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Ce recueil est un travail en cours, ne 'imprimez pas. Il sera complété au fur et & mesure
que l'année avance et les éventuelles (voire trés certaines) coquilles seront corrigées au

fur et & mesure que vous me les signalerez.
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1 Généralités

1. Un peu de logique

Exercice 1. 1. On sait que x € Q, donc il existe (p,q) € Z x N* tel que = = P
q

/

Siy € Q, alors il existe (p/,q') € Z x N* tel que y = P
q

-
p P _pd+py

Ainsi, z+y:§+? = T oupqd +p'qeZet qff € N* doncz+y e Q.

Ca se fait directement. [J
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2. Partir de z + y € Q, comme — € Q, on a d’apres la question précédente, x +y — x =

y € Q. On a donc démontré par contraposée que y ¢ Q = z +y ¢ Q. O

3. C’est déja fait : on a fait une disjonction de cas sur y € Q ou y ¢ Q. O

Exercice 2. Soit a,b € Q tels que a +bv/2=0.Sib#0,ona 2 = —% € Q, ce qui est

impossible. Ainsi, on a forcément b = 0. Il vient immédiatement alors que a = 0. O
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Exercice 3. Raisonnons par contraposée. Soit z # 0. On a bien |x| > ¢, donc il existe
x

bien ¢ (on prend € = ’2‘ > 0) tel que |z| > €.

Par contraposée, on a donc montré que Ve > 0, [z| < e =z = 0.

Et si on prend des inégalités strictes, ¢a ne change absolument rien, simplement il suffit

de prendre des inégalités larges dans la rédaction ci-dessus (mais attention, on continue

a prendre € > 0.)

O]

Exercice 4. C’est le théoreme de la division euclidienne.

On procede par analyse-synthese : a savoir que nous allons chercher quelles valeurs sont
susceptibles d’étre valables, puis on essaiera de vérifier qu’elles fonctionnent bien. Nous
nous attaquerons a I'unicité ensuite.

Supposons que l'on a l'existence de (¢,7) € Nx Navec 0 <r < b—1 tel que a = bg+ .
Alors on a

a . r
b 1Ty
r r Lo r .
Comme 0 < 7 < 1l,onagqg< Q+5 < g+ 1. Ainsi, ¢ = Lq+5J € N, autrement dit
=13
q= b .
Ensuite remarquons que r = a — bg = a — bLgJ semble convenir.

a a
Vérifions que cela fonctionne. Prenons ¢ = ng et r=a— bng On a bien évidemment

bq+r:bL%J+a—bL%J:a.

De plus, g = LEJ eN.

b
Enfin,
a a a
——1 < |- g —
b LbJ b
donc en multipliant par —b < 0 et en ajoutant a, on a

—a+bt+a=b>r>2—-a+a=0
a

ce qui est équivalent & 0 < r < b — 1 car r est un entier. Autrement dit » = a — b| 5

[0,b—1].

Maintenant, démontrons I'unicité. Supposons qu’il existe deux couples (q,7) et (¢',7")
qui satisfont ce résultat.

On a alors bq +r = bq’ + r. Ainsi, b(q — ¢') =" —r.
Or,ona0<7r <b donc —r<r—r"<b—r.Comme 0 <r<bonal>—-r>-—b,
donc

| €

—b<r—1r <0.
Cependant, ¢ — ¢’ # 0, comme ¢ — ¢ € Z, on a b(q —¢') = bou b(q —¢') < —b. I est
donc impossible que r — 1" = b(q — ¢’) sauf si ¢ — ¢’ = 0. Ainsi, on a ¢ = ¢/, donc r = 1.
Il y a donc bien unicité du couple. [J
2. Quelques résolutions d’équations pour voir si on a perdu la main
Exercice 5. (E;) 22 —8r + 11 =4

L’équation 2 —8x+11 = 4 est équivalente & 1’équation 22 —8z+7 = 0. On applique
la méthode vue en cours (et en terminale) pour résoudre celle-ci
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Le discriminant de cette équation vaut 64 — 28 = 36 = 62. Puisque le discriminant
est positif, on sait que cette équation admet deux solutions réelles qui sont

846 _. ., 86 _

1
2 2

Ainsi ensemble des solutions de 'équation F; est S; = {1,7}.

Remarque de rédaction : 1’énoncé ne mentionne pas de coefficients a, b et c. Vous étes
—b— VA

donc fortement priés de ne pas écrire de chose du style A = b>—4ac, x1 = 5
a

qui n’ont ici aucun sens puisque a,b, ¢, x1, x2 n’ont jamais été définis.
(B2) [x—1] =22 —3

r—1siz>1

Ona]a:—l]:{ —rx+1lsiz<l1

4

Pour le cas ¢ < 1 ’équation devient —z +1 =2z -3 <= 3x =4 <=z = 3 Or
cette valeur n’est pas dans le cas qui nous intéresse. Ainsi, il n’y a pas de solution
sur | — oo, 1[.
Pour le cas z > 1 I’équation devient x — 1 = 22 — 3 <= = = 2. Or cette valeur est
bien dans le cas qui nous intéresse.
Il n’y a donc qu’une seule solution, x = 2. Ainsi ’ensemble des solutions de
léquation Ey est Sy = {2}.

r—5= 4-—2?

(E3) |z — 5| = |4 — 2?| ou

r—5= x°—4
La premiére équation est x —5 = 4 — 22, c’est-a-dire 22 +z —9 = 0. Le discriminant
de cette équation est 37, elle a donc deux solutions réelles qui sont _1%@ et
—1-+/37

It

La deuxiéme équation est z — 5 = 2% — 4, c’est-a-dire 22 — z + 1 = 0, dont le
discriminant est —3. Ainsi, elle n’a pas de solution réelle.

En conclusion ’ensemble des solutions de Fs3 est S35 = {7172‘/§, 712‘/?}.

(E4) \/$—3+\/§:3

On va raisonner ici par implication (ou par analyse-synthése). Soit x une solution
de ’équation E4, remarquons que nécessairement x > 3. Alors

(Vr—3+z)>=9

ie.
r—3+z+2vV22-3z=9
Ainsi
2r — 12 = —2v/22 — 3z
Soit

x—6=—Vz?—3x

Et, par suite
(x —6)* = (2% — 3x)
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Ainsi, en développant et regroupant les termes, x vérifie
36x = 144

C’est-a-dire x = 4. Ainsi, si x est une solution de E4 alors z = 4
Vérifions maintenant que 4 est bien solution de ’équation E4. On a /4 — 3++/4 =
1+ 2 = 3. 4 est bien solution de F4. L’ensemble des solutions de I’équation Ej4 est
donc Sy = {4}
(B5) 2 — 222 —15 =10
Soit = une solution de I’équation Es, et notons X = z2. X vérifie alors
X2 -2X-15=0

Le discriminant de cette équation est 4+ 60 = 64 = 82. Cette équation admet donc
deux solutions qui sont

2+8 2—-38

5 2 —° - _3
2 @

Ainsi, = est solution de I'équation Fj si et seulement si {22 € {—3,5}. Comme
22 > 0 on en déduit que 22 = 5, c’est-a-dire z € {—/5,/5}

En conclusion ’ensemble des solutions de 1’équation Es5 est S5 = {—\/5, \/5}
O

Exercice 6. (I;y? —z > 2

2

L’inéquation z2 — x > 2 est équivalente & I'inéquation 22 — 2z — 2 > 0.

Les racines du polynéme x? — x — 2 sont —1 et 2. Ainsi 22 — 2 — 2 = (x + 1)(x — 2).
Notre inéquation est donc équivalente a

(x+1)(x—2)>0
On sait qu'un produit de deux termes est strictement positif si et seulement si les
termes sont non-nuls et de méme signe. Ici on a donc
(z4+1)(x—2)>0& ((z>—-1letz>—-2)ou(xz < —1letz<2))
Ainsi 'ensemble des solutions de l'inéquation est S; =] — 0o, —1[U]2, +0o0].
(Lyz—1>V4x —1

Remarquons que si x est solution de cette inéquation alors x > 1. Mais, si z > 1 alors
4r >z, dott 4r — 1 >z — 1 > 0 et, par suite, Vo — 1 < /4x — 1.

Ainsi I'inéquation I n’a pas de solutions sur R. L’ensemble des solutions de I est
donc Ir = 0.

r+1

<1
T+ 2

(I3

z+1
T+ 2

Remarquons que si x est solution de cette inéquation alors z # —2 et >0, ie
x> —1loux< —2.

Comme tous les éléments sont positifs, comme la fonction carrée est strictement crois-
sante, on a

r+1 z+1 -1
<1< —1<0<«——= —<0<=z2+2>0<=z > 2.
xr + 2 x + 2 T+ 2

L’ensemble des solutions de I'inéquation I3 est donc S3 =] — 1, +o0].
O
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Exercice 7. 1. On commence par remarquer que pour que I’équation ait un sens, on
doit avoir z —2 # 0, 2 +2 # 0 et 22 — 4 # 0. Ainsi, on doit avoir x € D = R\ {-2,2}.

