nombre d’échantillons de taille n contenant exactement k animaux

marqués.

2. Mathématicien polonais célèbre né en 1892 et mort en 1945, dont le nom est associé à beaucoup
d’objets et de théorèmes, tous très peu accessibles à votre niveau. Le nom de cet exercice provient d’une
référence humoristique à son habitude faite par Hugo Steinhaus lors d’un discours en son honneur.
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c. En déduire p(N).

2. On veut déterminer la valeur de N qui rend cette probabilité maximale. On supposera
N ⩾ n+ a.

a. Calculer, pour N ⩾ 1, q(N) = p(N)
p(N − 1) .

b. Etudier le signe de q(N) − 1.
c. En déduire l’existence d’un N0 qui maximise p(N).

3. AN : On a marqué 200 vairons. On en capture 150 et parmi, il y en a 15 de marqués.
A combien peut-on estimer la population de vairons ?

Exercice 9. Dix paires de chaussures différentes sont rangées dans un placard. On prend
au hasard quatre chaussures parmi les vingt. Quelle est la probabilité :

1. d’obtenir deux paires de chaussures ?

2. d’obtenir au moins une paire de chaussures ?

3. d’obtenir exactement une paire de chaussures ?

2. Sans dénombrement
Exercice 10. Deux tireurs A et B visent une même cible. Quand ils tirent ensemble, la
probabilité de l’événement ≪ la cible est atteinte ≫ vaut 5

8. A est deux fois plus habile
que B. On suppose que les résultats obtenus par A et B sont indépendants.
A et B tirent en même temps. Quelle est la probabilité de l’événement ≪ A a atteint la
cible ≫ ?

Exercice 11. Un laboratoire fabrique un alcootest et les essais montrent que :

• Sur 100 personnes controlées, 2 sont en état d’ébriété ;

• 90 fois sur 100, l’alcootest a donné un résultat positif alors que la personne contrôlée
était en état d’ébriété ;

• 95 fois sur 100, l’alcootest a donné un résultat négatif alors que la personne n’était
pas en état d’ébriété.

1. On essaie l’appareil sur une personne et on constate que le résultat est positif. Quelle
est la probabilité que cette personne soit en état d’ébriété ?

2. On essaie l’appareil sur une personne et on constate que le résultat est négatif. Quelle
est la probabilité que cette personne soit en réalité en état d’ébriété ?

3. Quelle est la probabilité que le résultat soit faux ?

Exercice 12. On effectue n tirages (avec n ⩾ 4) avec remise dans une urne contenant
4 boules numérotées de 1 à 4. On note pn la probabilité d’obtenir les quatre numéros au
moins une fois au cours des n tirages. On définit pour i ∈ [[1; 4]] Ai : ≪ la boule numéro
i n’apparait pas au cours des n tirages ≫.

1. Calculer P (A1 ∪A2 ∪A3 ∪A4).

2. En déduire pn = 1 − 4
(3

4

)n

+ 6
(1

2

)n

−4
(1

4

)n

.
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3. Calculer lim
n→+∞

pn. Commentez.

Exercice 13. On a 5 pièces, 4 pièces normales équilibrées et une pièce truquée ne
contenant que des faces. On choisit une pièce au hasard uniforménent et on joue à pile
ou face un certain nombre de fois avec cette pièce.

1. Quelle est la probabilité de faire face au premier lancer ?

2. Sachant qu’on a obtenu face, quelle est la probabilité d’avoir utilisé la pièce truquée.

3. Quelle est la probabilité pn d’avoir joué avec la pièce truquée sachant qu’on a obtenu
n faces aux n premiers lancers ?

4. Calculer lim
n→+∞

pn. Qu’en pensez-vous ?

5. A partir de quel valeur de n la probabilité d’avoir utilisé la pièce truquée sachant
qu’on a obtenu successivement n faces est-elle supérieure à 0, 95 ? Interpréter.

Exercice 14. On dispose de deux pièces, la pièce A donne face avec la probabilité 1
2 ,

la pièce B avec la probabilité 2
3 . On choisit une pièce au hasard uniformément. On la

lance. Si l’on obtient face, on conserve la pièce que l’on vient de lancer, sinon on change
de pièce. On effectue ainsi une suite de lancers.

1. On note pn la probabilité de jouer avec la pièce A au nième lancer. Montrer que
(pn)n∈N∗ est une suite arithmético-géométrique. En déduire une expression de pn en
fonction de n pour tout n ∈ N∗.

2. En déduire la probabilité d’obtenir face au nème lancer.

Exercice 15. Soit n ∈ N∗. On lance une pièce qui amène pile avec une probabilité
a ∈]0, 1[. On marque un point si on obtient pile et deux si on obtient face. On s’arrête
lorsqu’on a marqué au moins n points. On note pn la probabilité de terminer avec
exactement n points.

1. Calculer p1 et p2.

2. Montrer que ∀n ⩾ 1, pn+2 = apn+1 + (1 − a)pn.

3. En déduire une expression de pn en fonction de n et de a.

Exercice 16. Un jeu entre deux joueurs A et B est divisé en parties indépendantes. A
chaque partie, celui qui perd donne un euro au gagnant. La probabilité que A gagne une
partie est p ∈]0; 1[, celle que B gagne une partie est q = 1 − p. On s’arrête dès que l’un
des deux joueurs n’a plus d’argent.
Notons Ak,n l’événement ≪ A perd le jeu entier alors qu’il avait k euros après n parties ≫.
Soit k un entier naturel compris entre 0 et N , n un entier naturel quelconque, on note
uk = P (Ak,n), c’est-à-dire la probabilité que le joueur A perde le jeu entier alors qu’il
possède k euros après n parties. On suppose que cette probabilité est indépendante de
n, ce qui justifie la notation proposée.

1. Les joueurs A et B possèdent au total une somme de N euros. Le jeu s’arrête dès que
l’un des deux joueurs est ruiné.

a. Calculer u0 et uN .
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b. Montrer que uk = uk+1p+ uk−1q pour tout k ∈ [[1, N − 1]].

c. Montrer que uk =
( q

p

)N −
( q

p

)k( q
p

)N − 1
si p ̸= 1

2 et que uk = N − k

N
si p = 1

2.

d. Déduire de ce qui précède la probabilité vk qu’a le joueur B, en partant de la
somme d’argent N − k de finir ruiné. Calculer uk + vk. Interpréter.

2. Le joueur B est infiniment riche et le joueur A dispose d’une somme k. Montrer que
la probabilité que le joueur A se ruine est :

1 si p ⩽ 1
2(

q

p

)k

si p > 1
2 .

Commentez.

Exercice 17 (Un peu de réflexion). 1. Le paradoxe de Monty Hall 3 : dans un jeu télévisé,
on a le choix entre trois boites, deux sont vides et une contient une grosse somme d’ar-
gent (historiquement, il y avait trois portes, derrière deux des chèvres, et derrière la
troisième une voiture). Le candidat choisit une boite, mais ne l’ouvre pas. A cet ins-
tant, le présentateur ouvre une des des boites restantes qui est vide, et il propose au
candidat de garder sa boite et de l’ouvrir ou de l’échanger avec celle qui reste. Quelle
est la meilleure stratégie à opérer ?

2. Alice, Bob et Claire sont en prison. Deux d’entre eux seront exécutés et un sera gracié.
Alice demande au gardien de lui désigner un de ses deux compagnons de cellule qui
sera exécuté. Le gardien désigne Bob. Sachant cela, quelle est la probabilité qu’Alice
soit graciée ?

14 Limites et continuité
Exercice 1. En utilisant la définition de limite, démontrer les limites suivantes :

1. lim
x→−1

(x2 + x+ 1) = 1.

2. lim
x→+∞

2x− 1
x+ 1 = 2.

3. lim
x→1

1
(x− 1)2 = +∞.

Exercice 2. Déterminer la limite des fonctions f suivantes en x0. Il pourra être nécessaire
de distinguer limite à gauche et limite à droite.

1. f(x) = x2 − 1
x+ 1 en x0 = −1, puis en +∞.

2. f(x) = x3 + 1
x5 + 1 en x0 = −1 puis en +∞.

3. f(x) = x− 3
√
x−

√
3

en x0 = 3 puis en +∞.

3. Le problème de Monty Hall est un casse-tête probabiliste librement inspiré du jeu télévisé américain
Let’s Make a Deal. Il porte le nom de celui qui a présenté ce jeu aux États-Unis pendant treize ans,
Monty Hall.
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4. f(x) =
√
x+ 1 − 2
x− 3 en x0 = 3 puis en +∞.

5. f(x) = x2 − 16√
x− 1 −

√
3

en x0 = 4 puis en +∞.

6.
1 −

√
2 −

√
4 − 3x

1 −
√

2 −
√

1
3−2x

en x0 = 1. Attention, la réponse est encombrante.

7. f(x) = x ln
(

x

x+ 1

)
en x0 = 0.

8. f(x) = x− ln(x) en +∞.

9. f(x) = ex − x2

x4 + 1 en +∞.

10. f(x) = x−x en 0 puis en +∞.

11. f(x) = (x+ 2)−x en +∞.

12. f(x) = 2−x2+2 en +∞.

Exercice 3. Calculer lim
x→−1

(
a

x2 − 1 − b

x+ 1

)
en discutant selon les valeurs de a et b.

Exercice 4. On fera très attention qu’il s’agit d’un exercice différent du suivant, même
si techniquement c’est assez proche !

1. Montrer que la fonction f définie par, ∀x ∈ R, f(x) =
{
x2 si x < 0
xex si x ⩾ 0 est continue

sur R.

2. Montrer que la fonction g définie par, ∀x ∈ R, g(x) =
{

0 si x < 0
1 − e−x si x ⩾ 0 est

continue sur R.

3. Montrer que la fonction h définie par, ∀x ∈ R, h(x) =


0 si x ⩽ 0
x ln(x) si 0 < x ⩽ e
x si x > e

est

continue sur R.

Exercice 5. On fera très attention qu’il s’agit d’un exercice différent du précédent,
même si techniquement c’est assez proche !

1. On note f la fonction définie par, ∀x ∈ R\{1}, f(x) =

 0 si x < 1
1 − 1

x2 si x > 1 Montrer

que f est continue sur son ensemble de définition et prolonger-la par continuité en 1.

2. On note g la fonction définie par, ∀x ∈ R\{0, 1}, g(x) =


0 si x < 0
x si 0 < x < 1
1 si x > 1

Montrer

que g est continue sur son ensemble de définition et prolonger-la par continuité en 0
et en 1.
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Exercice 6. Soit f : R −→ R une application périodique (c’est-à-dire qu’il existe T > 0
tel que ∀x ∈ R, f(x+ T ) = f(x)) possédant une limite finie en +∞. Montrer que f est
constante.

Exercice 7. Etudier la continuité des fonctions suivantes sur leur ensemble de définition
que vous déterminerez.

1. f(x) = x2 + 1.

2. f(x) = x+ 1
x2 + x+ 1.

3. f(x) =
√
x2 − 1.

4. f(x) = x2 + x− 2
x2 + 2x− 3.

5. f(x) = 2 −
√
x− 1.

6. f(x) = x2 − 2x+ ln(x+ 1).

Exercice 8. Pour n ∈ N∗, on étudie la suite de fonction (fn) définies par :{
fn(x) = 1 pour x ∈ [0, 1 − 1

n ],
fn(x) = −nx+ n pour x ∈]1 − 1

n , 1].

1. Représenter f1, f2, f3 et f4 sur un même graphe.

2. Etudier la continuité de fn sur [0, 1].

3. Montrer que pour tout x ∈ [0, 1], la suite numérique (fn(x))n∈N∗ a une limite qu’on
notera f(x), c’est-à-dire, on pose f(x) = lim

n→+∞
fn(x). Déterminer f(x).

4. Etudier la continuité de f sur [0, 1].

Exercice 9. Déterminer l’ensemble de définition des fonctions suivantes, précisez sur
quel ensemble elles sont continues et, si c’est possible, les prolonger par continuité.

1. f(x) = x2 + 2x− 3
x3 + x2 − 2x.

2. f(x) = x− 2 +
√
x2 − 2x

x2 − 4 .

3. f(x) = x2 − 4
x− 2 +

√
x2 − 2x

.

4. f(x) = x2 − 2 |x|
x

.

5. f(x) = x3 + x2 − 8x+ 4
x2 + x− 6 .

Exercice 10. Soient f et g deux fonctions définies sur l’intervalle I. On définit sup(f, g)
et inf(f, g) par

∀x ∈ I, sup(f, g)(x) = max(f(x), g(x)) et inf(f, g)(x) = min(f(x), g(x)).
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1. Montrer que sup(f, g) = f + g + |f − g|
2 et inf(f, g) = f + g − |f − g|

2 .

2. En déduire que si f et g sont continues en x0, alors il en est de même pour sup(f, g)
et inf(f, g).

Exercice 11. Trouver toutes les fonctions continues f définies sur R telles que

∀x ∈ R, (f(x))2 = 3f(x) − 2.

Exercice 12. Les fonctions suivantes sont-elles bornées sur I ?

1. f(x) = x2 + 1
x+ 1 sur I = R+

2. f(x) = ex + 1
x

sur I =] − ∞,−1].

Exercice 13. Les fonctions suivantes réalisent-elles des bijections sur I. Si oui, précisez
l’ensemble de définition de leur réciproque.
1. f(x) = x3 + x+ 1 avec I = R.

2. f(x) = 2x+ 1
x− 1 sur I =]1,+∞[ ? sur I = R \ {1} ?

3. f(x) = x2 + 2x− 1 sur I = [−2, 1] ?

Exercice 14. Soient a et b deux réels avec a < b. On note f : x 7→ 1
x− a

+ 1
x− b

.
Démontrer que f réalise une bijection de ]a, b[ sur R. Déterminer ensuite f−1. Il pourra
être utile de calculer f

(
a+ b

2

)
.

Exercice 15. Montrer que l’équation x15 = x11 +2 admet au moins une solution réelle.
Exercice 16. Soit f : [a, b] −→ R une fonction continue telle que f([a, b]) ⊂ [a, b].
Montrer qu’il existe c ∈ [a, b] tel que f(c) = c. Même question si on a [a, b] ⊂ f([a, b]).
Exercice 17. Soient f : R −→ R une fonction continue telle que lim

x→−∞
f(x) = −∞ et

lim
x→+∞

f(x) = +∞, et soit g : R −→ R une application continue bornée. Montrer qu’il
existe c ∈ R tel que f(c) = g(c).
Exercice 18. Soit f et g deux fonctions définies sur R à valeurs dans R. Supposons f
bornée et g continue. Montrer que f ◦ g et g ◦ f sont bornées.
Exercice 19. Soit f : R −→ R une fonction continue.

1. Montrer que si f est périodique, elle est bornée.

2. Montrer que si f possède des limites finies en +∞ et −∞, alors elle est bornée.

3. Montrer que si lim
x→+∞

f(x) = lim
x→−∞

f(x) = +∞, f admet une borne inférieure qui est
atteinte.

4. Montrer que si f possède des limites finies en +∞ et −∞ et que lim
x→+∞

f(x) =
lim

x→−∞
f(x), alors elle est bornée et sa borne supérieure ou inférieure est atteinte.

Exercice 20. Soient I un intervalle de R et f : I −→ R une application continue et
injective. Montrer que f est strictement monotone.
On pourra raisonner par l’absurde et commencer par montrer que f n’est pas strictement
monotone sur I alors il existe a, b, c trois éléments de I avec a < b < c tels que f(b) ⩾
max(f(a), f(c)) ou f(b) ⩽ min(f(a), f(c))
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15 Espaces vectoriels
Exercice 1. Déterminer si les sous-ensembles suivants sont des sous-espaces vectoriels
de K3 ou K4.

1. A = {(x, y, z) ∈ R3/x+ 2y − 3z = 0}.

2. B = {(x+ y, x− y, 2y)/(x, y) ∈ R2}.

3. C = {(x, y, z) ∈ R3/x+ 2y − z = 2}.

4. D = {(2x− 3y, x+ 1,−x+ 3y)/(x, y) ∈ R2}.

5. E = {(x, y, z) ∈ R3/2x = y et y = 3z}.

6. F = {(x, y, z, t) ∈ R4/x+ 2y − t = 0 et x− 3y + 9z = 2}.

7. G = {(x, y, z) ∈ R3/x2 − y2 = 0}.

8. H = {(x, y, z) ∈ R3/x2 + y2 = 0}.

9. H ′ = {(x, y, z) ∈ C3/x2 + y2 = 0} est-il un sous-espace vectoriel de C3 ?

Exercice 2. Pour chaque question, on note E l’ensemble des triplets (x, y, z) ∈ R3

qui vérifient l’équation ou le système suivant. Lorsque c’est un sous-espace vectoriel,
déterminer une base de E dans chacun des cas suivants :

1. x+ 2y = 0.

2.
{

2x− z = 0
y + z = 0

3.
{

x+ 5y − 3z = 0
−x− 4y + 2z = 0

4.
{

2x+ y − 3z = 0
4x+ 2y − 5z = 0

5.
{

4x− 2y + 6z = 0
−2x+ y − 3z = 0

6.
{

3x+ 2y − 3z = 0
−2x− 4y = 2

7.


x− 3y − z = 0

2x− 5y + 2z = 0
3x− 7y + 5z = 0

8.


x− 3y − z = 0

2x− 5y + 2z = 0
3x− 7y + 6z = 0

Exercice 3. Déterminer si les familles suivantes sont libres ou liées. Si elles sont liées,
déterminer une famille libre qui engendre le même sous-espace vectoriel.

1. F1 =
(
(1, 0), (1, 1), (1,−1)

)
de R2.

2. F2 =
(
(1, 2, 3), (3, 4, 6), (9, 6,−12), (1, 1, 1)

)
de R3.
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3. F3 =
(
(1, i, 0), (0, i, 1), (0, i, 0)

)
de C3.

4. F4 =
(
(0, 1, i, 0), (0, i, 0, 1), (0, i, 0, 0)

)
de C4.

5. F5 =
(
(1, 0, 1, 0), (0, 1, 0, 1), (1, 1, 1, 0), (0, 1, 1, 2)

)
de R4.

6. F6 =
(
(2, 1, 1), (1, 0, 1), (1, 1, 0)

)
de R3.

7. F7 =
(
(2,−3,−1), (1, 0, 1), (−8, 6,−2), (−1, 1, 0)

)
de R3.

Exercice 4. Déterminer si les familles suivantes sont génératrices ou non. Si c’est le cas,
en extraire une base.

1. F1 =
(
(1, 0), (1, 1), (1,−1)

)
de R2.

2. F2 =
(
(1, 1), (2, 1), (6, 1)

)
de R2.

3. F3 =
(
(1, i), (i, 1)

)
de C2.

4. F4 =
(
(1, 2,−3), (2, 2, 0), (1, 0,−3)

)
de R3.

5. F5 =
(
(0, 1, i, 0), (0, i, 0, 1), (0, i, 0, 0)

)
de C4.

6. F6 =
(
(1, 0, 1, 0), (0, 1, 0, 1), (1, 1, 1, 0), (0, 1, 1, 2)

)
de R4.

7. F7 =
(
(0, 1, 1), (1, 0, 1), (1, 1, 0)

)
de R3.

8. F8 =
(
(2, 1, 1), (1, 0, 1), (1, 1, 0)

)
de R3.

9. F9 =
(
(2,−3,−1), (1, 0, 1), (−8, 6,−2), (−1, 1, 0)

)
de R3.

Exercice 5. On considère les vecteurs u = (3,−1) et v = (1, 2) dans R2.

1. Montrer que (u, v) est une base de R2.

2. Quelles sont les coordonnées de x = (5,−2) dans cette nouvelle base ?

Exercice 6. Soit F la famille de vecteurs de R2 : ((3, 1), (−1, 2), (1,−1)).

1. Quel est le rang de F ? Est-elle génératrice de R2 ?

2. Si on note F1 la famille obtenue en enlevant un vecteur à F (le premier par exemple),
est-elle encore génératrice de R2 ?

3. F1 est-elle une base de R2 ?

Exercice 7. On considère les vecteurs u = (2, 5), v = (−3, 2) et w = (3, 1) dans R2.

1. La famille (u, v, w) est elle une base de R2 ?

2. Donner une base construite à partir de la famille (u, v, w).

3. Quelles sont les coordonnées de x = (5,−2) dans cette nouvelle base ?

Exercice 8. On considère dans R3 les vecteurs u = (1, 2, 3) et v = (3, 2, 1).

1. La famille (u, v) est-elle une base de R3 ?

2. Quel est le rang de la famille (u, v) ? La famille (u, v) est-elle une base de F =
Vect(u, v) ?
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3. Le vecteur x = (1, 4, 7) appartient-il à F ? Si oui, quelles sont ses coordonnées dans
la base (u, v) de F ?

4. Le vecteur y = (−1, 6, 9) appartient-il à F ? Si oui, quelles sont ses coordonnées dans
la base (u, v) de F ?

Exercice 9. Soit F la famille de vecteurs : ((−1, 2), (3,−8), (1,−1)).

1. F est-elle une famille libre de R2 ?

2. La famille G constituée de ((13, 1)) est-elle une famille libre de R2 ?

3. Notons G1 la famille de vecteurs constituée par G et un vecteur de F (que vous
choisirez). G1 est-elle une famille libre de R2 ?

4. Quel est le rang de G1 ?

5. G1 est-elle une base de R2 ?

Exercice 10. Plaçons-nous dans le C-espace vectoriel C3.

1. Montrer que la famille ((1, i,−1), (1, 0,−i), (0, i, i)) est une base de C3.

2. Déterminer les coordonnées de x = (0, 0,−1) dans cette base.

Exercice 11. Plaçons-nous dans le C-espace vectoriel C3.

1. Déterminer le rang de la famille ((1, 1, 1), (i, 0, 0), (1 + i, 1, 1), (i, i, i)).

2. Notons F = Vect
(
(1, 1, 1), (i, 0, 0), (1 + i, 1, 1), (i, i, i)

)
. Montrer que ((0, 1, 1), (1, 0, 0))

est une base de F .

Exercice 12. Rappelons que K[X] est l’ensemble des polynômes à coefficients réels et
que, pour k ∈ N, Kk[X] constitue l’ensemble des polynômes de degré inférieur ou égal à
k. On admettra que K[X] constitue un K-espace vectoriel.

1. a. Montrer que K2[X] est un K-espace vectoriel.
b. Montrer que (1, X,X2) est une famille génératrice de K2[X] (presque évident).
c. Montrer que (1, X,X2) est une famille libre de K2[X].
d. En déduire la dimension de K2[X].
e. Montrer que (3, 1 − 2X,−2 +X −X2) est une base de K2[X].
f. Quel est le rang de la famille G constituée par les vecteurs (3, X) ? Est-ce une

famille libre ?
g. Quel est l’espace vectoriel engendré par G ? En donner une base.
h. Donnez une base de l’espace vectoriel Vect(2, X2, 1 +X2) ∩ Vect(3, X).

2. Soit n ∈ N.

a. Montrer que Kn[X] est un K-espace vectoriel.
b. Montrer que (1, X,X2, . . . , Xn) est une base de Kn[X].
c. En déduire dim(Kn[X]).

Dans tous les exercices suivants, on pourra se servir du fait que (1, X,X2, . . . , Xn) est
une base de Kn[X], qu’on appellera base canonique de Kn[X], ainsi que du fait que
dim(Kn[X]) = n+ 1.
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Exercice 13. On rappelle que pour tout (n, p) ∈ (N∗)2, Mn,p(K) est un K-espace
vectoriel.

1. On note B =
((1 0

0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

))
.

a. Montrer que B est une famille génératrice de M2(K).
b. Montrer que B est une famille libre de M2(K).
c. En déduire dim(M2(K)).

2. On note Ek,ℓ = (δi,kδj,ℓ)1⩽i⩽n
1⩽j⩽p

∈ Mn,p(K) avec δa,b = 1 si a = b, 0 sinon. (autrement

dit, Ek,ℓ est la matrice de Mn,p(K) dont tous les coefficients sont nuls sauf celui en
ligne k et colonne ℓ qui vaut 1).

a. Montrer que (Ek,ℓ)1⩽k⩽n
1⩽ℓ⩽p

forme une base de Mn,p(K).

b. En déduire dim(Mn,p(K)) = np.

Dans tous les exercices suivants, on pourra se servir du fait que (Ek,ℓ)1⩽k⩽n
1⩽ℓ⩽p

est une

base de Mn,p(K) qu’on appellera base canonique de Mn,p(K), ainsi que du fait que
dim(Mn,p(K)) = np.

Exercice 14. Déterminer l’ensemble des réels k tel que la famille
((1, k, 2), (−1, 8, k), (1, 2, 1)) soit une famille liée de vecteurs de R3.

Exercice 15. On considère les polynômes de K[X] suivants : P = 1 + 2X − X2, Q =
3 −X + 2X2, R = 1 + 3X −X2 et S = 2 − 2X + 3X2.
Déterminer Vect(P,Q) ∩ Vect(R,S).

Exercice 16. On note E et F deux sous-ensembles de M2(K) définis par :

E = Vect
((

1 −2
−1 0

)
,

(
−1 1
1 1

))
et F =

{(
x y
z t

)
∈ M2(K)/y = −2z + t

}
.

1. Rappeler pourquoi E est un sous-espace vectoriel de M2(K).

2. Déterminer la dimension de E ainsi qu’un système d’équations cartésiennes décrivant
E.

3. Montrer que F est un sous-espace vectoriel de M2(K) dont on donnera une base et
sa dimension.

4. On pose G = E ∩ F . Déterminer une base de G et sa dimension.

Exercice 17. On considère les vecteurs u = (−4, 4, 3), v = (−3, 2, 1), s = (−1, 2, 2) et
t = (−1, 6, 7) dans R3. Montrer que Vect(u, v) = Vect(s, t).