Une fois ceci remarqué, on peut tout multiplier par (z — 2)(x + 2) = 22 — 4 # 0.
L’équation est donc équivalente a

(x+2)%— (z—2)% = 8.
Ce qui se simplifie en 0 = 0.
Tout x € R\ {—2,2} est solution. O

2. Remarquons la encore qu'il faut que 3+ x # 0, 2+ x # 0 et 1 + x # 0. Ainsi, on a
forcément z € R\ {—1,—-2,-3}.

Ensuite, le plus simple est encore une fois de faire disparaitre les dénominateurs en
multipliant tout par (14 z)(2 + x)(3+ x) # 0.

Ainsi, I’équation est équivalente a

B—z)2+2)(1+2)—B+2)2+x2)(1+z) = 2—2)(1+2)B3+z)+(1—2)(2+2)(3+z).

En factorisant a gauche et a droite, on trouve I’équation équivalente
—2x(2+z)(1+2z)=B+2)[2+z—2%)+ (2 -z —2°)]

soit
—22(2 4 3z + 2?) = (34 z)(4 — 227).

En développant, on obtient I’équivalence avec
—dx — 62% — 22° = 12 + 4z — 62 — 22°.
Apres simplification, ’équation équivalente est
8xr+12=0.
3 .
Seul —5 est solution. [J

3. Appelons (F) cette équation. Elle n’a de sens que si x — 1 # 0, donc z # 1 et si

NIET .z
= 0, c’est-a-~dire si
x —

# 1 ce qui n’arrive jamais.
z—1 1

Ainsi, I’ensemble de définition est R\ {1}.

Ensuite, arrangeons un peu 1’écriture. On a

z—1
E)e —— =0
(B) & —5—— Tz=0
donc
(E)el—x+2=0.
Pour finir (F) < 1 = 0 donc ’équation n’admet aucune solution. [J

4. Notons (I) cette inéquation.

L’inéquation n’a de sens que lorsque 22 —3x+2 # 0. Comme 22 —3z+2 = (z—1)(z—2)
(& détailler si besoin) c’est lorsque x ¢ {1,2}.
Attention : I’idée catastrophique est de multiplier par =2 — 3z + 2 pour faire

disparaitre le dénominateur, puisque le signe de cette quantité change en
fonction de z!
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3+ 2
I —_ -1 .
Ona()<:>$2_3$+2 <0
Autrement dit
3x+2— (22 -3z +2)

I .
(1) < 2 —3x+2 <0
Ce qui s’arrange en
—2% 4 62
NHhe ——— .
(1) 2 —3x+2 <
En factorisant ( 6)
I —_— .
De w9 <

Le plus simple pour se convaincre de la fin est de faire un tableau de signe. On trouve
alors que ’ensemble solution est | — oo, 0[U]1, 2[U]6, 4+o00[. O

. Il'y a en réalité deux inéquations qui n’existent que si z — 5 # 0, soit sur R\ {5}.

-3
z .On a

L iere (I1) : 2 <
a premiere (I7) pogy

x—3—2(zx—5)

I .
(L) & T _5 >0
On simplifie en
7T—zx
)& ——>0.
() a:—5>

L’ensemble solution de (I1) est donc ]5,7[ (faire un tableau de signe si vous avez le
moindre doute).

La deuxieme (I3) : % <3.0na

Ir) & < 0.
(72) z—95
On simplifie en
2(6 —x)
I 0.
(12) z—95

L’ensemble solution de (I2) est donc | — 0o, 5[U[6, +00[ (ici aussi, faire un tableau de
signe si vous avez le moindre doute).

Les deux doivent étre vraies simultanément, donc ensemble solution est [6,7[. I

. Notons (I) cette inéquation.
On peut distinguer les cas selon le signe de 2 — 5x +4 = (v — 1)(z — 4).

En effet, pour o €] — 0o; 1] N [4; +00[, on a 22 — 52 + 4 > 0, donc I"équation devient
(I): 2? — 3z > 2% — 5z + 4 autrement dit 22 > 4 soit = > 2.

Ainsi, tout [4; 4o0[ est solution.

Par ailleurs, pour le cas ou x €]1,4[, on a
2? — 3z > —a2? + b — 4,

ce qui se traduit en
22— 4z +2 > 0.

Regardons le discriminant A = 16 — 4 x 2 = 8. Les deux racines sont 1 = 2 — V2 et
To = 2 + \/§
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Donc l'inéquation est vérifiée si x €] — 00;2 — /2] U [2 4+ v/2; +-00[. Mais n’oublions
pas que dans ce cas, z €]1,4[. Ainsi tout = € [2 4+ v/2, 4] est solution.

Le bilan est donc que [2 + v/2, +00] est ’ensemble solution. []

Exercice 8. 1. On peut penser a tout développer et a étudier le trindme du second
degré obtenu. Ou alors, en nommant (F,,) cette équation on peut remarquer que

(Ep) & (2mz —3)% — (z +m)? =0.

En reconnaissant une identité remarquable,
(Em) e (2m—-—1)z—-3—-m)(2m+1)xz—3+m)=0.

Ainsi,
(Em) < (2m—1)z=34+mou 2m+ 1)z =3 —m.

1 5 1 5
Sim = 2 une solution —. Si m = ——, une solution ——. Si m est différent de ces
+m 3—m

d 1 d luti .
eux valeurs, deux solutions 5 ——— et 5 — )

2. Une bonne idée est de tout multiplier par (a —b)(a —c¢)(b—c) # 0 (parce que les réels
a,b et ¢ sont deux a deux distincts), ce qui nous donner 1’équation équivalente :

[a(b—c¢) —bla—c)+cla—b)lz=(a—>b)(a—c)(b—rc).

Cela se simplifie en

0=(a—"b)(a—c)b—rc).

Comme dit précédemment, on a (a—b)(a—c)(b—c) # 0, donc il n’y a pas de solutions.
O

3. Pas forcément besoin de factoriser pour une fois. En développant tout on obtient
2(m + p)z +m® —p* =m+p.
On arrange cette équation en
2(m+p)x = (m+p)(1 —m+p).

Sim = —p, tout € R est solution (c’est ’équation 0 = 0). Sinon, une seule solution
1+p—m
—. g
2
Exercice 9. 1. Notons (FE,,) cette équation.

Il est déja clair que si a € {—2,1}, alors I’équation n’a pas de sens, donc on ne peut
pas trouver de réel m tel que « soit solution.

En supposant z ¢ {—2,1}, on a (E,,) < 2m(x — 1) = (m — 5)(z + 2), soit
(Ep) ©m(2x —2—2—2) =—5(z+2).
Autrement dit
(Em) & m(z—4) = —5(z+2).

Ainsi, 4 ne peut jamais étre solution de cette équation, et si a ¢ {—2,1,4} alors «
peut-étre solution de (E,,). Pour étre complet (méme si ce n’est pas demandé), on
—5(a+2
prend m = ¥ ]
a—14
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2. Pour obtenir deux racines réelles distinctes, il faut déja que le discriminant de ce

trindme soit strictement positif. Or A = 25 —4 x 3(m + 7) = —59 — 12m. Ainsi, on

doit avoir m < 5
v ——.
12

5—\/Zet5+\/K

5 Pour qu’elles soient toutes les

Dans ce cas, les deux racines sont

deux strictement positives, il faut en plus que
5-VA>0

pour que la plus petite des deux le soit.

On a alors a avoir VA < 5, ce qui est équivalent a A < 25 (puisque tous les termes
sont positifs).

Cela devient tout simplement —12(m + 7) < 0 c’est-a-dire m > —7.

Ainsi, I’équation admet deux racines strictement positives si et seulement si m €

59
|-7-2]o

3. Sim = 3, on a une infinité de solutions, on peut donc exclure ce cas. Si m # 3, c’est le
méme principe en plus calculatoire que la question précédente. Le discriminant doit
étre strictement positif, soit

A=(1-2m)2—4(m—3)(m+1) =1—4m +4m? — 4(m* — 2m — 3) = 4m + 13.
13
On doit avoir m > —— pour avoir deux racines réelles distinctes.

om—1— VA t2m—1—|—\/z
o(m—3) 2(m-3)

2m—1— VA

Ensuite, les deux racines sont

Dans le cas ou m > 3, la plus petite des deux est : , donc on doit avoir

2(m —3)
2m — 1+ VA > 0, ce qui est toujours vrai (somme de termes strictement positifs).
2m —1 A
Dans le cas ou m < 3, la plus petite des deux est : H, donc on doit avoir
m —
1
2m—14+vVA <0.Si2m—1>0, soit m > 3 c’est impossible Dans le cas ou m < >

multiplions par (2m — 1) — VA < 0 cette condition, ce qui transforme en condition
équivalente (2m —1)% — A > 0, soit

4m?> —4m+1—4m—13>0

soit 4(m? — 2m — 3) > 0, ce qui est vrai si m < —1 ou m > 3. Le deuxiéme cas étant
exclu, il ne reste que m < —1.

1
En conclusion, on trouve que m doit étre dans ] R —1 {U} 3, 400 [ ]

4. Pour que cette inéquation admette R comme solution, il faut avoir un trindme du
second degré (donc m # —3) il faut que le discriminant soit strictement négatif (pour
éviter 'annulation ou le changement de signe) et que le coefficient dominant soit
strictement positif (donc m > —3).

Regardons le discriminant : A = 4(m + 1)2 +4(m + 3)(m + 1) = 4(m? + 2m + 1 +
m? 4 4m + 3) = 8(m? + 3m + 2).

Les deux racines du discriminant sont —1 et —2, donc il est strictement négatif lorsque
—2<m< —1.

En conclusion, on doit avoir —2 < m < —1. [J
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Exercice 10. 1. Pour que cette équation que nous appellerons (E) ait un sens, il faut
que 2 — 3z 4+ 8 > 0. Le discriminant de ce trindéme est A =9 — 32 = —23 < 0, donc
cette quantité est toujours strictement positive. Ainsi, cette équation a un sens pour
tout x réel.

Elevons au carré, on a
(E) = 2? =3z +8 = (z — 4)°

Donc
(E) = 2? — 3z 4+ 8 = 2* — 8z + 16.
Ainsi,
(E) = bz =8.
Donc )

Cependant, comme nous avons élevé cette équation au carré, nous avons
9 9
perdu I’équivalence. Nous devons donc vérifier cette solution.

8 82 5
On a 5T 4 < 0 alors que \/<5) -3 (8) 4+ 8 > 0 : peu importe la valeur, ces deux

quantités ne peuvent pas étre égales.

Cette équation n’a donc pas de solutions. [

2. Remarquons que le discriminant de 22 +x +4 est 1 —4 x 4 = —15 < 0, donc cette
quantité est positive pour tout x réel. L’inéquation que nous noterons (/) est donc
bien définie sur R.

Ensuite, on remarque que (I) & vz +z+4—3>0.

Multiplions tout ¢a par la quantité conjuguée vx2 + z + 4+ 3 > 0 donc sans changer
le sens de l'inégalité.

On a alors, (I) & 22+ 2 +4 — 9 > 0. Autrement dit

NHer+2-5>0

Notons A le discriminant de ce trinéme : on a A = 21 donc il admet deux racines
-1-v21  —-1++v21 _| i -1 -+v21 —14++v21
et . L’ensemble solution est | —oo, U , +00
2 2 2 2
Il faut faire attention a vérifier auparavant que tout est du méme signe
si vous tenter d’appliquer la fonction carrée (et selon le cas, changer ou
non le sens de I’inégalité). L’avantage de la quantité conjuguée est que son

signe étant évident, il n’y a pas besoin de se poser de questions. []

3. Notons (FE) cette équation.

Elevons la au carré. On a
(E) =44 Vat 422 =4 — 4o+ 2?

puis
(BE) = Vat+ a2 =2 — 4o

que nous élevons une nouvelle fois au carré

(E) < z* + 2?2 = 2* — 823 + 162°.
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(E) < 8% — 152% = 0.

En factorisant, on a
(E) < 2*(8z — 15) = 0.

Ainsi, les solutions de (E) sont a chercher parmi les solutions de cette derniére

1
équation. On trouve 0 et 3

15 1 15\*  /15\2
0 fonctionne bien dans (E), mais 2 — S=3 alors que \l4 + \/(8) + (8) > 2,

ainsi 3 n’est pas solution.
FEn conclusion, 0 est 'unique solution. [J

. Notons (I) cette inéquation. Elle n’a de sens que siz+1 > 0et x > 0, donc si x € R..
On a
() e 2vVz+1-2y/z—1>0.

En multipliant tout ca par 2v/x + 1 — 2y/x + 1 > 0, on obtient I'inéquation

(I) e 4(x+1)—8y/zx(z+1)+4x—1>0.
(I) & 8x+3—8y/zx(z+1)>=0.

En multipliant tout ¢a par 8z + 3 4+ 8y/x(x 4+ 1) > 0, on obtient I"inéquation

Soit

(I) & 642> + 482 + 9 — 64x(z + 1) > 0.

Autrement dit,
(I) & —162+9 > 0.

9
L’ensemble solution est {0; 16} O
. Aucune difficulté la-dessous, juste un gros tableau de signe a faire apres avoir factorisé
chaque terme du mieux de vos possibilités.

(x* 4 222 — 3)(2® + 2% — 22) (z* 4222 — 3)(2* + 2% — 2)
= .

x* + 322 — 10 x* + 322 — 10
On pose X = 22, comme ca z* 4+ 222 — 3 = X2 + 2X — 3. On factorise ce terme en
utilisant les techniques habituelles.
On a alors X2 +2X —3 = (X —1)(X +3) donc z* + 22?2 -3 = (22 - 1)(2® + 3) =
(x —1)(z + 1)(z* + 3).
De méme, on trouve que x4 + 22 — 2 = (22 — 1)(2% + 2) = (x — 1)(z1)(z? + 2).
Pour finir, on trouve que 2* + 322 —10 = (22 — 2)(2245) = (x —v2)(z +v/2)(2® +5).

Ainsi, on a

(' 4222 = 3)(2° + 2% — 22) (2 —1)*(z+1)*(2® +2)(2® + 3).

21+ 322 — 10 T = V)@ VD) (a2 £ 5)

On a

Finalement, un rapide tableau de signe permettra de conclure, étant donné que pas
mal de termes sont positifs (attention a bien exclure 1 et —1 de I’ensemble solution
puisque la quantité s’annule pour ces valeurs).

L’ensemble solution est | — v/2, 0]U]v/2, +oo[U{—1,1}. O
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Exercice 11. 1. Pour que I’équation ait un sens on doit avoir z(3z+5) > 0, soit x < ~3
ou x > 0 ainsi que 2(x 4+ 3)(x —7) > 0 soit + < —3 ou x > 7.
Ainsi, cette équation n’est définie que pour z €] — co; —3[U]7; +0o0].

Ensuite, on prend ’exponentielle, pour obtenir ’équation équivalente
z(3x +5) =2(x+3)(x — 7).

On l'arrange en
2? + 13z + 42 = 0.

Posons 'encombrant discriminant A = 169 — 4 x 42 = 1. On a donc deux solutions
—6 et —7 qui sont toutes deux dans l'intervalle de définition. [J

2. Poser X = 22, I’équation équivalente d’inconnue X
2X? +5X —8=X?+4X +4.

Soit,
X2+ X -12=0.

On trouve deux solutions X = 3 ou X = —4, ce qui devient 22 = 3 ou 22 = —4. La
deuxiéme est impossible, mais la premiére entraine deux solutions v/3 et —v/3. O

3. Remarquons que cette équation n’est définie que pour x € R* . Posons X = In(x).

On trouve 'équation équivalente X? —4X + 3 = 0 qui a deux solutions 1 et 3. Ainsi,
on a In(z) = 1 ou In(z) = 3. En prenant '’exponentielle, on trouve deux solutions e
et e3. O

4. Cette fois-ci, on pose X = e® pour obtenir
X?-2X-8=0.
On trouve deux solutions X =4 et X = —2, ce qui se transforme en
e’ =4 oue’ =-2.
Seule la premiere donne une solution, z = In(4) = 21In(2). O
5. Multiplions tout ¢a par e® pour obtenir
e —(e+1)e"+e=0.
Posons X = e%, ce qui donne

X2 —(e+1)X +e=0.

Le discriminant est A = (e + 1)? — 4e = (e — 1)2. On trouve deux solutions, 1 et e.

On doit donc avoir
e?=1oue® =e.

En prenant le logarithme de ces quantités, on trouve
r=0ouzx=1

qui sont les deux solutions de cette équation. [
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6. Le cas x = 0 est bien solution.

Pour = > 0, passons en notation exponentielle, I’équation se réécrit

VE() _ win(y/3)

En prenant le logarithme de cette équation, on arrive a

Vzln(z) = %l‘ In(z).

Ce qui est équivalent a

1
3 In(z)vz (2 — Vx) =0.
Ce qui est équivalent a

In(z) = 0 ouy/zr = 0 ou z = 2.

La premiére donne x = 1, la seconde n’a pas de solution (puisque z > 0), la troisiéme
une seule x = 4 (car z > 0).

En n’oubliant pas la toute premiére, on trouve trois solutions : 0,1 et 4. [J

3. Pour s’assurer qu’on maitrise bien les réels

Exercice 12. e 0 est un majorant de F.
Vre B, x<0
Par exemple R_ ou {—2}
e 1 n’est pas un minorant de F.
drelF, xz<1

Par exemple R ou |0, 2]

e 7 est le maximum de F.
neFlE, VeeFE, x<m
Par exemple | — 0o, 7] ou {m}

e FE est majoré.
IMeR, VeeFlE, <M

Par exemple {0} ou { n € N}

2
n+1
e F n’est pas minoré.
YmeR, drxeFE, z<m

Par exemple R ou {In (%) , n €N}

e FE est borné.
dJReRy, VzeFE, |z|<R

Par exemple [0, 1] ou {1,2,10%}
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e FE n’est pas borné.
VReR,, Jzxe€E, |z|>R

Par exemple Q ou {(—1)" x n, n € N}.
O

Exercice 13. Ona2 <y <4,donc2+zxz<z+y<4+z. Or comme —1 <z <2, on
al<24+zxetd+ 2z <6, donc

1<x+y<.6
Ensuite, on a —1 < x < 2. Comme 2 < y < 4,o0n ay >0 donc —y < zy < 2y. De plus
—y = —4 et 2y < 8, donc

—4 <2y <8.