Exercice 18. On considère les vecteurs u = (1, 2,−1), v = (3,−1, 2), s = (1, 3,−1) et
t = (2,−2, 3) dans R3. Déterminer une base de Vect(u, v) ∩ Vect(s, t).

Exercice 19. On note E et F deux sous-ensembles de R4 définis par :

E = Vect
(
(−1, 2, 1, 0), (−1, 2, 0, 1)

)
et F =

{
(x, y, z, t) ∈ R4/y = −2z + t

}
.

1. Vérifier que E et F sont des sous-espaces vectoriels de R4.
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2. Déterminer la dimension de E ainsi qu’un système d’équations cartésiennes de E.

3. Déterminer une base de F et sa dimension.

4. On pose G = E ∩ F . Déterminer une base de G et sa dimension.

Exercice 20. On considère le sous-espace vectoriel E de R4 défini par

E = Vect
(
(1,−1, 3,−3), (2,−2, 4,−4), (3,−3, 7,−7), (1,−1, 1,−1)

)
.

1. Donner une base et la dimension de E.

2. Déterminer un système d’équations cartésiennes de E.

3. On note F = Vect
(
(1, 0, 1,−1), (0, 1, 2,−2), (1, 0, 0, 0), (0, 0,−1, 1)

)
. Montrer que E ⊂

F .

Exercice 21. On note E =



a b c d
0 a b c
0 0 a b
0 0 0 a

 /(a, b, c, d) ∈ K4

 .

1. On note N =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 ∈ M4(K). Calculer N2, N3 et N4.

2. Montrer que E est un sous-espace vectoriel de M4(K) et donner une base de E.

3. Notons M1 =


1 2 3 4
0 1 2 3
0 0 1 2
0 0 0 1

, M2 =


2 −1 1 0
0 2 −1 1
0 0 2 −1
0 0 0 2

 et M3 =


0 1 4 4
0 0 1 4
0 0 0 1
0 0 0 0

.

Quelle est la matrice représentative de la famille (I4,M1,M2,M3) où I4 est la matrice
identité de M4(K) dans la base que vous venez de déterminer. En déduire le rang de
cette famille.

4. Montrer que si A et B sont deux matrices de E, alors AB est aussi une matrice de
E.

5. Soit A ∈ E. On note F = {B ∈ E/AB −BA = 0Mn(K)}. Déterminer F .

Exercice 22. Soit n ∈ N∗. On note Sn(K) =
{
M ∈ Mn(K)/M = M⊤

}
.

Rappelons si c’est nécessaire que M⊤ désigne la transposée de la matrice M , c’est-à-dire
que si M = (mi,j)1⩽i⩽n

1⩽j⩽p
∈ Mn,p(K), alors M⊤ = (mj,i)1⩽i⩽p

1⩽j⩽n
∈ Mp,n(K).

1. Montrer que Sn(K) est un sous-espace vectoriel de Mn(K).

2. On note Ek,ℓ = (δi,kδj,ℓ)1⩽i⩽n
1⩽j⩽p

∈ Mn,p(K) avec δa,b = 1 si a = b, 0 sinon. (autrement

dit, Ek,ℓ est la matrice de Mn,p(K) dont tous les coefficients sont nuls sauf celui en
ligne k et colonne ℓ). On note ensuite Sk,ℓ = Ek,ℓ + Eℓ,k. Montrer que (Sk,ℓ)1⩽k⩽ℓ⩽n

est une base de Sn(K).

3. En déduire dim(Sn(K)).
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Exercice 23. Soit n ∈ N∗, a0, a1, . . . , an ∈ K deux à deux distincts. On note pour
j ∈ [[0, n]],

Lj =

n∏
k=0
k ̸=j

(X − ak)

n∏
k=0
k ̸=j

(aj − ak)
.

1. Montrer que (Lj)j∈[[0,n]] forme une base de Kn[X].

2. Déterminer les coordonnées de P ∈ Kn[X] dans cette base.

3. En déduire la matrice représentative d’une famille de polynômes (P1, . . . , Pp) où p ∈
N∗ dans la base (Lj)j∈[[0,n]].

Exercice 24. On se place dans le R-espace vectoriel R3. a, b, c désignent trois réels fixés.

1. Soit E le sous-ensemble de R3 défini par E = {(x, y, z) ∈ R3/x = by + cz}. Montrer
que E est un sous-espace vectoriel de R3 et déterminer sa dimension.

2. On note de même F et G les sous-espaces vectoriels de R3 définis par F = {(x, y, z) ∈
R3/y = ax+ cz} et G = {(x, y, z) ∈ R3/z = ax+ by}. Montrer que (E ⊂ F ∩G) =⇒
(E = F = G). En déduire que (E ⊂ F ∩G) =⇒ (a = b = c = −1).

3. Montrer que si 2abc+ ab+ bc+ ca ̸= 1 alors E ∩ F ∩G = {(0, 0, 0)}

16 Dérivation
Exercice 1. Calculer la dérivée nième des fonctions suivantes (n ∈ N∗).

1. f(x) = ln(x+ 1).

2. f(x) = cos(x) − 3.

Exercice 2. 1. Soit f : R → R définie par f(x) = x5 − 5x+ 2. Combien f a de zéros ?
On pourra étudier f pour répondre à cette question.

2. Montrer que g : R → R, x 7→ 12x4 −14x3 −3x2 −4 a exactement deux racines réelles.

3. Soit h : R → R définie par h(x) = (x−1)ex−ex+1. Combien de fois h s’annule-t-elle ?

Exercice 3. Soient sh et ch les fonctions définies sur R par ch(x) = ex + e−x

2 et sh(x) =

ex − e−x

2 . Notons en plus la fonction f définie sur R par f(x) =


sh(x)
x

si x ̸= 0

1 si x = 0.
.

1. Etudier sh : montrer qu’elle est continue sur R, déterminer les limites aux bornes de
son ensemble de définition, montrer qu’elle est dérivable sur R, en déduire son sens
de variation et son signe (il pourra être judicieux de déterminer sh(0)).

2. Même question pour ch.

3. Tracer l’allure de ces deux courbes sur le même graphe (en déterminant avant leurs
positions relatives) et en faisant figurer les tangentes horizontales (s’il y en a).
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4. Etudier f : montrer qu’elle est continue sur R (attention en 0, on essaiera de voir f
comme un taux d’accroissements bien choisi), déterminer les limites aux bornes de
son ensemble de définition, montrer qu’elle est dérivable sur R∗, en déduire son sens
de variation.

5. Tracer l’allure de f .

Exercice 4. Soient I un intervalle ouvert et f : I −→ R, On suppose qu’il existe α > 1
et K ∈ R∗

+ tel que pour tout (x, y) ∈ I2,

|f(y) − f(x)| ⩽ K |y − x|α .

Montrer que f est constante.

Exercice 5. Soit f définie par f(x) =
√
e2x − 1.

1. Etudier f (définition, continuité, dérivation, limite aux bornes, sens de variation et
allure de la courbe).

2. Montrer que f est une bijection de R+ dans lui même.

3. Calculer la dérivée de f−1, f−1 étant la réciproque de f sans déterminer avant f−1.

4. Calculer explicitement f−1 et retrouver le résultat de la question précédente.

Exercice 6. Soit f définie par f(x) = x+ 2 +
√
x2 + 4.

1. Etudier f (définition, continuité, dérivation, sens de variation, limite aux bornes et
allure de la courbe). On admettra lim

x→−∞
f(x) = 2 (mais la preuve est dans la cor-

rection, en cas de relecture de cet exercice après le chapitre sur les développements
limités)

2. Montrer que f est une bijection de R dans un intervalle à déterminer.

3. Calculer la dérivée de f−1, f−1 étant la réciproque de f sans déterminer avant f−1.

On pourra cependant remarquer que x+
√
x2 + 4
2 + 2

x+
√
x2 + 4

=
√
x2 + 4.

4. Calculer explicitement f−1 et sa dérivée.

Exercice 7. Soit f une fonction dérivable sur un intervalle ]a, b[ avec a < b deux réels.
Etudier la dérivabilité de |f |, en particulier aux points c tels que f(c) = 0. On pourra
regarder si f ′(c) est nul ou non.

Exercice 8. Soient I un intervalle ouvert et f : I −→ R une application dérivable.
Montrer que si f s’annule n fois sur I, f ′ s’annule au moins n− 1 fois sur I.
Si f est p− 1 fois dérivable et s’annule p fois, que peut-on en déduire pour f (p−1) ?

Exercice 9. Soit P un polynôme à coefficients réels. Montrer que si toutes les racines
de P sont réelles (comptées avec leur multiplicité), toutes celles de P ′ aussi.

Exercice 10. Soit f : [a,+∞[→ R continue, dérivable sur ]a,+∞[, telle que lim
x→+∞

f(x) =
f(a).
Montrer qu’il existe un point c > a telle que f ′(c) = 0.
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Exercice 11 (Théorème de Darboux). Soit f une application dérivable sur [a, b] avec
f ′(a) ̸= f ′(b). Montrer que quelque soit k strictement compris entre f ′(a) et f ′(b), il
existe c ∈]a, b[ tel que f ′(c) = k.
On pourra poser g : [a, b] → R définie par g(x) = f(x) − kx.

Exercice 12. Soit f une fonction C3([0, 2],R) telle que f(0) = f(1) = f(2) = 0. Montrer
que pour tout x ∈ [0, 2], il existe c ∈]0, 2[ tel que f(x) = x(x− 1)(x− 2)

6 f ′′′(c).

On pourra poser φ(t) = f(t) − t(t− 1)(t− 2)
6 λ en choisissant avec subtilité et finesse λ.

Exercice 13. On considère l’application f :] − 1,+∞[\{0} −→ R définie, pour tout
x ∈] − 1,+∞[\{0} par :

f(x) = ln(1 + x)
x

.

1. Déterminer le sens de variation de f . On pourra introduire la fonction h définie sur
] − 1,+∞[ telle que f ′(x) = h(x)

x2 et l’étudier pour obtenir son signe.

2. Déterminer les limites de f en −1 et en +∞.

3. f est-elle prolongeable par continuité en 0 ? On notera aussi f son prolongement s’il
est possible.

4. Tracer l’allure de la courbe représentative de f .

5. Montrer que ∀x ∈ R∗
+, |f ′(x)| ⩽ 1

2.

6. Montrer qu’il existe un unique α ∈] − 1,+∞[ tel que f(α) = α. Justifier α ∈]0, 1[.

7. On note (un)n∈N définie par u0 = 1 et un+1 = f(un). Montrer que, pour tout n entier
naturel |un+1 − α| ⩽ 1

2 |un − α|.

8. Montrer que, pour tout entier naturel n, |un − α| ⩽ 1
2n

.

9. En déduire la convergence de la suite (un)n∈N.

10. Ecrire une fonction en Python qui prend en argument un réel ε et renvoie une approxi-
mation à ε près de α. On se servira de l’inégalité démontrée à la question précédente.

Exercice 14. Soit f la fonction définie sur R par f(x) = ex

e2x + 1 .

1. a. Montrer que f est paire.
b. Etudier les variations de f , ses limites en +∞ et −∞ et tracer sa courbe représentative.

c. Montrer qu’il existe un unique réel ℓ tel que f(ℓ) = ℓ. Justifier 0 ⩽ ℓ ⩽ 1
2 .

d. Montrer que pour tout réel x,
∣∣f ′(x)

∣∣ ⩽ f(x) ⩽ 1
2 .

2. On définit la suite (un)n∈N par u0 = 0 et pour tout n ∈ N, un+1 = f(un).

a. Montrer que pour tout n ∈ N, un ∈
[
0, 1

2

]
. On pourra faire une récurrence.
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b. Montrer que pour tout n ∈ N,

|un+1 − ℓ| ⩽ 1
2 |un − ℓ| .

On pourra utiliser le théorème des accroissements finis.

c. En déduire |un − ℓ| ⩽ 1
2n+1 .

d. En déduire que la suite (un) converge vers ℓ.
e. Ecrire une fonction Python qui prend en argument un réel positif eps et renvoie

la valeur de ℓ à eps près.

17 Variables aléatoires
Exercice 1. On joue avec un dé pipé. La loi de probabilité de la variable aléatoire X
égale au numéro obtenu est donnée par le tableau suivant :

Valeur xi de X 1 2 3 4 5 6
P (X = xi) 0,1 0,25 0,25 0,15 0,15 0,1

Calculer l’espérance et la variance de X.

Exercice 2. On lance un dé à quatre faces numérotées de 1 à 4. La probabilité de
chacune des faces est proportionnelle au numéro qu’elle porte. On appelle X la variable
aléatoire égale au nombre obtenu.

1. Déterminer la loi de X.

2. Donner l’espérance de X.

3. Calculer la variance de X.

4. Déterminer E
[ 1
X

]
.

5. Recommencer les questions précédentes en supposant que le dé possède n faces où
n ∈ N∗.

Exercice 3. Une urne contient 7 boules blanches et 3 boules noires. On effectue des
tirages successifs sans remise jusqu’à vider l’urne. On note X la variable aléatoire égale
au rang d’apparition de la première boule blanche.