Attention a ne pas multiplier par z 1’inégalité de y car x n’est pas de signe
constant. Par ailleurs, comme dit en cours, multiplier des inégalités terme a
terme est une énorme bétise que vous ne commettrez bien entendu jamais.

Ensuite,ona—l<x<2.Comme2<y<4,onay>0donc1<7<§.C0mme
Y

1 1z 2 1 1 2
—>0,ona —— < — < —. Et comme —— > —— et — < 1, donc
Yy Yy Yy Yy Yy Yy
1 =z
—iﬁggl-
Pour finir, on a —1 < & < 2, et  # 0. On va diviser le probléme en deux : si —1 < z < 0,
1 4
alors—g—l,donccomme2<y<4,ona—>g>—doncg<—2.
x x
1 1
SiO<x<2,onaf2f.Etcomme2§y<4,ona—§g<—,onasimplement
T 2 T T x
Y>1.
T
Ainsi on a
g<—20ug>1.
x x

Pour les divisions aussi, la division terme a terme d’inégalité est une énormité[ﬂ.

O

Exercice 14. o A est majorée et minorée. sup(A) = max(A) = 10, inf(A) =2 A
n’a pas de minimum.

dnm
B n’est ni majorée, ni minorée. En effet si n € N on a 4ncos (2> = 4n et

(4n+2) cos <U4n—;—2)7r

B

) = —(4n+2). D’ou, pour tout n € N4n € B et —(4n+2) €

1
C est majorée et minorée. sup(C) = max(C) = 9’ inf(C) = 0, C n’a pas de

minimum.

D est minorée mais pas majorée. inf(D) = 0. D n’a pas de minimum.

E est majorée et minoré. sup(£) = max(F) = —, inf(E) = min(E) = —1.

V2

F est majoré et minoré. sup(F) = 2’ inf(F) = 0. F n’a ni maximum, ni minimum.

1. On peut imaginer écrire des théorémes la-dessus, mais comme évoqué en cours, il y a tellement de
régles qu’il est aussi simple de le faire directement.
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1
o G est majoré et minoré. sup(G) = max(G) = %(), inf(G) = min(QG)

1
O

003(3)‘

Exercice 15. Soit (a,b) € R. On a, par définition

asia=b
bsia<bd

max(a,b) = {

On va alors étudier 3(a + b+ |a — b|) quand a > b et quand a < b.

e Sia<b
Alors a — b < 0 d’ou

a—0bl=b—a Ainsi

1 1
e Sia>b
Alors a —b >0 d’ou |a — b| = a — b Ainsi

1 1
§(a+b+|a—b|):§(a+b+a—b):a

On a donc bien .
max(a,b) = §(a +b+|a—b|)

O

Exercice 16. 1. On remarque qu’il va falloir distinguer selon la position de x par rap-
port & —8, 0 et 3 soit 4 cas.

—5—-3x six< -8

11— si —8<z<0

11 +x sio<x <3

3r+5 si3<zx

On a alors A(z) = O

2. a. Il faut résoudre cette équation dans chaque cas (x < =8, -8 <z <0,0< z <3
et 3 < ). On découvre alors que les solutions ne sont jamais dans l'intervalle sur
lequel on est placé.

b. C’est impossible, car Vo € R, A(z) > 0.

c. C’est aussi impossible, car pour que la somme de trois termes positifs soit nulle,
tous doivent étre simultanément nuls, ce qui n’arrive que si x est en méme temps
égal a —8, 0 et 3.

d. Comme pour le premier cas, il faut résoudre 4 équations.

(i) Dans le cas x < —8, cela revient & résoudre —5 — 3x = 4z — 20 soit z = =

qui n’est pas dans l'intervalle considéré.

(ii) Dans le cas —8 < = < 0, cela revient a résoudre 11 — x = 4z — 20 soit x =
qui n’est pas dans l'intervalle considéré.

(iii) Dans le cas 0 < z < 3, cela revient a résoudre 11 + z = 4z — 20 soit x = =
qui n’est pas dans l'intervalle considéré.

(iv) Dans le cas 3 < z, cela revient a résoudre 3z + 5 = 4x — 20 soit = 25 qui
est dans l'intervalle considéré.

L’unique solution est donc 25.

O]

15 /[359)



Exercice 17. 1. C’est équivalent a deux équations
2r4+7=1o0u2zx+7=—1.

On trouve
r=-—-3o0oux=—4.

O]

2. C’est équivalent a deux équations
3r—9=ax—1oudz—9=—-z+1.

On trouve
4 ou x o
T = = -,
2

O]

3. Soit on utilise la technique de 'exercice précédent (on divise ¢a en trois cas, x < 1,
1<z <4etx>4),soit on peut faire, en notant (F) I’équation

(B)=2x—8=9—|z—1 ou2xr—8=—-9+|z—1].

On perd ’équivalence car rien n’assure la positivité de 9 — |z — 1|.

Ce qui s’arrange en

(B)=|z—1=-2x+17o0u |z — 1| = -2z — 1.
Et donc

(B)=2z—1=-2x+1Toux—1=2r—-1Touzr—1=-2z—1louzx—1=2x+1

(E)=z=6oux=16ouz=0o0ux=—2.

En vérifiant les 4 candidats précédents, on trouve que uniquement 0 et 6 sont solutions.
La technique utilisée dans I’exercice précédent nous aurait évité la vérification au pris
de réécrire proprement les équations avec leur domaine de validité. [

Exercice 18 (A propos de la partie entieére). 1. Revenons a la définition de croissance.
Soit = et y deux réels tels que x < y.
On a alors [z] <z et y < |y] + 1, autrement dit [z] <z <y < |y| + 1.

Ce qui nous intéresse est simplement || < |y|+1. Comme |z] et |y| sont des entiers
relatifs, cette inégalité est équivalente a |x| < |y].

Attention, la derniére étape n’est vraie que parce qu’il s’agit d’entiers! [

2. On pourrait croire que ¢a fait 0, d’ailleurs, si € Z, |z] = x donc |z] + [—z| =0
car —x € Z.
Siz ¢ Z, |x] est 'unique entier tel que |z| < z < |x]+1, donc —|z]—1 < —z < —|z].
Ainsi, six ¢ Z, |—z] = —|z] — 1, donc |z| + |—x] = —1.

o= {1 12
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3. a. |2x + 7] est I'unique entier relatif tel que |22+ 7| <2x+7 <[22+ 7] + 1 ce qui

revient a
1<224+7<2
soit 5
—I<Lzr<—.
TSy

2

b. |—4x + 2] est 'unique entier relatif tel que |—4x+2] < —do+2 < |[—4z+2|+1
ce qui revient a

L’ensemble solution est donc [—3; —§ [ ]

10 4z +2<11

soit

9> o
Ty

L’ensemble solution est donc } — %; —2]. ]

4. Pour tout z € R, |z] est 'unique entier relatif tel que [z| < = < [z| + 1, donc
2|z] < 2z. Par ailleurs, |2z] < 2z < [2z] + 1.

Ainsi, on a Vx € R, 2|z| < 2z < |2z] + 1, soit
2|x] < |2z] + 1.

Comme il s’agit d’entiers, cette derniere inégalité est équivalente a
2|z] < [2z] + 1.

O

Exercice 19. On a

n3 _n3—i—n2—n2

n+1  n+1
_n3—|—n2 n?
 on+1 _n—|—1
9 n+n-n—-1+1
- n+1

s n?4+n n+1 1

_n—i—l n+1_n+1
1

n+1

=n?—n+1-—

Ainsi

n? 2 1 2 1 2
=|n“—-—n+1-— =n"—-n+14+|— =n“—n
n+1 n—+1 n+1

O]

Exercice 20. Soit (z,y) € R? et n € N*.
On a n|z] < nz. Ainsi n|z] est un entier inférieur & nz, d’'ou n|z| < [nx|.
De plus on sait que z < [z| + 1, d’ou nz < n|z] + n.
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Ainsi |nx| —n|x| < n. Or |nz] —n|x] est un entier et on rappelle que, si k est un entier
alors I'inégalité k < n est équivalente & k <n —1. On a donc |nz| —nlz| <n—1.

Si 2] < v < o]+ et ly] <y < ly] + 3 alors

lz+y] = [z|+|y], [2z] = 2|z] et [2y] = 2|y|. On en déduit alors 'inégalité recherchée
1 1

Sl[mj+2 r<|z]+1let|y] < y<LyJ+§alors

lz+y] <|z]+ |y] +1,[22] =2|z] +1et|2y] =2]y]. On en déduit alors I'inégalité

recherchée 1 1

Silz] <z <|z|+ B et ly| + 3 <y < |y] + 1 on proceéde de maniere similaire au cas

précédent

Enfinsi |z] 4+ - <z < |z]+1et |y]+ ; < |ly] + 1 alors

lz+y] = x|+ y] +2, [22] =2[z]+1 et LQyJ = 2|y] +1 On en déduit alors I'inégalité
recherchée.
Dans tous les cas I'inégalité recherchée est vérifiée. [

l\’)\»—t

Exercice 21. 1. Ne serait-ce pas une identité remarquable ?

a —b)? a® — 2ab + b?
En effet, cette inégalité est équivalente a ( 5 ) = 5 + = 0 qui est

évidemment toujours vraie. [

2. 1l faut remarque que comme x, y, z sont des réels positifs, zyz = /Tyz> = (Vo y) (Ve z) (VVz)

puis appliquer le résultat précédent trois fois.

On a 2(vz\/y) < (z+y) donc 4(vVz/y)(Vovz) < (z+y)2(Vevz) < (z +y)(z+y)
et il suffit de refaire cette démarche avec le troisiéme terme. [
4. Récurrences

Exercice 22 (Suite de Fibonacci). Pas de difficulté particuliere... sauf dans ’énonciation !
L’idée est de poser P(n) : < Fop1 = F2 4+ F2 | et Fopio = Foy1(Fy + Foyo) >,

On calcule rapidement les premiers termes Fy = 1, F3 =2, Fy = 3 et F5 = 5 d’apres la
relation de récurrence.

On voit alors immédiatement que F§ + FZ = 1 = Fy et Fy(Fy+ Fy) = F, ce qui permet
de voir que P(0) est vraie.

Soit n € N quelconque fixé. Supposons P(n) vraie.

On a alors Fyq1)41 = Fonts = Fant2 + Fong1.

En utilisant P(n), on a

Fonys = Fu1(Fy + Fugo) + Fr + Fryy
Or F,, = Fy0 — Fj41, donc
Fonys = Fros1(2F40 — Fr1) + (Fuyz — Fog1)® + oy

Autrement dit
Fonys=Fog+ Fiyy.

Ensuite, on a Fo(,11y12 = Fonya = Fopys + Fopy2. En utilisant P(n) et ce qu’on vient
de démontrer, on a

F2n+4:F3+2+F +1+Fn+1(Fn+Fn+2)-
Or F,, = Fy0 — Fj,41, donc

Fonga = Fl o+ F + Fop1(2F042 — Fag).
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F2n+4 = Fn+2(Fn+2 + 2Fn+1)-

Or Fpi2 + Fpy1 = Fpys, done

Fonya = Fuyo(Frys + Fugr).

Ainsi, P(n + 1) est vraie.
On a donc démontré que, pour tout n € N,

O]

Fopy = F +F+1 et Fopio = Fn+1(Fn+Fn+2)'

Exercice 23. Soit n € N*. Notons P(n) : < un, = (1+v2)®) + (1 -+v2)2") »
Onau =6et (1+v2)%) +(1-v2)®) =142v2+2+1-2vV2+2=6, donc P(1)
est vraie.

Soit n € N* quelconque fixé. Supposons P(n) vraie.

On a u,;1 = u2 — 2. Donc d’aprés P(n), on a

unr = ((1+v2)®)+(1 \/§)<2n))2 -
_ (1+\f ) 2(1+\/§)(2”>(1_\/§)(2n)+<(1_\/§)(2n))2_2
— 14V 421+ v2)E (1 — VD)) £ (1 - VD)) _ 2
= VBT [ va - vE] ) (- Ve s
— (1+v2)@) 21 (1= v 9

= (142 41— v2)@",

Ainsi, P(n + 1) est vraie.
On a donc démontré que, pour tout n € N*, u, = (1+v/2)®") + (1 — v/2)®").

O]

Exercice 24. 1. (a + b)? = a® + 3a?b + 3ab® + b*. O

2.

Donc (n + 1)% = n3 4 3n? + 3n + 1. On se pose donc la question de démontrer que
3n? +3n+ 1< 2n°.

Le plus agréable est encore de poser une fonction f définie sur [3;+oo[ définie par
f(x) = 223 — 322 — 32 — 1. Cette fonction f est un polynéme que 1'on peut dériver
pour obtenir f/(x) = 622 — 6x — 3 = 3(22% — 2z — 1).

Or le discriminant de 2z? —2x —1 est un trinéme du second degré dont le discriminant

2-2v3 1-+3 t1+1\/§
= (&3
2

racines sont inférieures & 3, donc Va € [3,+oc[, f/(z) > 0 donc f est strictement
croissante sur [3, 400/.

On a alors f(3) =54 —27—9—1 =17, donc Vz € [3,4+o0[, f(z) > f(3) =17 > 0.
Ainsi, Vn > 3, f(n) > 0 ce qui est équivalent a (n + 1)% < 3n3. O

est A =448 =12. Il a donc deux racines . Ces deux

Soit n € N. Notons P(n) : < 3" > n? ».

Remarquons que c’est évidemment vrai pour n = 3 (c’est la méme chose de chaque
coté).
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Soit n € N, n > 3 quelconque fixé. Supposons P(n) vraie.
On a, d’apres la question précédente, (n+1)3 < 3n3. Or d’apres P(n) (comme n > 3),
on a n? < 3", donc 3n® < 3", Ainsi, on a

(n+ 1)3 < 3n+1‘

Ainsi, P(n + 1) est vraie.
On a démontré que pour tout n > 3, 3" >

Il reste a voir si c’est vrai pour n =0 (ou1 c’est 1 > 0), n =1 (oui aussi, c’est 3 > 1)
et n =2 (oui c'est 9 = 32 > 23 =8).

Ainsi, la propriété est vraie pour tout n € N.

On fait une récurrence en se servant de la question précédente pour démontrer

I’hérédité. Les étourdis oublieront de vérifier le domaine de validité de
P’inégalité qu’ils ont démontré a la question précédente qui n’était vraie
que pour n > 3, d’ou le traitement a part de certains cas. [J

Exercice 25. Soit n € N. Notons P(n) : < il existe a et b tels que n = 9a + 4b >.
Remarquons que 0 =9 x 0+ 4 x 0, donc P(0) est vraie.

Soit n € N, quelconque fixé. Supposons P(n) vraie. Il existe a et b tels que n = 9a + 4b,
donc on a

n+1=9a+4b+1=9a+4b+9—-2x4=9(a+1)+4(b—2).

Ainsi P(n + 1) est vraie.

On a donc démontré que, pour tout n € N, il existe deux entiers relatifs a et b tels que
n = 9a + 4b.

On aurait pu remarquer que 1 =9 — 2 x 4 et donc n = 9n — 4 X 2n... Mais 'objectif est
de faire une récurrence. [

Exercice 26. Commencons par montrer ’existence. On note P(n) la propriété < 3(p, q) €
N2 np=2P2¢+1)>

Pour n =1,0ona 1=2%2x 0+ 1), donc P(1) est vraie.

Soit n € N, quelconque fixé. Supposons Vk € [1,n], P(k) vraie.

Si n + 1 est impair, il existe ¢ € N tel que n+ 1 =2¢+ 1 =2°(2¢ + 1).

. : 1 noo. .

Si n + 1 est pair, alors est en entier inférieur ou égal a n car 3 < 5 Ainsi,
1 1

d’apres P (n—;-), il existe deux entiers p et ¢ tels que n—2|— 2P(2q + 1), donc

n+1=2P1(2¢+1).

Donc P(n + 1) est vraie.

Ainsi, on a démontré par récurrence forte que, pour tout n entier naturel non nul, il
existe deux entiers p et ¢ tels que n = 2P(2q + 1).

Montrons désormais 1'unicité.

Supposons qu'il existe deux couples d’entiers (p, q) et (p,¢) tels que n = 2P(2g + 1) =
2p'(2q' + 1). Supposons que p’ < p, alors on a

27 (24 1) = 2¢ + 1.

Ainsi, 2277 (29 + 1) = 2¢' + 1 est pair puisque p — p/ > 0 mais pas 2¢’ + 1. Ainsi, on ne
peut pas avoir p’ < p et de méme p < p’. On a donc p = p/, et donc

2°(2q+1) =2P(2¢ + 1)

ce qui se simplifie immédiatement en 2¢ +1 = 2¢’ + 1 donc ¢ = ¢'.
L’unicité est donc démontrée. [
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2 Sommes et produits

Exercice 1. 1. Comme on a les résultats, on peut faire des récurrences pour chacune
de ces questions, mais ici ¢a peut se montrer directement.