1. Déterminer la loi de X.

2. Déterminer la fonction de répartition de X.

3. Calculer E(X) et V (X).

Exercice 4. Une urne contient 4 boules blanches et 4 boules noires. On tire successi-
vement sans remise et de façon uniforme des boules jusqu’à l’obtention de la première
boule noire.

1. On note X le nombre de tentatives nécessaires. Loi, espérance et variance de X ?

2. On note Y le nombre de boules blanches obtenues. Loi, espérance et variance de Y ?

Exercice 5. Une urne contient 4 boules blanches et 4 boules noires. On tire successive-
ment avec remise et de façon uniforme 5 boules.
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1. On note X le nombre de boules blanches obtenues. Loi, espérance et variance de X ?

2. On note Y le nombre de boules noires obtenues. Loi, espérance et variance de Y ?

Exercice 6. Une urne contient 4 boules blanches et 4 boules noires. On tire successive-
ment sans remise et de façon uniforme 5 boules.

1. On note X le nombre de boules blanches obtenues. Quelles sont la loi, l’espérance et
la variance de X ?

2. On note Y le nombre de boules noires obtenues. Quelles sont la loi, l’espérance et la
variance de Y ?

Exercice 7. Une urne contient 2n boules numérotées de 1 à 2n.

1. On tire une boule uniformément. On note X1 le numéro obtenu. Loi, espérance et
variance de X1 ?

2. On fixe k ∈ [[2, 2n]]. On tire une boule. Si on obtient un numéro supérieur ou égal à
k, on arrête ici. Si on obtient un numéro strictement inférieur à k, on la remet puis
on tire une nouvelle fois. On note X2 le numéro de la boule obtenue finalement (donc
la première dans le premier cas, la deuxième dans le second). Déterminer la loi de X2
et son espérance. Quelle valeur de k maximise l’espérance ?

Exercice 8. On considère une urne contenant initialement une boule blanche et une
boule noire. On procède à l’expérience suivante : on effectue des tirages successifs d’une
boule de cette urne et à chaque pas du tirage on replace la boule tirée dans l’urne et on
rajoute une boule de la même couleur. On note Xn la variable aléatoire du nombre de
boules blanches obtenues au cours des n premiers tirages.

1. Quel est l’ensemble des valeurs prises par Xn.

2. Déterminer la loi de X1, de X2.

3. Démontrer queXn suit une loi uniforme sur [[0;n]]. On pourra raisonner par récurrence.

Exercice 9 (Un peu difficile). Soit a > 0 On dispose d’un jeu de cartes classiques
contenant 2n cartes (en général, n = 16 ou 26) qui contient deux as noirs. On envisage
deux jeux.

1. Premier jeu : On mélange le jeu et on tire les cartes au hasard jusqu’à l’obtention du
premier as noir.

a. On note X le rang d’apparition du premier as noir. Déterminer la loi de X.

b. Montrer que E(X) = 2n+ 1
3 .

c. Le joueur paie 1e chaque fois qu’il tire une carte et gagne ae lorsqu’il tire un as
noir. Déterminer G1, le gain algébrique du joueur et en déduire E(G1).

d. Combien doit-il gagner pour que le jeu soit équilibré (c’est-à-dire quand l’espérance
de gain est nulle).

2. Deuxième jeu : Même chose sauf que le joueur peut cette fois-ci tirer pas plus de n
cartes (la moitié du jeu).

a. Déterminer G2 le gain algébrique.
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b. (Question difficile) Comment choisir a pour que le jeu soit équilibré ?

Exercice 10. Soit X une variable aléatoire finie telle que X(Ω) ⊂ [[0, n]] où n ∈ N.
Montrer qu’on a :

E(X) =
n−1∑
k=0

P (X > k).

Exercice 11. On dispose d’une urne contenant n boules numérotées de 1 à n. On pioche
trois boules successivement avec remise et on note X le numéro le plus petit obtenu.

1. Déterminer, pour k ∈ [[0, n]], P (X > k).

2. En utilisant le résultat de l’exercice 10, déterminer E(X).

Exercice 12. On lance 20 fois de suite une pièce équilibrée. On note X la variable
aléatoire égale à l’apparition du premier pile s’il y en a un, 0 si aucun n’apparait.
Déterminer la loi deX et son espérance. On pourra éventuellement s’aider de l’exercice 10

pour calculer l’espérance, ou remarquer que
20∑

k=1
k

1
2k

=
(

1 − 1
2

) 20∑
k=1

k
1

2k−1 et développer

cette expression.

Exercice 13. Une urne contient deux boules blanches et une noire. On tire uniformément
une boule, si elle est noire, on la remet, si elle est blanche on ne la remet pas mais on
ajoute une boule noire. On note Yn le nombre de boules blanches dans l’urne à l’issue
du nème tirage.

1. Déterminer la loi de Y1.

2. Pour n ⩾ 2, déterminer la loi de Yn. On pourra commencer par déterminer P (Yn = 2),
puis P (Yn = 1).

3. Déterminer E(Yn).

Exercice 14. Une urne contient N boules numérotées de 1 à N où N ∈ N, N ⩾ 1. On
pioche simultanément et uniformément n ∈ N boules avec 1 ⩽ n ⩽ N . On note X le
plus grand des numéros obtenus.

1. Déterminer la loi de X.

2. Montrer que
N∑

k=n

(
k

n

)
=
(
N + 1
n+ 1

)
.

3. En déduire E(X).

Exercice 15. 1. Montrer que pour tout entier naturel n non nul, on a :(
n

n

)
+
(
n+ 1
n

)
+ · · · +

(
2n
n

)
=
(

2n+ 1
n+ 1

)
.

2. Une urne contient n boules rouges et n boules noires. On effectue dans cette urne des
tirages d’une boule sans remise jusqu’à l’obtention de toutes les boules noires. Soit X
la variable aléatoire prenant pour valeur le nombre de tirages nécessaires, c’est-à-dire
le rang du tirage de la dernière boule noire.
Déterminer la loi de X et son espérance.
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Exercice 16 (La loi hypergéométrique, exercice difficile). On prend dans tout l’exercice

la convention que pour n ∈ N et k ∈ Z
(
n

k

)
= 0 si k > n ou k < 0.

1. L’identité de Vandermonde.

a. On considère une urne qui contient m boules rouges et n boules vertes. Combien
y a-t-il de tirages de k boules simultanées ?

b. Combien y a-t-il de tirages de k boules simultanées contenant exactement i boules
rouges ?

c. En déduire que, pour m,n, k ∈ N avec k ⩽ m+ n , on a(
m+ n

k

)
=

k∑
i=0

(
m

i

)(
n

k − i

)
.

2. Soient n et N des entiers tels que 1 ⩽ n ⩽ N et p ∈]0, 1[ tel que Np ∈ N. Notons
q = 1 − p. On dit que X suit une loi hypergéométrique de paramètre (n, p,N) si
X(Ω) = [[0, n]] et

∀k ∈ [[0, n]], P (X = k) =
(Np

k

)( Nq
n−k

)(N
n

) .

On note X ↪→ H(n, p,N).

a. Montrer que l’on définit bien une variable aléatoire.
b. Déterminer E(X).
c. Que peut modéliser une telle variable aléatoire ?

3. On note Y ↪→ B(n, p)

a. Montrer que, pour tout k ∈ [[0, n]],

lim
N→+∞

P (XN = k) = P (Y = k).

b. Commentez.

Exercice 17. On dispose d’un dé équilibré. On cherche le nombre de lancers nécessaires
pour affirmer que la face numéro 6 apparait avec une fréquence de 1

6 au centième près
avec une probabilité de 95% en utilisant l’inégalité de Bienaymé-Tchebychev.

Exercice 18. Un éleveur possède 100 vaches et désire construire deux étables de n places
(avec 50 ⩽ n ⩽ 100) pour que, si chaque vache choisit uniformément et indépendamment
son étable, la probabilité que toutes trouvent une place du premier coup soit supérieure
ou égale à 0, 95. Déterminer n en utilisant l’inégalité de Bienaymé-Tchebychev.

18 Intégration sur un segment
Exercice 1. Calculer les intégrales suivantes. Un ou plusieurs changements de variable
peuvent-être nécessaires, ainsi que des intégrations par parties.

1.
∫ 1

0

dx
2x+ 1.

2.
∫ 2

0

−x+ 3
x+ 2 dx.

58 / 82



3.
∫ 2

1

dx√
3x+ 5

.

4.
∫ 1

0

ln(2x+ 4)
x+ 2 dx.

5.
∫ x

0
(2t+ 1)e2t dt, x ∈ R.

6.
∫ x

1
(t2 + t− 1) ln(t) dt, x ∈ R∗

+.

7.
∫ x

1
(−t2 + t− 1)e−t dt, x ∈ R.

8.
∫ e

1

ln(x3)
x2 dx.

9.
∫ 5

2

3x2

x3 + 2 dx.

10.
∫ 2

1

3x√
x2 + 1

dx.

11.
∫ 1

2

0

4x3 − 2x+ 1
x4 − x2 + x− 1 dx.

12.
∫ 1

0
x ln(x2 + 2) dx.

13.
∫ 2

0
(3x+ 1)e3x2+2x−1 dx.

14. lim
n→+∞

∫ 1

0

x5n+2

e+ x3 dx.

15. lim
n→+∞

∫ 1

0
xnex dx.

16. lim
n→+∞

∫ e

1

ln2n(x)
x

dx.

17.
∫ π

0

√
1 + cos(x) dx. Il faut connaitre ses formules de trigonométrie...

18.
∫ 1

0

√
1 − x2 dx. On posera x = cos(t).

19.
∫ π

4

0
ln(1 + tan(x)) dx. On posera u = π

4 − x.

Exercice 2. Montrer que les intégrales suivantes existent et les calculer.

1.
∫ 1

−1
xex dx.

2.
∫ x

0
sin3(t) dt, où x ∈ R.

3.
∫ x

0
t ln(t) dt avec x > 0. (Attention, il y a des pièges...)
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Exercice 3. Calculer les limites suivantes.

1. lim
n→+∞

n∑
k=1

1
k + n

.

2. lim
n→+∞

n∑
k=1

k2

n(k + n)2 .

3. lim
n→+∞

n∏
k=1

(
1 + k

n

) 1
n

.

4. lim
n→+∞

1
n

n∑
k=1

cos
(
k

n

)
sin
(
k

n

)
.

Exercice 4. Montrer que pour tout x ⩾ 0, ln(1 + x) ⩽ x. En déduire que

lim
n→+∞

∫ 1

0
ln(1 + xn) dx = 0.

Exercice 5. Pour tout entier naturel n, on pose In =
∫ π

4

0
tann(x) dx.

1. Calculer I0 et I1.

2. Montrer que la suite (In)n∈N est décroissante.

3. Montrer que, ∀n ∈ N, In+2 + In = 1
n+ 1.

4. En déduire la limite de (In)n∈N.

Exercice 6. 1. Simplifier
n∑

k=1
ln
(
n+ k + 1
n+ k

)
puis déterminer lim

n→+∞

n∑
k=1

ln
(
n+ k + 1
n+ k

)
.

2. Déterminer lim
n→+∞

n∑
k=1

1
n+ k

.

3. Déterminer lim
n→+∞

n∑
k=1

1
(n+ k)2 .

4. Montrer que ∀x ∈ R+, x− x2

2 ⩽ ln(1 + x) ⩽ x.

5. Retrouver le résultat de la première question, à savoir lim
n→+∞

n∑
k=1

ln
(
n+ k + 1
n+ k

)
. On

pourra appliquer l’inégalité précédente à 1
n+ k

.

Exercice 7. 1. Montrer que la fonction sinus établit une bijection de
[
−π

2 ,
π

2

]
dans

[−1, 1]. On notera g sa réciproque.

2. Montrer que g est dérivable sur ]−1, 1[ et montrer que, ∀x ∈]−1, 1[, g′(x) = 1√
1 − x2

.

3. En déduire lim
n→+∞

n∑
k=1

1√
4n2 − k2

.
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Exercice 8 (Comparaisons Séries-Intégrales). 1. On note Sn =
n∑

k=0

√
k. Montrer que

Sn ∼
n→+∞

2
3n

√
n.On posera f la fonction définie sur R+ par f(x) =

√
x. On comparera

chaque terme de la somme entre des intégrales de f sur des intervalles bien choisis.

2. On note Tn =
n∑

k=1

1√
k

. Montrer que Tn ∼
n→+∞

2
√
n. On s’inspirera de la question

précédente.

3. On note Un =
n∑

k=1

1
k

. Montrer que Un ∼
n→+∞

ln(n). On s’inspirera de la technique

employée dans cet exercice et non de l’exercice sur la constante d’Euler du chapitre
sur les suites.

Exercice 9. Pour tout entier n ⩾ 1, on pose

In =
∫ 1

0
xn ln(1 + x2) dx et Jn =

∫ 1

0

xn

1 + x2 dx.