En effet,

n

>ok-kl= > (k+1—1)k
k=1

k=1
= > (k+1)-k Zk'
k=1 k=1
= > (k+1) Z
k=1 k=1

n+1 n

= Z 0 — Z k! en posant dans la premiere £ =k + 1
k=1

- i£!+(n+1)!—<1!+ik!>
=2 k=2
= (n+1)!-1

O
zn:(_l)k:kQ — (_1)n(n2 + n)

2. Notons, pour n € N*, P(n) < 5

..
k=1

1
On a Z(_l)ka =(-D'"1* = —1et % = —1 donc P(1) est vraie.

Soit n € N* quelconque fixé. Supposons P(n) vraie.

On a
S = DR () 12
k=1 k=1
- W 4 (“1)"™ 0+ 1)? dlapres P(n)
)M (e — 2+ 1)
2
(—=1)""(n? 4 3n + 2)

2

Or,ona (n+1)24+n+1=n?+3n+2, donc

gz DM+ 1) 40 +1)
k;( 1)FE? = 5 :

Ainsi, P(n + 1) est vraie.
On a donc, Vn € N*,
S (e = D)

k=1
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i(—l)k’f?’ _ (—1)"(4n® +6n% — 1)+ 1

3. Notons, pour n € N*, P(n) < 3

L >
k=1

On a Z(—l)kk?’ = (-3 =—1et (_1)1(4X13§6X12_1)+1 = —1 donc P(1) est vraie.

Soit n € N* quelconque fixé. Supposons P(n) vraie.

On a
n+1 n
Z(—l)kk3 _ Z 1)n+1(n + 1)3
k=1 k=1
1) (4 6n2 —1)+1
- (=1)"(4n” +8 n? )+ + (—1)”+1(n—|— 1)3 d’apres P(n)
(=) (—4nd —6n? + 14 8(n+1)%) + 1
N 8
(=) (—4n® —6n? + 1+ 8(n® +3n? +3n+ 1)) + 1
N 8
(=DM (4n® +18n% 4+ 24n + 9) + 1
N 8
Or, on a

4(n+1)>24+6(n+1)2—1 = 4(n®+3n2+3n+1)+6(n?+2n+1)—1 = 4n> +18n2+24n+9

donc

So (e = CD A+ DT 6+ 1?2 1)+
5 .
Ainsi, P(n + 1) est vraie.
On a donc, Vn € N*|
zn:(—nkk?’ (-D)"An® +6n% —1)+1
= S .

k=1
t

4. Tl s’agit d’une récurrence pénible a écrire (il faut faire des formules du binéme jusqu’au
degré 6, donc écrivez votre triangle de Pascal dans un coin, ¢a servira).

n 6 5 3
Notons, pour n € N*, P(n) < Z(—l)k*1k6 = (—1)"71” 307 = STt 3n. >.

k=1 2

1
On a Z(_l)kilkG = (=1)°1% = Tet (-1)° 1b+3X10725X13+3X1 = 1 donc P(1) est vraie.

Soit n € N* quelconque fixé. Supposons P(n) vraie.

On a

n+1 n

Z(_l)k—lkﬁ _ Z k 1k6 )n(n+ 1)6
k=1 k=1

n_115 +3n% — 503 + 3n

= (-1) +(=D)"(n+ 1)6 d’apres P(n)

2
_ (_1)n—n6 —3n° +5n3 —3n+2(n+1)8
2
_ (1 —nS — 3n® + 513 — 3n + 2(n® + 6n° + 15n* + 2003 + 150 + 6n + 1)
a 2
_ (_1)nn6+9n5+30n4+45n3+30n2+9n—|—2
B 2
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Or, on a

(n+1)°+3(n+1)°=5(n+1)>+3(n+1) = (n®+6n° +15n* +20n3 + 1502 +6n+1)
+3(n° 4+ 50t +10n> + 10n* +5n +1) = 5(n® + 3n® +3n+ 1) + 3(n + 1)

donc
(n+1)°+3(n+1)°=5(n+1)3+3(n+1) =nb+9n’ + 30n* + 45103 + 30n% 4+ 9n + 2.

On obtient alors :

k6 e @D+ 3( 4 15— 5(n+ 1)+ 3(n+ 1)
SO (—D)FES = (-1) . :

k=1

Ainsi, P(n + 1) est vraie.
On a donc, Vn € N*,

k=1 2
O
Exercice 2. Soit n € N.
1. On a, pour n € N,
n
Sp= Y A4k?
k=0
n
= 4> K
k=0
B 4n(n +1)(2n+1)

6

2n(n+1)2n+1)

On a, pour tout n € N, S, = . O

2. On a, pour n € N,

n

T, = Z ((2k)? + 4k +1)

n n
= Z + Z 1 par linéarité
k=0 k=0

_ 2n(n+ 1?2(2n+ 1) +4n(n2—i— 1) )
~ 2n(n+1)2n+1) 6n(n+1) 3(n+1))
B 3 A T
_ (n+1)[2n(2n + 1) + 6n + 3]
3
_ (n+1)(4n% + 8n + 3)
3 :

2n(n+1)(2n+ 1)

Si on développe, on trouve T, +2n(n+1)+ (n+ 1) quon

factorisera bien entendu par (n + 1). O

23 /359



3. On a, pour n € N,

2n(n +1)(2n + 1) N (n+1)(4n% + 8n + 3)

SntTn = 3 3
 (n+1)[2n(2n+ 1) + 4n® + 8n + 3]
a 3
_ (n+ 1)(8n?% + 10n + 3)
3 )

On aurait aussi pu remarquer que, .5, est la somme des carrés des entiers pairs et que
T, est la somme des carrés des entiers impairs, ainsi
T, @+ 1)@2n+2)2@2n+1)+1]  (2n+1)(n+1)(4n +3)
Sn+Th=> k= = :
P 6 3

Comme (2n + 1)(4n + 3) = 8n? + 10n + 3, les valeurs coincident bien. [J

Exercice 3. 1. On a, pour n € N*,

1
k=0 2
1
= 2—-—.
2TL
2. On a, pour n € N*,
n+1 n+1
> (3= 3> (-
k=1 k=1

= -3 Z(—3)€ en posant £ =k — 1

1__ _9\n+1
-9
1—(-3)
3 n
= Z(<_3) 1),
3. On a, pour n € N*,
712—5-:2(1>k 1n+2<1)k 1
—\2 2k:% 2
1871
=3 (2) en posant £ =k — 1
=0
1
_at=() (5)
2
_ 1
- on+2
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4. On a, pour n € N*
n+1

Z 22k

k=2

5. On a, pour n € N*,

n+1

24 Z 22k74

k=2
n+1

24 Z (22)k72

k=2
n—1

21 2(22)5 en posant £ =k — 2

=0

1= (22

1— 22
_]_)

22n

(

p

3

22+ — 16

6. Le but est ici de bien comprendre la technique qui marchera toujours quand on a
une somme dont l'indice de sommation apparait uniquement dans les puissances :

on factorise par le premier terme

et, aprés un changement d’indice qui devrait étre

relativement naturel, on obtiendra ensuite une somme classique. Il arrive que cette
technique aide dans d’autres cas, mais je ne le garantis pas.

On a, pour n € N*,

n+3 22]671

k+3
k=2 5

93 143 92(k—2)
£5

5 k=2
23 n+1 92¢

ﬁg = en posant £ =k — 2
=0
22

23 n+1 ¢
5 >
22

5 2 (
=

=0
#1- (%
)")

5k—2

55 — 4
23

54<1‘<4

5
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Exercice 4. 1. On a, pour n € N*,

Y k(k+1)= > k*+ > k par linéarité
k=0 k=0 k=0
n(n+1)(2n+1) N n(n+1)
6 2
n(n+1)[(2n+ 1) + 3]
6
n(n+1)(2n +4)]

6
n(n+1)(n+2)
3

O

2. On a, pour n € N*,

kXZ:lln (1+]1€) = Zi:ln(k:l)

k=1
= Z In(k+1) — Z In(k) par linéarité
k=1 k=1
n+1 n
= Y In(f) = > In(k) en posant £ =k + 1
=2 k=1
= > () +In(n+1) = > In(k) — In(1)
=2 k=2
= In(n+1)
O
3. On a, pour n € N*,
= k L k+1-1
;::1 (k+1)! kz::l (k+1)!
_ z”: (1 1 )
SNk (k+ 1)
= z”: 1 z”: L par linéarité
=k = (k)
n 1 n+1 1
= Zg— Eenposantfzk—i—l
k=1"" =2 "
1 | | 1
S UTXE XA mrD
o, 1
B (n+1)!

26 / [359]



Exercice 5. A.On a, pour n € N, n > 2,

A= Zkz(k—l)

n k n E—1 -
= Z k:(k _ 1) - Z k‘(k‘ — 1) par linéarité

B.On va essayer de faire apparaitre un télescopage, mais ¢a va étre un peu plus com-
pliqué. Pour k > 2, cherchons a, b et ¢ trois réels tels que
k-2  a n b c
E(k2-1) k-1 k k+1

En multipliant tout par k(k? — 1), on a
4k —2=ak(k+ 1)+ bk —1)(k+1) + ck(k —1).
En faisant £ = 1, on trouve 2 = 2a donc a = 1. En faisant k = 0, on trouve —2 = —b
donc b = 2. En faisant k = —1, on trouve —6 = 2¢ donc ¢ = —3.
Ainsi, si ces trois réels existent, on a

k-2 1 2 3
Ek2-1) k-1 k k+1

Vérifions-le :
1 2 3 _k(k+1)+2(k:—1)(k+1)—Sk(k—l) 4k — 2

=1k kel k(k—1)(k+1) T R(k2-1)

Remarquons que d’autres méthodes sont possibles : en particulier, on aurait pu tout
développer et « identifier > les coefficients, ce qui nous aurait évité la vérification,
mais nous reviendrons la-dessus dans un chapitre ultérieur.