1. Etude de la suite (Jn)n∈N∗ .

a. Calculer J1.

b. Montrer que pour tout entier n ⩾ 1, 0 ⩽ Jn ⩽
1

n+ 1.

c. Etudier la convergence de la suite (Jn)n∈N∗ .

2. Etude de la suite (In)n∈N∗ .

a. A l’aide d’une intégration par parties, montrer que pour tout entier n ⩾ 1,

In = ln(2)
n+ 1 − 2

n+ 1Jn+2.

b. Etudier la convergence de la suite (In)n∈N∗ .
c. Déterminer un équivalent simple de In lorsque n tend vers +∞.

Exercice 10. Soit k ∈ N∗. Pour n ∈ N, on pose In = (−1)n+1
∫ 1

0

xk(n+1)

1 + xk
dx.

1. Déterminer lim
n→+∞

In.

2. On pose J =
∫ 1

0

dx
1 + xk

. Calculer J−In. On laissera le résultat sous forme de somme.

3. En déduire lim
N→+∞

N∑
n=0

(−1)n

kn+ 1 (que nous ne calculerons pas).

4. En déduire lim
N→+∞

N∑
n=0

(−1)n

n+ 1 et lim
N→+∞

N∑
n=0

(−1)n

2n+ 1.

Exercice 11. On note pour tout n appartenant à N∗ In =
∫ 1

0

x2n − x4n

1 − x2 dx.

1. Montrer que In existe et que In =
n−1∑
k=0

1
2n+ 2k + 1 .
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2. Etablir, pour tout n ∈ N avec n ⩾ 2,
n∑

k=1

1
2n+ 2k ⩽ In ⩽

n−1∑
k=0

1
2n+ 2k .

3. Calculer
∫ 1

0

1
1 + x

dx et en déduire lim
n→+∞

n∑
k=1

1
n+ k

.

4. En déduire lim
n→+∞

In.

Exercice 12. On pose, pour tout x ∈ R+, f(x) =
∫ 1

0

tx

1 + t
dt. On pourra noter, pour

tout x ∈ R+, gx : t 7−→ tx

1 + t
.

1. Montrer que f est une fonction bien définie sur R.

2. Étudier le sens de variation de f .

3. Montrer que lim
x→+∞

f(x) = 0.

4. a. Montrer que, pour tout x ∈ R+, 0 ⩽
∫ 1

0

1 − tx

1 + t
dt ⩽ x

x+ 1 .

b. En déduire lim
x→0

f(x).

Exercice 13. Pour x ∈ R∗, on pose f(x) =
∫ 2x

x

1
ln(1 + t2) dt.

1. Justifier l’existence de f .

2. Montrer que f est dérivable et étudier les variations de f sur R∗
+.

3. a. Montrer que ∀u ⩾ 0, ln(1 + u) ⩽ u.
b. Déterminer la limite de f en 0 par valeurs positives si elle existe.

4. Soit x ∈ R∗
+.

a. Soit x ∈ R∗
+. Montrer que, pour tout t ∈ [x, 2x], on a

1
ln(1 + 4x2) ⩽

1
ln(1 + t2) ⩽

1
ln(1 + x2) .

En déduire que
x

ln(1 + 4x2) ⩽ f(x) ⩽ x

ln(1 + x2) .

b. Montrer que, en +∞, on a f(x) ∼ x

2 ln(x) .

5. Etudier la parité de f .

6. En déduire le tableau de variation de f , limites comprises.

7. Donner l’allure de la courbe représentative de f .

Exercice 14 (Intégrales de Wallis, un classique indémodable). Soit n ∈ N. On pose

In =
∫ π

2

0
sinn(x) dx.
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1. Montrer que pour tout n ∈ N, In =
∫ π

2

0
cosn(x) dx.

2. Etudier le sens de variation de la suite (In)n∈N.

3. Donner une relation de récurrence entre In+2 et In.

4. Etablir que, pour tout n ∈ N, (n+ 1)In+1In = π

2 .

5. En déduire un équivalent de In lorsque n tend vers +∞. On commencera par montrer
que In ∼ In+1.

19 Géométrie
Exercice 1 (A propos des droites et des plans.). On se placera dans R2 ou R3 et le
repère (O,−→i ,−→j ) ou (O,−→i ,−→j ,−→k ).

1. Déterminer une équation cartésienne de la droite de vecteur normal −→n = (1, 2) passant
par (0, 0), puis du plan de vecteur normal −→n = (1, 2, 3) et passant par (0, 0, 0). Donner
une représentation paramétrique de ces deux objets.

2. Déterminer une équation cartésienne de la droite de vecteur normal −→n = (1, 2) passant
par (3, 2), puis du plan de vecteur normal −→n = (1, 2, 3) et passant par (3, 2, 1). Donner
une représentation paramétrique de ces deux objets.

3. Déterminer une représentation paramétrique de la droite de vecteur directeur −→u =
(1, 2) passant par (1, 1), puis du plan engendré par les vecteurs −→u = (1, 2, 3) et
−→v = (2, 1, 0) passant par (1, 1, 1). Donner une équation cartésienne de ces deux objets.

Exercice 2. Pour s’entrainer et vérifier qu’on a bien compris les représentations pa-
ramétriques ou par équations caractéristiques. Caractériser les ensembles suivants et en
donner une autre représentation :

1. E1 = {(x, y) ∈ R2/y − 2x = 0}

2. E2 = {(x, y, z) ∈ R3/y − 2x = 0}

3. E3 = {(x, y, z) ∈ R3/y − 2x+ z = 0}

4. E4 = {(x, y, z) ∈ R3/y − 2x+ z = 3}

5. E5 = {(2λ, 3λ,−λ)/λ ∈ R}

6. E6 = {(2λ− 1, 3λ+ 2,−λ)/λ ∈ R}

7. E7 = {(2a− b, a+ 2b, a)/(a, b) ∈ R2}

8. E8 = {(2a− b− 2, a+ 2b+ 1, a+ 6)/(a, b) ∈ R2}

9. E9 = {(x, y, z) ∈ R3/y − 2x+ z = 0 et − 2y + 4x− 2z = 0}.

10. E10 = {(x, y, z) ∈ R3/x+ y + z = 0 et x− y + z = 2}.

11. E11 = {(x, y, z) ∈ R3/x2 + y2 = 0}.

Exercice 3. On considère la droiteD d’équation 2x+3y = 1 et le point A de coordonnées
(3,−6).
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1. Déterminer un vecteur −→n normal à D.

2. En déduire une équation de la droite passant par A et orthogonale à D.

3. En déduire les coordonnées de H, le projeté orthogonal de A sur D.

4. Déterminer une représentation paramètrique de la droite D et caractériser-la.

5. En déduire un vecteur directeur de D de norme 1 et retrouvez les coordonnées de H.

Exercice 4. On considère la droite D passant par le point A(2,−1) et de vecteur
directeur −→u = (1, 2). On note par ailleurs le point B de coordonnées (−3, 4). On note
enfin H le projeté orthogonal de B sur D.

1. Déterminer un vecteur directeur de D de norme 1 et déterminer les coordonnées de
H.

2. Déterminer une équation cartésienne caractérisant la droite D.

3. En déduire une équation de la droite D′ passant par B et orthogonale à D.

4. Retrouver les coordonnées de H, le projeté orthogonal de A sur D.

Exercice 5. On considère la droite D passant par le point A(2,−1, 1) et de vecteur
directeur −→u = (1, 1, 2). On note par ailleurs le point B de coordonnées (3, 3, 0). On note
enfin H le projeté orthogonal de B sur D.

1. Déterminer un vecteur directeur de D de norme 1 et déterminer les coordonnées de
H.

2. Déterminer un système d’équations cartésiennes caractérisant la droite D.

3. Déterminer une autre équation vérifiée par les coordonnées du point H, et déduire les
coordonnées de H.

Exercice 6. On considère le plan P d’équation caractéristique x− 2y + z = 2.
On note par ailleurs le point B de coordonnées (−1, 2, 1). On note enfin H le projeté
orthogonal de B sur P.

1. Déterminer un vecteur normal du plan P que l’on notera −→n .

2. En déduire une description de la droite D passant par B et orthogonale à P.

3. Déterminer les coordonnées de H.

4. Déterminer un système directeur (−→u ,−→v ) de P ainsi qu’un point A ∈ P.

5. Déterminer un vecteur
−→
v′ coplanaire à (−→u ,−→v ) orthogonal à −→u .

6. En déduire un système directeur du plan P formés par deux vecteurs de norme 1 et
retrouver les coordonnées de H.

Exercice 7. On considère le plan P passant par le point A de coordonnées (1, 1, 1) et
de système directeur (−→u ,−→v ) avec −→u = (1, 1, 2) et −→v = (−1, 1, 1).
On note par ailleurs le point B de coordonnées (2,−6, 5). On note enfin H le projeté
orthogonal de B sur P.

1. Déterminer un vecteur
−→
v′ coplanaire à (−→u ,−→v ) et orthogonal à −→u .
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2. En déduire un système directeur (−→u1,
−→v1) du plan P formés par deux vecteurs ortho-

gonaux de norme 1

3. Déterminer les coordonnées de H.

4. Déterminer une équation caractérisant le plan P.

5. Déterminer un système d’équation décrivant la droite D passant B et orthogonale à
P.

6. Retrouver les coordonnées de H.

Exercice 8. On considère le plan muni d’un repère orthonormé direct (O,−→i ,−→j ).

1. Déterminer le point d’intersection de la droite D1 de représentation paramétrique{
x = 1 + t
y = 2 − t

, t ∈ R et de la droite D2 passant par O et dirigée par −→u = (1, 2).

2. On note D la droite d’équation cartésienne x + y − 2 = 0. Donner un point de cette
droite, un vecteur directeur, un vecteur normal et une représentation paramétrique.

3. On note ∆ la droite d’équation cartésienne 2x− y + 2 = 0. Déterminer la projection
orthogonale du point M = (2, 1) sur la droite ∆. En déduire la distance de M à ∆.

Exercice 9. 1. Déterminer le projeté orthogonal du point U(1, 1) sur la droite d’équation
2x− 3y = 0.

2. Déterminer le projeté orthogonal du point U = (1, 2) sur la droite d’équation −x +
2y = 1.

3. Déterminer le projeté orthogonal du point U = (1, 1,−1) sur la droite définie par le

système d’équations :
{
x+ y + z = 0

2x− z = 3

4. Déterminer le projeté orthogonal du point U = (1, 2, 0) sur le plan d’équation 2x +
2y − z = 0.

Exercice 10. On considère le plan muni d’un repère orthonormé direct (O,−→i ,−→j ).

1. Déterminer en fonction de m ∈ R l’ensemble des points M = (x, y) du plan tels que
x2 + y2 − 4x + y + m = 0. Lorsque c’est un cercle, en donner une représentation
paramétrique.

2. On note C le cercle de centre A(3, 0) et de rayon 1. Déterminer les éventuels points
d’intersection de C avec D la droite d’équation cartésienne px− y + 1 = 0 où p ∈ R.
On discutera selon les valeurs du paramètre p.

3. Pour m > 0, on note Cm le cercle d’équation cartésienne x2+(y−2)2 = m. Déterminer
le nombre d’éventuels points d’intersection de Cm avec C de centre

(3
2 , 0

)
et de rayon

3
2. On fera particulièrement attention à factoriser les expressions manipulées du mieux
possible pour que les calculs restent faisables manuellement.

Exercice 11. On considère l’espace muni d’un repère orthonormé direct (O,−→i ,−→j ,−→k ).
On considère le point A(1, 2, 3) et la droite D de représentation paramétrique
x = 1 + 2λ
y = 3λ
z = −1 + λ

, λ ∈ R. et les plans P1 d’équation x + y + z = 3 et P2 d’équation

2x− y + z = 2.
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1. Trouver le plan P ′
1 parallèle à P1 et passant par A.

2. On note ∆ l’intersection des plans P1 et P2. Déterminer une représentation pa-
ramétrique de ∆.

3. Déterminer une représentation paramétrique de la droite ∆′ parallèle à ∆ contenue
dans P1 et sécante avec D.

Exercice 12. On considère l’espace muni d’un repère orthonormé direct (O,−→i ,−→j ,−→k ).
On considère quatre points A(1, 1, 1), B(0, 2, 2), C(−1, 2, 0) et D(0,−3, 1).

1. Montrer que les points A,B et C définissent un plan P dont on donnera une équation
cartésienne.

2. Donner une représentation paramétrique de la droite passant par D et orthogonale à
P.

3. Déterminer les coordonnées du point D′ symétrique de D par rapport à P.

Exercice 13. Soit −→u ,−→v deux vecteurs du plan.

1. Montrer que −→u et −→v sont orthogonaux si et seulement si ∥−→u + −→v ∥ = ∥−→u − −→v ∥.

2. En déduire une condition nécessaire et suffisante pour qu’un parallélogramme ABCD
soit un rectangle.

Exercice 14. On considère l’espace muni d’un repère orthonormé direct (O,−→i ,−→j ,−→k ).
On considère les droite D1 = {(3 + t,−2 − t, 1 + t)/t ∈ R} et D2 = {(x, y, z) ∈ R3/
x+ 2y + z = −x+ 2y − z = 0}.