On a alors :

" 4k —
B= >
HEZ —1)
kZQk(k
SRS
= k k+1
= i7+2il—3iiparhneante
P ik ikt
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On pose alors i = k — 1 dans la premiére somme et j = j + 1 dans la troisiéme.

n—ll nl n—l—ll
B = —a2Ny -3y -

252 305

=1 k=2 j=3

1 =l Rt B | nly o 1

= 14+ = ) N ~+>]-3 4=

S5 ERRTENS S T Do e e

i=3 k=3 Jj=3

o513
2 n n+1

Si on souhaite mettre la réponse sur le méme dénominateur, on trouve

B 5n(n+1) —2(n+1) —6n  5n* —3n —2
N 2n(n+1)  2n(n+1)

C.On a pourn > 1,

—_

i
I

Q
Il Il
—= ==
=
_|_
"

|

~_

i
I

B
II=s
o
—
&
+ o
[a—
N—

—_

3

[
~ lDs
>~

T
[}

= en posant au numérateur £ = k + 1
k

(7)o

n
1x J]

k=2

s

i
I

n-+1
1

= n+1

Remarquons que nous aurions pu remarquer un peu avant de conclure que C =
(n+1)!
n!

=n+ 1.
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D.On a pour n > 1,

On peut encore écrire D =

E.On a pour n > 1,

D’un c6té, on a

ﬁM3

(27n!)?
(2n+1)!

(i +7)

i=1 j=i+1

n n
|+ Z Z 7 par linéarité

n(n+1)(2n+1)

n(n+1)(3n —2n —1)

6

6
nn+1)(n—1)
6

29 /359



D’un autre c6té, on a

Autre fagon de calculer ce terme :

>y

i=1 j=i+

Ainsi, on a

F.On a, pour n > 1,

+1

- 1 "
3 (n 2+ ) PN Z i par linéarité
=1 =1 =1
nP(n+1) nn+1)@2n+1) n(n+1)
2 12 4
nn+1)(6n —2n—1-3)
12
n(n+1)(n - 1)
3
= Z j
1<i<j<n
n j—1
= 22
j=2i=1
= > (=)
j=2
= Zj2—jletermeenjzlest nul
j 1
= Z] — an par linéarité
7=1
B (n+1)(2n+1)_ n(n+1)
B 6 2
~ nn+1)(2n+1-3)
a 6
nn+1)(n—-1) nn+1)(n—-1)
6 3
n(n +1)(n - 1)
2
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O]

6 2
n(n+1)2(n —1)(2n+ 1) 4+ 6n — 3n(n + 1)]
24
n(n+1)(n? +n —2)
24
(n—=1n(n+1)(n+2)
24 )

Exercice 6. 1. On a, pour n € N*, en posant k =i — j,

n g n 1_2q+1

ZZQ”: Zﬁ car 2 # 1

q=0p=0 q=0
n

n
= Z 20+l _ Z 1 par linéarité
q=0 q=0

n
= 2) 29— (n+1)
q=0

1_2n+1
= "2 _p 3.
n q
Ainsi, on a pour n € N* S, :ZZ2PZZ”+2—n—3.D
q=0p=0
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2. On a, pour n € N*, en posant k =i — j,

27 = NN ok

j §=0k=0

n n n n—j

7=01
L L AR

= ZﬁcaTQ#l

J=0
n . n
= Z on—itl _ Z 1 par linéarité
J=0 J=0

n
= Z 21 — (n4 1) en posant dans la premiére £ = n — j
=0

n
= 2> 2 —n-1
=0
1 2n+1
1—2 "
= 2?2 —pn -3

Remarquons que vu la question d’avant, il aurait été plus direct de remarquer que

2= > 2

J 0gy<isn

n 7 . .
- Yy
=0 j=0
n (2
2F en posant k=i — j
>

1=0 k=0

n n

7=01

soit la méme chose que la question précédente. [

3. On a, pour n € N*,
225 22

=1 j=1 7
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4. On a, pour n € N*

NE
-M‘“

<
I
—_
-
I
—_
Sl

1 j=1

n
1=

Il
<.
I M:
1§
I M“‘
I

o~

[
P
.
e
—
N—

|

<
Il
—

<
I
—

Il
o |+
—_

Il
DO |
=
<
+
DO |

S
s
3L
_l’_
=

_l’_

.
MERNNE
—

n(n+1+2)
n(n +3)

O

Exercice 7. Tout d’abord, remarquons que l'on doit avoir x # —1 pour que cette

équation ait un sens.
x

Ensuite, on remarque que pour tout z # —1, oy # 1, donc I'équation est équivalente
x
a
- (55)
a1
= =0

1_z+1

et ainsi, toujours sans oublier que x # —1, en

8
($ >:L
r+1

Il reste & résoudre X® = 1, ce que nous reverrons en détail plus tard, mais ici, on a

Xf=1le X®-1=0
& (XP-D(X*+1)=0
s (X2-DXP+D)X*+1) =0
& X-DX+D)X2+1D)(X*+1)=0

Ainsi, les deux seules possibilités sont

T
=1 ou =—1.
r+1 r+1
Mais comme le premier est exclu, il ne reste que 1 = —1, ce qui est équivalent a
x
r=-z—1
1 .
Donc z = —3 est la seule solution. [
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Exercice 8. 1. Pour expliciter les choses, on a

n

So=3" <Z> 1P1"P = (1 +1)" = 2"

p=0
On trouve Sp = 2™. O

2. Un peu moins évident. On a pour n € N*, (le cas n = 0 donne S; = 0)

= 50

n |
n!
= Z | rr— le premier terme étant nul
—1 p(n - p)

n

n!
= LG P

(n—1)n

- pzlua—l)!(n—p)!

n—1 n—1
n Z ( ]{j ) €n posan P

k=0
= n2" ! d’apres la question précédente.
Il est important d’évacuer le terme en p = 0 pour simplifier le coefficient binomial.
Remarquons que le résultat est cohérent avec celui obtenu lorsque n =0 [

3. Onapourn e N, n>2 (lescasn =0 oun =1 donnent S, = 0)

- n
s= So-0(?)
p=0 p
° n!
= Z p(p — 1)ﬁ les deux premiers termes étant nuls
p:2 p(n - p)
n!

= pz%p(p_1)p(p—1)(p—2)!(n—p)! Carp;é(]etp_l £ 0

" (n—2)nn-1
2:( )In( )

=  pn—p)
" (n—2
= n(n—1) Z ( )
p=2 p—2
n—2 n—2
= n(n-1) f en posant k = p — 2
k=0

= n(n—1)2""2 d’aprés la premiére question.

Il est important d’évacuer le terme en p = 0 et celui en p = 1 pour simplifier le
coefficient binomial.

Remarquons que le résultat est cohérent avec celui obtenu lorsque n =0 et n = 1.
O
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4. Remarquons astucieusement que S1 + So = S3, ce qui nous donne S3 = n(n + 1)2"2,

Si nous ne l'avions pas fait, il aurait fallu écrire p?> = p(p — 1) + p puis développer
pour pouvoir faire des simplifications avec la factorielle du dénominateur. [

5. On a pour n € N,

—~ p+
pi

_ i 1 n!
p+1pi(n—p)
z": n!

- S+ -p)!

B i 1 (n+1)!

n+1(p+1)!(n—p)!

O]

6. On a pour n € N,

é(z‘)(z::)
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7. On a pour n € N,

Ainsi, on trouve Sg = 0 sauf si £ = 0, auquel cas Sg = 1. I

Exercice 9. Remarquons que S, contient la somme de tous les termes entre 0 et 2n
dont la puissance est paire, alors que ceux de T}, sont ceux ou la puissance est paire.