1. Donner un point A1 de D1 et un vecteur directeur −→v1 de D1. De même, donner un
point A2 de D2 et un vecteur directeur −→v2 de D2.

2. Déterminer un vecteur −→u non nul orthogonal à −→v1 et −→v2 .

3. Montrer que −→u ,−→v1 , et −→v2 sont deux à deux orthogonaux.

4. Pour i ∈ {1, 2}, on note Pi le plan passant par Ai et parallèle au plan engendré par
−→u et −→vi . Montrer que P1 ∩ P2 est une droite D, que D et D1 sont sécantes ainsi que
D et D2, que D est perpendiculaire à D1 et D2.

Exercice 15. Dans le repère orthonormé (O,−→i ,−→j ) si on est dans R2 ou (O,−→i ,−→j ,−→k )
si on est dans R3, déterminer le projeté orthogonal de M sur l’ensemble demandé. Vous
pourrez vous inspirer des techniques vues dans les premiers exercices.

1. M = (2, 1) sur la droite D passant par (0, 0) et de vecteur directeur −→u = (0, 1).

2. M = (2, 1) sur la droite D passant par (0, 0) et de vecteur directeur −→u = (1, 0).

3. M = (2, 1) sur la droite D passant par (0, 0) et de vecteur directeur −→u = (1, 1).

4. M = (1, 0) sur la droite D passant par (−1,−1) et de vecteur directeur −→u = (1, 0).

5. M = (3, 1) sur la droite D passant par (3, 1) et de vecteur directeur −→u = (−1, 2).

6. M = (5,−3) sur la droite D passant par (3, 1) et de vecteur directeur −→u = (−1, 2).

7. M = (−1,−2) sur la droite D passant par (−2,−3) et de vecteur directeur −→u = (1, 0).

8. M = (2, 1, 1) sur le plan P contenant le point (0, 0, 0) de base ((1, 0, 0), (0, 0, 1)).
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9. M = (−1, 1, 2) sur le plan P contenant le point (0, 1, 1) de base ((1, 0,−1), (1,−1, 1)).

10. M = (3, 2, 2) sur le plan P contenant le point (1, 1, 1) de base ((1, 0, 0), (0,−1, 1)).

11. M = (3, 2, 2) sur le plan P contenant le point (1, 1, 1) de base ((1, 0, 0), (1,−1, 1)).

20 Applications linéaires
Exercice 1. Déterminer les applications de R3 dans R2 qui sont linéaires. Donner les
matrices associées aux applications linéaires dans les bases canoniques correspondantes
lorsque c’est possible.

1. f1 : R3 −→ R2

(x, y, z) 7−→ (0, 2x− z).

2. f2 : R3 −→ R2

(x, y, z) 7−→ (x− z, 2z + x).

3. f3 : R3 −→ R2

(x, y, z) 7−→ (x− z, y + 1).

4. f4 : R3 −→ R2

(x, y, z) 7−→ (z, xy).

5. f5 : R3 −→ R2

(x, y, z) 7−→ (y − x, z2).

6. f6 : R3 −→ R2

(x, y, z) 7−→ (x− y + z, z).

Exercice 2. Soit f l’application

f : R2 −→ R2

(x, y) 7−→ (x+ 2y, x+ 3y)

1. Montrer que f est un endomorphisme.

2. f est-elle surjective ?

3. Déterminer Ker(f) et préciser si f est injective.

4. Donner la matrice représentative de f dans la base canonique de R2.

Exercice 3. Soit f l’application

f : R2 −→ R3

(x, y) 7−→ (x− y, x+ y, 2y − x)

1. Montrer que f est linéaire.

2. f est-elle surjective ?

3. Déterminer Ker(f) et préciser si f est injective.

4. Donner la matrice M de f relativement aux bases canoniques de R2 et de R3.

Exercice 4. Soit f l’application

f : R3 −→ R2

(x, y, z) 7−→ (2x− z, y + 2z)
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1. Montrer que f est linéaire.

2. Déterminer Ker(f) et préciser si f est injective.

3. f est-elle surjective ?

4. Donner la matrice M de f relativement aux bases canoniques de R3 et de R2.

Exercice 5. Soit f l’application

f : R3 −→ R2

(x, y, z) 7−→ (x− y + z, x+ 2y − z)

1. Montrer que f est linéaire.

2. Déterminer Im(f). Est-elle surjective ?

3. Déterminer Ker(f) et préciser si f est injective.

Exercice 6. Soit f l’application

f : C3 −→ C3

(x, y, z) 7−→ (x− iy + z, y + (2 + i)z, x− y)

1. Montrer que f est linéaire.

2. Donner la matrice M de f relativement à la base canonique de C3.

3. Déterminer Ker(f) et préciser si f est injective.

4. f est-elle surjective ?

Exercice 7. Soit f l’application

f : C3 −→ C2

(x, y, z) 7−→ (ix+ z, (1 + i)y + 2z)

1. Montrer que f est linéaire.

2. Donner la matrice M de f relativement aux bases canoniques de C3 et de C2.

3. Déterminer Ker(f) et préciser si f est injective.

4. f est-elle surjective ?

Exercice 8. Soit f l’application

f : C2 −→ C2

(x, y) 7−→ (x+ iy, x+ y)

1. Montrer que f est linéaire.

2. Donner la matrice M de f relativement aux bases canoniques de C2 (même base à
l’arrivée et au départ).

3. Déterminer Ker(f) et préciser si f est injective.

4. f est-elle surjective ?
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Exercice 9. Soit p l’application

p : R2 −→ R2

(x, y) 7−→ 1
4(2x+ y, 4x+ 2y)

1. Montrer que p est un endomorphisme.

2. Déterminer Ker(p). p est-elle injective ?

3. Déterminer une base de Im(p).

4. Déterminer p ◦ p sans passer par la représentation matricielle de p.

5. Déterminer la matrice A représentative de p dans la base canonique de R2 (même
base arrivée et départ).

6. Calculer A2. Etait-ce prévisible ?

7. Pourquoi ce nom p ?

8. Montrer que
(
(1,−2), (1, 2)

)
forme une base de R2. Quelle est la matrice de p relati-

vement à cette base ? Certains résultats vus précédemment auraient-ils été plus facile
à démontrer avec cette matrice ?

Exercice 10. Soit f l’application

f : C3 −→ C3

(x, y, z) 7−→ (2x+ 2y + (−2 + i)z, 0, iz)

1. Montrer que f est un endomorphisme.

2. Montrer que
(
(1, 0, 0), (1, 0, 1), (−1, 1, 0)

)
est une base de C3.

3. Donner la matrice M de f relativement à cette base.

4. Déterminer Ker(f) et préciser si f est injective.

5. f est-elle surjective ?

Exercice 11. Soit f l’application f : M2(K) −→ M2(K)(
a b
c d

)
7−→

(
a− b a− d
c c

)
1. Montrer que f est linéaire.

2. Déterminer une base de Im(f) et le rang de f .

3. Déterminer Ker(f).

Exercice 12. Soit f : R2[X] −→ R2[X]
P 7−→ P ′ + P (0)

où P ′ désigne la dérivée de P .

1. Montrer que f est une application linéaire.

2. Donner une base de Im(f) et le rang de f . f est-elle surjective ?

3. En déduire que f n’est pas injective.

Exercice 13. Soit f : Kn+1[X] −→ Kn[X]
P 7−→ P (X + 1) − P (X).
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1. Vérifier que f est bien à valeurs dans Kn[X] et montrer que f est une application
linéaire.

2. Déterminer Ker(f). f est-elle injective ?

3. En déduire que f est surjective.

Exercice 14. On note E = R2, B = (e1, e2) la base canonique de E et :

u1 = (1, 1), u2 = (1,−1), v = (2, 3).

1. Montrer que (u1, u2) est une base de E.

2. On note F = R3 et on considère l’application linéaire f : E −→ F définie par

f(u1) = (1, 1, 0) et f(u2) = (1, 0, 1).

Calculer f(e1), f(e2), f(v).

3. Quelle est la matrice de f dans les bases canoniques respectives de E et F (c’est-à-dire
de la base canonique de E dans celle de F ) ?

4. Trouver au moins un élément de F n’ayant pas d’antécédent par f .

Exercice 15. Soit f un endomorphisme de R3 tel que les images des vecteurs de la base
canonique de R3 soient respectivement (1,−1, 2), (−3, 2,−1) et (−7, 4, 1).

1. Donner la matrice M de f relativement à la base canonique de R3.

2. Déterminer tous les antécédents de u = (−1,−1, 8), et tous ceux de v = (−2, 1, 3).

3. f est-elle surjective ? injective ?

Exercice 16. On considère la matrice de M3(K) définie par A =

0 0 a
1 0 b
0 1 c

 . On note

de plus f l’endomorphisme de K3 canoniquement associé à A.
On rappellera que, pour n ∈ N, fn = f ◦ . . . ◦ f , la composition de f par lui même n
fois.

1. A quelle condition f est un isomorphisme ?

2. Montrer que f3 − cf2 − bf − aidR3 = 0.

3. En déduire une expression de f−1 lorsque f est un isomorphisme.

4. Déterminer une base de Ker(f) lorsqu’il n’est pas réduit au vecteur nul.

Exercice 17. On rappellera que, pour n ∈ N, fn = f ◦ . . . ◦ f , la composition de f par
lui même n fois.
Soit f ∈ L(K3) tel que f3 = 0 (l’endomorphisme nul) mais f2 ̸= 0.

1. Montrer qu’il existe u ∈ K3 tel que (f2(u), f(u), u) soit une base de K3.

2. Quelle est la matrice de f dans cette base ?
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Exercice 18. Soit f ∈ L(R4) l’endomorphisme dont la matrice dans la base canonique

est A =


3 −2 −1 0
0 1 0 0
2 −2 0 0
0 1 0 2

.

On rappellera que, pour n ∈ N, fn = f ◦ . . .◦f , la composition de f par lui même n fois.

1. Vérifier que f2 − 3f + 2id = 0 (l’endomorphisme nul).

2. En déduire que f est un isomorphisme de R4 dans lui même (on parle d’automor-
phisme) et déterminer sa réciproque.

3. Montrer qu’il existe deux suites (an)n∈N et (bn)n∈N telles que, ∀n ∈ N, fn = anf +
bnid.

4. En déduire l’expression de fn en fonction de n ∈ N.

5. Pour n ∈ N, on note f−n = (f−1)n. Est-ce que le résultat trouvé en question
précédente reste vrai pour n ∈ Z ?

Exercice 19. On note A = 1
2

(
1 5
5 1

)
.

On note f l’endomorphisme de R2 canoniquement associé à A, c’est-à-dire l’endomor-
phisme de R2 dont la matrice représentative relativement à la base canonique B de R2

est A.

1. Expliciter f .

2. Montrer que B′ = ((1, 1), (−1, 1)) est une base de R2.

3. On note P la matrice représentative de la famille B′ relativement à la base canonique.
Déterminer P puis P−1.

4. Donner la matrice D de f relativement à cette base B′ et calculer PDP−1.

5. Montrer que pour tout n ∈ N, An = PDnP−1.

6. En déduire, pour n ∈ N, An.

Exercice 20. Soit A la matrice de M2(R) définie par A =
(

−1 1
−3 3

)
.

On considère l’application φ : M2(R) −→ M2(R)
M 7−→ AM.

1. Montrer que φ est un endomorphisme de M2(R).

2. Déterminer C la matrice représentative de φ relativement à la base canonique de
M2(R) notée B.

On rappelle que B =
((1 0

0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

))
.

3. On définit la famille B′ =
((1 0

1 0

)
,

(
0 1
0 1

)
,

(
1 0
3 0

)
,

(
0 1
0 3

))
. Montrer que B′ est

une base de M2(R).

4. Déterminer D la matrice représentative de φ relativement à la base B′.
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5. Donner P la matrice représentative de B′ relativement à la base B. Calculer, PDP−1.

Exercice 21. On note φn l’application définie sur K[X] par, ∀P ∈ K[X], φn(P ) =
(P (0), P (1), . . . , P (n)).

1. Montrer que φn est linéaire.

2. Déterminer Ker(φn). Est-ce que φn est injective ?

3. On considère désormais ψn la restriction de φn à Kn[X], c’est-à-dire l’application
définie sur Kn[X] par, ∀P ∈ Kn[X], ψn(P ) = (P (0), P (1), . . . , P (n)). Montrer que ψn

est injective. Est-ce que ψn est un isomorphisme ?

4. Déterminer P0 tel que ψn(P0) = (1, 0, 0, 0, . . . , 0).

5. Déterminer P1 tel que ψn(P1) = (0, 1, 0, 0, . . . , 0).

6. Pour k ∈ [[0, n]], déterminer Pk tel que ψn(Pk) = (0, . . . , 0, 1, 0, . . . , 0) où le 1 apparait
en position k + 1.

7. On se place dans le cas où n = 2. En déduire ψ−1
2 .

8. Et dans le cas général, décrire ψ−1
n en fonction des (Pk)0⩽k⩽n.

Exercice 22. On note A =

 1 −1 −1
1 1 1

−1 0 0

. On note f l’endomorphisme de R3 cano-

niquement associé à A.

1. Déterminer une base et la dimension de Ker(f), ainsi que de Im(f).

2. Déterminer les valeurs de λ ∈ R telles que rg(f − λId) < 3.

3. On pose u = (0, 1,−1), v = (1, 1,−1). Montrer que Vect(u) et Vect(v) sont les seules
droites vectorielles stables par f . (On rappelle qu’on dit que F est stable par f si et
seulement si ∀x ∈ F , f(x) ∈ F .)

Exercice 23. Soient f et g deux endomorphismes de Kn.

1. Montrer que Ker(f) ⊂ Ker(g ◦ f) et Im(g ◦ f) ⊂ Im(g).

2. Montrer que Ker(g) ∩ Im(f) = f(Ker(g ◦ f)).

3. Si f ◦ g = g ◦ f , montrer que Ker(g) et Im(g) sont stables par f . On rappelle qu’on
dit que F est stable par f si et seulement si ∀x ∈ F , f(x) ∈ F .

4. Si f ◦g = g◦f et Im(f)∩Im(g) = {0}, montrer que f ◦g = g◦f = 0 (l’endomorphisme
nul).

Exercice 24. Soit n ∈ N∗. On considère le K-espace vectoriel Kn où K = R ou C.
Soit et f ∈ L(Kn). On notera, pour tout p ∈ N, fp = f ◦f ◦f ◦ . . .◦f p fois et f0 = idKn .

1. Montrer que pour tout p ∈ N, Ker(fp) ⊂ Ker(fp+1) et Im(fp+1) ⊂ Im(fp).

2. On note (up)p∈N une suite d’entiers convergente vers ℓ ∈ R.

a. Montrer que ℓ ∈ N. On pourra raisonner par l’absurde et utiliser la définition de
limite en choisissant ε avec pertinence.
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b. En déduire qu’il existe un p0 ∈ N, tel que ∀p ⩾ p0, up = ℓ. On pourra ici encore
utiliser la définition de limite avec un ε bien choisi.

3. a. Montrer qu’il existe un entier p0 ∈ N tel que pour tout p ⩾ p0, dim(Ker(fp)) =
dim(Ker(fp0)).

b. En déduire que pour tout p ⩾ p0, Ker(fp) = Ker(fp0).

4. a. Etablir que pour tout p ⩾ p0, dim(Im(fp)) = dim(Im(fp0)).
b. En déduire que pour tout p ⩾ p0, Im(fp) = Im(fp0).

5. Montrer que Ker(fp0) ∩ Im(fp0) = {0}.

21 Compléments sur les variables aléatoires finies
Exercice 1. Soit X et Y deux variables aléatoires indépendantes suivant la loi uniforme
sur [[1, n]]. On pose Z = X − Y .
Déterminer E(Z) et V (Z).
Déterminer ensuite la loi de Z et vérifier vos résultats obtenus ci-dessus.

Exercice 2. Soient X et Y deux variables aléatoires suivant une loi binomiale B(n, 1
2)

indépendantes.
Déterminer P (X = Y ).
On aura besoin de démontrer l’identité de Vandermonde, soit que pour m,n, k ∈ N avec
k ⩽ m+ n, on a (

m+ n

k

)
=

k∑
i=0

(
m

i

)(
n

k − i

)
.

Exercice 3. Une urne contient 20 boules numérotées de 1 à 20. On tire deux boules au
hasard avec remise. On désigne par X et Y les variables aléatoires égales aux numéros
obtenus. On pose Z = X + Y et T = X − Y .

1. Calculer les espérances et les variances de Z et de T .

2. Calculer P (ZT = 48).

Exercice 4. On lance 3 fois de suite une pièce équilibrée. On note X la variable qui
prend la valeur 1 si on a obtenu pile au premier lancer, 0 sinon. Y compte le nombre de
faces obtenues au cours des trois lancers.

1. Déterminer les lois de X et Y .

2. Déterminer la loi de (X,Y ).

Exercice 5. Soient N ∈ N∗, p ∈]0, 1[, q = 1 − p et (X,Y ) un couple de variables
aléatoires à valeur dans [[0, N ]]2 dont la loi jointe est donnée par

∀(i, j) ∈ [[0, N ]]2, P ([X = i] ∩ [Y = j]) = ApiqN−j .

1. Déterminer A pour que ce soit une loi jointe de probabilité.

2. Déterminer les lois de X et Y . Sont-elles indépendantes ?

3. Quelle est la loi de X + Y ?
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Exercice 6. Soit N ∈ N∗. Soit (X,Y ) un couple de variables aléatoires à valeur dans
N2. On suppose que l’ensemble des valeurs prises par ce couple est :

(X,Y )(Ω) = {(i, j) ∈ N2; 0 ⩽ i ⩽ N et i ⩽ j ⩽ i+N}

et pour tout couple (i, j) ∈ (X,Y )(Ω) on a

P (X = i ∩ Y = j) = 1
(N + 1)2 .

Montrer que l’on définit bien une loi de probabilité pour le couple (X,Y ) et déterminer
les lois marginales de X et Y . X et Y sont-elles indépendantes ?

Exercice 7. Une urne contient 2 boules numérotées 0, 2 numérotées 1, 2 numérotées 2.
On tire simultanément 2 boules. X est le plus petit numéro obtenu, Y le plus grand.

1. Déterminer les lois de X et Y .

2. Déterminer la loi jointe et retrouver les lois marginales.

3. Sachant qu’une des boules porte le numéro 2, quelle est la probabilité que l’autre
porte le 0 ?

Exercice 8. Une urne contient N boules numérotées de 1 à N . On pioche n boules sans
remise, avec n ∈ [[1, N ]]. On note X le plus petit numéro tiré et Y le plus grand.

1. Déterminer P (X ⩾ k) et P (Y ⩽ k) pour k ∈ [[1, N ]].

2. En déduire les lois de X et Y .

3. ∀(i, j) ∈ [[1, N ]]2, déterminer P ((X = i) ∩ (Y = j)). En déduire la loi du couple
(X,Y ).

Exercice 9. Soit n ∈ N, n ⩾ 2. Une urne contient n boules numérotées de 1 à n.
On effectue n tirages successifs d’une boule. Pour tout entier k ∈ [[1, n]], on note Xk la
variable aléatoire qui prend la valeur 1 si l’on tire au k-ième tirage la boule numérotée
k et 0 sinon.

1. Interpréter la somme X = X1 +X2 + . . .+Xn.

2. On suppose que les tirages ont lieu avec remise.

a. Déterminer la loi de Xk, son espérance et sa variance.
b. En déduire l’espérance et la variance de X.

3. On suppose que les tirages ont lieu sans remise.

a. Déterminer la loi de Xk, son espérance et sa variance.
b. En déduire l’espérance de X.

Exercice 10 (Attention à mener les calculs soigneusement). Soit n ∈ N∗ et soit p ∈]0, 1[.
On considère un élève qui répond à un QCM de n questions. Il a une probabilité p
de répondre correctement à chaque question, chaque question étant indépendante des
autres. On notera q = 1 − p si besoin d’alléger certaines écritures.

1. On note X la variable aléatoire égale au nombre de questions auxquelles il a répondu
correctement.
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a. Quelle est la loi de X ?
b. Rappeler l’espérance et la variance de X.
c. Ecrire une fonction qcm(n,p) qui simule cette variable aléatoire.

2. On donne à l’élève la possibilité de se corriger en répondant à nouveau aux questions
auxquelles il s’est trompé. Malheureusement, il répond encore une fois de la même
façon (c’est-à-dire correctement avec la même probabilité p et indépendamment de
tout le reste, pas un élève très sérieux donc). On note Z le nombre de questions
auxquelles il répond correctement au deuxième test.

a. Ecrire une fonction qcm2(n,p) qui simule la variable aléatoire Z.
b. Déterminer la loi conditionnelle de Z sachant (X = k), pour k ∈ [[0, n]].
c. Montrer que, pour tous ℓ, n, k entiers naturels tels que ℓ+ k ⩽ n, on a(

n− k

ℓ

)(
n

k

)
=
(
n

ℓ

)(
n− ℓ

k

)
.

d. En déduire la loi de Z puis son espérance et sa variance.
e. Aurait-on pu le deviner ?

3. On pose S = X + Z.

a. Que représente S ?
b. Ecrire une fonction qcm3(n,p) qui simule S.
c. Quelle est la loi de S ? Son espérance ? Sa variance ?
d. Aurait-on pu le deviner ?

Exercice 11. On dispose de n, n ⩾ 1, urnes U1, U2, . . . , Un. Pour k ∈ [[1, n]], l’urne Uk

contient k boules numérotées de 1 à k. On choisit une urne au hasard puis on tire une
boule dans cette urne. On note X la variable aléatoire égale au numéro de l’urne choisie
et Y la variable aléatoire égale au numéro de la boule tirée.

1. Ecrire une fonction Python qui simule la variable aléatoire Y en prenant en argument
l’entier n ⩾ 1.

2. En déduire une fonction Python qui approche E[Y ]. On prendra n = 1, n = 5 et
n = 9. Pouvez-vous conjecturer la valeur théorique de E[Y ] en supposant qu’il s’agit
d’une fonction affine de n ?

3. Quelle est la loi de X ? Donner son espérance et sa variance.

4. Sachant que (X = k), quelle est la loi de Y ?

5. Déterminer la loi conjointe du couple (X,Y ), puis la loi de Y (qu’on gardera sous
forme de somme simplifiée).

6. Déterminer E(Y ) et V (Y ) en fonction de n.

Exercice 12. On dispose de n boules numérotés de 1 à n dans une urne. On pioche
une boule au hasard (uniformément). Si son numéro est égal à k, pour n’importe quel
k ∈ [[1, n]], on la remet dans l’urne en ajoutant k autres boules portant le même numéro
k. On pioche ensuite une deuxième boule. On note Xn le premier numéro obtenu et Yn

le second.
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1. Quelle est la loi de Xn ? Son espérance ? Sa variance ?

2. Déterminer la loi de Yn. On l’exprimera en fonction de an =
n∑

k=1

1
n+ k

.

3. Déterminer lim
n→∞

an.

4. Déterminer lim
n→∞

Sn avec Sn = 1
n2

n∑
ℓ=1

ℓ2

n+ ℓ
.

5. Déterminer E(Yn). On l’exprimera en fonction de Sn.

6. Montrer que, en +∞, E(Yn) ∼ 3 ln(2) − 1
2 n.

Exercice 13. Lors d’une suite de lancers indépendants de pile ou face (d’une pièce
équilibrée), on note Xn le nombre de fois où le résultat est différent du précédent lors
des n premiers lancers. On prendra X1 = 0.

1. Déterminer la loi de X2 et de X3.

2. Déterminer la loi de Xn, pour n ⩾ 2 en fonction de celle de Xn−1. Pour alléger les
notations, on ne s’interdira pas d’utiliser P (Xn = k) = 0 lorsque k /∈ Xn(Ω).

3. On note φn(x) =
n−1∑
k=0

P (Xn = k)xk. Calculer φn(1), φ′
n(1), φ′′

n(1).

4. Pour n ⩾ 1, montrer que φn+1(x) = 1 + x

2 φn(x). En déduire une expression de φn(x)
en fonction de n et de x.

5. En déduire l’espérance et la variance de Xn.

Exercice 14. On considère une urne contenant n boules numérotées de 1 à n. Pour
k ∈ N∗, on note Xk la variable aléatoire égale au nombre de boules distinctes obtenues
lors de k tirages successifs avec remise.

1. Déterminer P (Xk = 1).

2. Déterminer P (Xk = k).

3. Déterminer la loi de Xk+1, en fonction de celle de Xk.

4. En déduire, pour tout k ⩾ 1, E(Xk+1) = n− 1
n

E(Xk) + 1.

5. Montrer que E(Xk) = n

[
1 −

(
n− 1
n

)k
]
.

6. Déterminer lim
k→+∞

E(Xk). Qu’en pensez-vous ?

7. Déterminer lim
n→+∞

E(Xk). Qu’en pensez-vous ? Cette question nécessite d’avoir vu les
équivalents classiques ou les développements limités.
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22 Etude locale de fonctions
1. Limites, équivalents, développements limités et asymptotiques
Exercice 1 (Exercice fondamental utilisant les développements limités). Il est probable
que sorti d’un calcul de limites ou deux, on ne vous en demande pas de savoir faire
beaucoup plus avec les développements limités...

1. On note f : R∗ −→ R définie par f(x) = sin(x)
x

. Montrer que f est prolongeable par
continuité en 0, que ce prolongement est dérivable, donner la tangente à f en 0 ainsi
que la position relative de la tangente et de la courbe.

2. On note g :]−1, 0[∪]0,+∞[−→ R définie par g(x) = ln(1 + x)
x

. Montrer que g est pro-
longeable par continuité en 0, que ce prolongement est dérivable, donner la tangente
à g en 0 ainsi que la position relative de la tangente et de la courbe.

Exercice 2. Donner un équivalent simple des fonctions suivantes :

1. f(x) = ln(1 + 2x+ 2x2) au voisinage de 0.

2. f(x) = ln
(1 + x+ x2

1 − 2x

)
au voisinage de 0.

3. f(x) = e3x − 1 + 2x2 au voisinage de 0.

4. f(x) = ln
(

1 + 3
x

)
au voisinage de +∞.

5. f(x) = ln
(

1 − x+ 1
x2 − 1

)
au voisinage de +∞.

6. f(x) = exp
( 1
x+ 1

)
− 1 au voisinage de +∞.

7. f(x) = exp
(

x

x2 + 1

)
− x+ 1
x+ 2 au voisinage de +∞.

Exercice 3. Trouver l’équation de la tangente à la courbe représentative de f en x0 et
préciser si la courbe est au-dessus ou au-dessous de la tangente.

1. f(x) = ex en x0 = 0.

2. f(x) = ex en x0 = 2.

3. f(x) = ln(1 + x) en x0 = 0.

4. f(x) = ln(x) en x0 = 1.

5. f(x) = cos(x) en x0 = 0.

6. f(x) = sin(x) en x0 = 0.

7. f(x) = cos(x) − 1 en x0 = 2π.

8. f(x) = xex en 0.

9. f(x) = ex − 1
x

en 0.
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Exercice 4. Déterminer des équivalents simples lorsque n tend vers +∞ des suites de
terme général :

1. (n+ 1)p − (n− 1)p avec p réel non nul fixé.

2. e(n+1)p − e(n−1)p avec p réel non nul fixé.

Exercice 5. Calculer les limites suivantes.

1. lim
x→+∞

x ln
(

1 + 1
x

)
.

2. lim
x→+∞

x(ln(x+ 1) − ln(x)).

3. lim
x→+∞

ex − x2.

4. lim
x→+∞

x−x.

5. lim
x→0
x>0

x−x.

6. lim
x→+∞

ln(x) − x.

7. lim
x→+∞

ln(1 + x) − x

x
.

8. lim
x→0

ln(1 + x) − x

x
.

9. lim
x→+∞

ex − 1 − x

x2 .

10. lim
x→0

ex − 1 − x

x2 .

11. lim
x→−∞

ex − 1 − x

x2 .

12. lim
x→1

ex2+x − e2x

ex+1 − e4x−2 .

13. lim
x→0

ln(ex + x)
x

.

14. lim
x→−∞

√
x2 + 3x+ 2 + x.

15. lim
x→0

ln(1 + x) − sin(x)
x2 .

16. lim
x→0

cos(x) −
√

1 − x2

x4 .

17. lim
x→0

(2x + 3x − 5x)1/x.

18. lim
x→+∞

( ln(1 + x)
ln(x)

)x ln(x)
.

19. lim
x→+∞

x

(1
e

− exp
(
x ln

(
x

1 + x

)))
.
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2. Suites implicites
Les trois exercices suivants ne sont pas à proprement parler des exercices d’application
de ce chapitre stricto sensu, mais ils se servent de toutes les notions d’analyse vues
jusque là, exceptée l’intégration. Ils font donc d’excellents bilans de connaissance. Sans
compter que les suites implicites tombent régulièrement aux concours et les candidats
sont rarement à l’aise sur le sujet.
Une suite implicite est une suite dont chaque terme est défini comme solution d’une
équation, mais on ne sait pas forcément résoudre cette équation. Si on le sait, la suite
devient très explicite, et donc plus facile à étudier... et donc ne rentre pas dans le cas
des suites implicites.
Le premier peut se résoudre très simplement en utilisant le théorème de la bijection, les
autres ne permettent pas une utilisation aussi efficace. Prenez vote temps pour bien les
travailler.

Exercice 6. Notons f : R∗
+ −→ R définie pour tout x ∈ R∗

+ par f(x) = x+ ln(x).

1. Montrer que, ∀n ∈ N, il existe un unique un ∈ R∗
+ tel que f(un) = n.

2. Etudier le sens de variations de (un)n∈N.

3. Déterminer lim
n→+∞

un.

4. Montrer que, en +∞, un ∼ n.

5. Montrer que un − n

ln(n) −−−−−→
n→+∞

−1.

Exercice 7. Pour tout entier naturel n non nul, on considère la fonction fn définie sur
[0,+∞[ par :

∀x ∈ [0,+∞[, fn(x) = xn+1 − xn.

1. a. Dresser le tableau de variations de la fonction fn sur [0,+∞[ en faisant figurer la
limite en +∞.

b. Montrer que l’équation fn(x) = 1 admet une unique solution αn sur [0,+∞[.
c. Montrer que,

∀n ∈ N, 1 ⩽ αn ⩽ 2.

2. a. Déterminer le signe de fn+1(x) − fn(x) pour tout entier naturel n et tout réel
positif x. En déduire la monotonie de la suite (αn).

b. Prouver que la suite (αn)n∈N∗ est convergente vers une limite notée ℓ.
c. Montrer que ℓ = 1. On pourra raisonner par l’absurde.

3. On pose, pour tout n ∈ N∗, un = αn − 1.

a. Etablir que, pour tout n ∈ N∗, (1 + un)nun = 1.
b. Montrer que, pour tout n ∈ N∗, un = e−n ln(1+un).

c. En déduire que lim
n→+∞

nun = +∞.

d. Montrer que un ∼ − ln(un)
n

.

e. Montrer que si vn ∼ wn avec lim
n→+∞

vn = +∞, alors ln(vn) ∼ ln(wn).

f. Montrer que ln(n) ∼ − ln(un) et en déduire un ∼ ln(n)
n

.
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g. Etablir, αn = 1 + ln(n)
n

+ o

( ln(n)
n

)
. Question légèrement hors programme (seuls

les o(xn) sont au programme).

Exercice 8. Pour n ∈ N, n ⩾ 2, on note fn la fonction définie sur R par

∀x ∈ R, fn(x) = x2n + x3 − 1.

1. Dresser le tableau de variations de fn, n ⩾ 2, en faisant figurer les limites et f(0).

2. Montrer que, pour tout n ⩾ 2, fn s’annule exactement deux fois, une fois sur R−, et
une fois sur R+. On notera αn l’élément de R+ tel que fn(αn) = 0 et on notera βn

l’élément de R− tel que fn(βn) = 0. On définit ainsi deux suites, (αn)n⩾2 et (βn)n⩾2.

3. Étude de (αn)n⩾2.

a. Justifier que, pour tout n ⩾ 2, αn ∈]0, 1[.
b. A l’aide de l’algorithme de dichotomie, écrire une fonction qui prend en argument
n et retourne αn à 10−9 près.

c. Étudier le sens de variation de la suite (αn)n⩾2. En déduire la convergence de la
suite (αn)n⩾2, et déterminer sa limite si elle existe.

d. Montrer que si vn ∼ wn avec lim
n→+∞

vn = +∞, alors ln(vn) ∼ ln(wn).

e. On pose, pour tout n ⩾ 2, un = 1 − αn. Déterminer un équivalent de ln(un) en
+∞.

f. En déduire un équivalent de un. Il s’agit d’une question difficile.

4. Étude de (βn)n⩾2.

a. Justifier que, pour tout n ⩾ 2, βn ∈] − 2,−1[.
b. Étudier le sens de variation de la suite (βn)n⩾2.
c. Étudier la convergence de la suite (βn)n⩾2, et déterminer sa limite si elle existe.

23 Fonctions réelles de deux variables réelles
Exercice 1. Soit f : R2 −→ R définie par f(x, y) = x4 + y4 − (x − y)2. Que dire du
point (0, 0) ? On pourra regarder f(x, x) et f(x, 0).

Exercice 2. On considère l’application f : R2 −→ R définie par, ∀(x, y) ∈ R2,

f(x, y) = x3 − 3xy2.

1. Calculer les dérivées partielles de f .

2. Déterminer le point (x, y) tels que ∂f

∂x
(x, y) = ∂f

∂y
(x, y) = 0.

3. Est-ce que f atteint un extremum en ce point ? On pourra déterminer f(x, x) avant
de conclure.

4. Pourquoi le graphe de la courbe s’appelle ≪ selle de singe ≫ ? Il peut être utile de le
tracer à l’aide d’une calculatrice, de Geogebra, de Grapher (sous mac).
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Exercice 3. On considère l’application f : R2 −→ R définie par, ∀(x, y) ∈ R2,

f(x, y) = xex(y2+1).

1. Calculer les dérivées partielles de f et montrer qu’elle admet un unique point critique
que vous déterminerez.

2. Montrer que ∀(x, y) ∈ R2, f(x, y) ⩾ xex.

3. Etudier les variations de g : R −→ R, x 7−→ xex. En déduire que, ∀x ∈ R, xex ⩾ −e−1.

4. En déduire que f admet un minimum global en (−1, 0).

Exercice 4. On considère l’application f : R2 −→ R définie par, ∀(x, y) ∈ R2,

f(x, y) = x2 − 3xy + 2y2 + 4x− 2y + 3.

1. Calculer les dérivées partielles de f .

2. Déterminer les points (x, y) tels que ∂f

∂x
(x, y) = ∂f

∂y
(x, y) = 0. On ne trouvera qu’un

couple noté (α, β) à déterminer.

3. Montrer que f(x, y) − f(α, β) = (x− 3
2y + 2)2 − 1

4(y − 8)2.

4. Est-ce que, en (α, β), f atteint un minimum ? Un maximum ?

Exercice 5. On considère l’application f : R2 −→ R définie par, ∀(x, y) ∈ R2,

f(x, y) = 2x2 + y2 − 2xy + 8x− 2y + 8.

Nous allons montrer que cette fonction admet un minimum global en (a, b) que nous
allons déterminer.

1. Une première méthode :

a. A x fixé, étudier les variations de g : y 7→ f(x, y). Montrer que g admet un
minimum, atteint en un seul point, noté t(x) à déterminer.

b. Déterminer f(x, t(x)).
c. En déduire le couple (a, b) recherché.

2. Une deuxième méthode :

a. Déterminer les deux dérivées partielles de f .
b. Déterminer les points où elles s’annulent simultanément. On ne trouvera qu’un

seul couple, (α, β) à déterminer.
c. Calculer f(x, y) − f(α, β) et conclure. On pourra essayer d’utiliser la forme cano-

nique d’un trinôme en considérant x puis y constant.

Exercice 6. Déterminer les fonctions f qui vérifient :

1. Pour tout (x, y) ∈ R2,


∂f

∂x
(x, y) = xy2

∂f

∂y
(x, y) = x2y.
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2. Pour tout (x, y) ∈ (R∗
+)2,


∂f

∂x
(x, y) = x√

x2 + y2

∂f

∂y
(x, y) = y√

x2 + y2 .

3. Pour tout (x, y) ∈ (R∗
+)2,


∂f

∂x
(x, y) = x√

x2 + y2

∂f

∂y
(x, y) = −y√

x2 + y2 .

Exercice 7. On considère un nuage de points (xi, yi)1⩽i⩽n tels qu’il existe (i, j) ∈ [[1, n]]
tel que xi ̸= xj . (On veut que le nuage ne soit pas sur une droite verticale, auquel cas
tout ça n’a aucun intérêt.)
On notera f : R −→ R, x 7−→ ax+ b.
Le but de cet exercice est de déterminer a et b pour que la somme des carrés des distances
entre (xi, yi) et (xi, f(xi)) soit minimale. On appelle l’ajustement affine par la méthode
des moindres carrés ou droite de régression linéaire la courbe représentative de f pour
les choix de a et b qui minimisent la quantité :

d(a, b) =
n∑

i=1
((axi + b) − yi)2.

On notera x = (x1, . . . , xn), x = 1
n

n∑
i=1

xi, la moyenne de (x1, . . . , xn).

De plus, on notera y = (y1, . . . , yn), y = 1
n

n∑
i=1

yi la moyenne de (y1, . . . , yn).

De plus, on notera cov(x, y) = 1
n

n∑
i=1

(xi −x)(yi − y) et V (x) = 1
n

n∑
i=1

(xi −x)2, autrement

dit la covariance empirique et la variance empirique.

1. Commençons par quelques considérations pour simplifier nos futurs calculs.

a. Montrer que V (x) > 0.

b. Montrer que V (x) = 1
n

(
n∑

i=1
x2

i

)
− x2.

c. Montrer que cov(x, y) = 1
n

n∑
i=1

(xiyi) − xy.

2. Montrer que la fonction d n’admet qu’un seul point critique (a0, b0).

3. Montrer que la droite d’équation y = a0x+ b0 passe par le point moyen (x, y).

4. Montrer que le coefficient directeur de cette droite est a0 = cov(x, y)
V (x) .

5. En déduire l’équation de cette droite.

6. Montrer que d admet un minimum global en ce point critique en procédant par double
minimisation comme dans l’exercice 5.

7. Conclure.
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