2n 2n
Ainsi, Sy + T, = Y (2”> a? = (14 2)*" mais S, — Ty = Y <2n> (=1)Pa? = (1 —2)>™.
p=0 \P p=0 \P

1+2)+ (1 —x)™
2

Ainsi, en ajoutant les deux et en divisant par deux, on trouve .S, =
(1+2z)*—(1—a)*™
5 .

et en les retranchant, on a T,, =
O

Exercice 10. Notons, pour n € N, P(n) : <« 2"71 < n! < n™
On a2 =1 <1 =1< 1% Ainsi P(1) est vraie.
Soit n € N*, quelconque fixé. Supposons P(n) vraie. On a alors

o =92 x 2"l < opl

d’apres P(n). Or 2 < n+ 1 car 1 < n (d’ou le démarrage & n = 1 pour la récurrence),
donc 2! < (n+1)!
Par ailleurs,

m+1)!=nl(n+1) <n"(n+1)
d’apres P(n). Par ailleurs, comme n < n+ 1, n" < (n+ 1)™.
Ainsi,

(n+1)!'<(n+1)"(n+1)=(n+1)"

Ainsi, P(n + 1) est démontrée.
On a donc, Vn € N*, 27~1 < nl < n™.
De plus, on a bien 27! <1 =0! <1 = 0° donc P(0) est vraie.
Ainsi, Vn € N, 2771 < nl < n?
Notons que cela implique que n! croit moins vite que n'™ mais plus que 2". [J

Exercice 11. Notons, pour n € N*, P(n) : < u, = (n — 1)\.
Onau;=1=(1-1)let ug=1=(2—-1)!, donc P(1) et P(2) sont vraies.
Soit n € N*, quelconque fixé. Supposons P(n) et P(n + 1) vraies. On a alors

Unt2 = N(Upt1 + Up).
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D’apres P(n) et P(n+ 1), on a
Upp2 =njn+1 -+ n-1D]=nn!+n-D)=n[(n—-1)n+1)]=(n+1)!

Ainsi, P(n + 2) est démontrée.
On a donc, Vn € N*, u, = (n—1)1. O

n® n* nd

n
Exercice 12. Notons, pour n € N, P(n) : = + -5 + 3 T30 est un entier naturel >.
C’est évidemment vrai pour n = 0.

Soit n € N, quelconque fixé. Supposons P(n) vraie. Notons

(n+1)5 N (n—i—1)4+ (n+1)3 n+1l
5 2 3 30

Montrons que u,+1 € N en développant les termes a I’aide de la formule du binéme. On
a

Un+1 =

(n5—|—5n4+10n3—|—10n2—|—5n—|—1)5+n4—|—4n3+6n2+4n—|—1+n3+3n2—|—3n+1 n+1

e 5 2 3 30
Ainsi
5 4 3
n 1 n 1 n 1 n 1
En arrangeant un peu
5 4 3
n n n n 4 3 9 1 1 1 1
== T 5 T %5 " a5 4 6 4 B
Un+1 5+2+3 30+n+n+n+n+5+2+3 30
5 4 3
Or, d’apres P(n), on a L L L S

5 2 3 30
De plus, n* 4+ 4n3 + 6n? + 4n € N.
1 1 1 1 6+15+10—-1
Et finir -+ -+-— — = =1leN.
pour n11"5—|—2—|—3 30 S
Ainsi, on a bien up41 € N, soit P(n + 1) vraie.

4 3
n n n n
Donc, pour tout ne N, — + — + — — — e N. [J

) 2 3 30

3 Trigonométrie

Exercice 1. Donner les valeurs exactes des quantités suivantes : L’idée est de se ramener
A TR, . ™ P
entre 0 et 27, ou —m et m grace a la 2w-périodicité puis entre 0 et 5 grace aux symetries.

37 /1359



4 T T
8. tan<3> —tan(ﬂ—i-?)) —tan<3> =3.0

5m 57 T T V3
9. tan (6) tan <6> = tan (7r — 6) — —tan (6) =3 0

T
Exercice 2. 1. Cette équation est équivalente a cos(z) = cos (4)

Elle est donc équivalente a ce qu’'une des équations suivante soit vraie

€= %+2k7r,k:eZ,

¢ = —%+2lm,keZ

L’ensemble solution est donc {—Z + 2k, % + 2km/k € Z}. O

T
2. Cette équation est équivalente a sin(z) = sin (—)

Elle est donc équivalente a ce qu’'une des équations suivante soit vraie

c= —%+2k7r,k€Z,
5%
€r = —F—FQk’ﬂ',kEZ

)
L’ensemble solution est donc {g + 2k, —g +2km/k € Z}. O

)
3. Cette équation est équivalente a cos(3x) = cos <67r>

Elle est donc équivalente a ce qu’une des équations suivante soit vraie

3r = 5%+2k7r,k€Z,
T
3z = —E—I—2k7r,k6Z
Ce qui se reformule en
o 27
= —+4+k—,keZ
TT o tigres
%8 2w
= ——+k—,keZ
g 8 Tr3RE
57 2kw bw  2kmw
L le soluti —t — Y —— + — Zy.
ensemble solution est donc { 13 + 3 18 + 3 Jk € } O
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T
4. Cette équation est équivalente a sin(2z) = sin (4)

Elle est donc équivalente a ce qu’une des équations suivante soit vraie
s
20 = Z+2k7r,k €7,

% = w—%+%mkez
Ce qui se reformule en

c= %+kmkez

T = 3%4—1?77,]@62

8 8

5. Cette équation est équivalente & ce qu’une des équations suivante soit vraie

L’ensemble solution est donc {ﬂ + km, 37 + kn/k € Z}. O

2 = x+2knm, ke,

20 = —x+2km ke’
Ce qui se reformule en

r= 2km k€,

2m
= k—,keZ
T k€
2k 2k
L’ensemble solution est donc {2k7r, ?ﬂ/k € Z} = {;/k € Z}. O

T
6. Cette équation est équivalente a sin(3z) = —sin (2 - :z:)

™
Ce qui est 1a encore équivalent & sin(3x) = sin (a; - 2)

Elle est donc équivalente a ce qu’'une des équations suivante soit vraie
T
3x = x—§+2k7r,k€Z,

3z = w—x+g+%mkez

2r = —E+2k7r,k€Z,
— \ 2
dx = 771- + 2km, k € Z
Ce qui se reformule en
z = —%+kmkez
3r  km
= —+—keZ
re gt aokE

3 k
L’ensemble solution est donc {—Z + km, g + ?ﬂ/k‘ € Z}. O
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7. Cette équation est équivalente a ce qu’une des équations suivante soit vraie au systeme

cos(x) = \gg = cos (g)
cos(z) = —\gg = cos (57T)

Ce qui est équivalent a

z = %+2k7r,keZ,

z = —%ka,kez
T = 5% + 2km, k €7
T = —%T +2km, ke Z
L’ensemble solution est donc {—5(? + 2k, —% + 2km 'B + 2k7r, o™ + 2kn/k € Z} ]
T T
Exercice 3. 1. On a cos (12> = cos (3 — 4) .

O cos(ﬂﬂ)—00‘<7r)cos< >+s <7T>s' (ﬂ>
r 5 1) = S 3 1 in 3 in 1)

1
Ainsi, on a cos ( T ) V2 + ££ autrement dit
12 2 2 2 27
cos ( m ) V2+ V6
12 4
O
™ (T T
2. On peut faire la méme technique, On a sin <12> = sin (3 — 4) .

o5 (5 o(5) o= () )

T V3V2  1V2
Ainsi, on a sin (12> = 77 — 57 autrement dit

an (1) = f/
O

Exercice 4. 1. On a cos <Z> = cos (QW) .

8
Or cos (278T) = 2cos? <78r> —1.

2
Ainsi, on a \2[ = 2 cos? (g) — 1, autrement dit

COSQ(W)_\/i_‘_2
8) 4
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Ainsi,

8

2

o (f)]- 25

Comme ~ € {O, W], cos <7T> > 0.

8 2 8
coS <7r> = 7“\/54_2

On peut donc affirmer,
8 2

8
O

2. On peut soit faire la méme technique, soit remarquer que

sin? (g) =1 — cos? <78T> .

Ainsi,

Ainsi, on a

T T T
— — 1 — > 0.
Comme S € [O, 2], sm(g) >0

On peut donc affirmer,

sin (W> = L\/ﬁ

8 2

Une remarque en passant, cette technique est moins élégante dans ’exercice précédent
car on obtient une écriture exacte de sin (12 moins élégante (sauf a réussir a sim-

plifier élégamment un terme un peu encombrant). [J

2
Exercice 5. 1. On a b = cos (;) = 2cos® (g) — 1. On peut donc écrire

b=2a%—1.

O

4
2. a. Onac:cos(;) :cos<7r—7;) :—cos<7;> = —a. [

4 2 2
b. On a ¢ = cos (;) = cos <257r> = 2cos® <57T> —1=20%-1.0

c. On a alors tout simplement
—a =20 — 1.

O]
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3. On a, en utilisant les deux relations précédentes,
a+b=(1-2b%) 4+ (2a* — 1) = 2(a® — b?).

Or, en simplifiant, on a
a+b=2(a+b)(a—Db).

2
De plus, commez E}O,W[et 7rE]O,W{, onaa>0etb>0.

5 2 5 2
Ainsi, a + b # 0. On peut donc simplifier et on obtient 1 = 2(a — b), autrement dit
1
—b=—.
¢ 2
O

1
4. Onab=2a>—1et b:a—g, ainsi,

1
a—==2a®—1.
2
Cette équation est équivalente a
40> —2a—1=0.
Il s’agit d’un trinéme du second degré dont le discriminant est
A=(-22—-4x4x(-1)=20.
3 =" oua= 3 = =52,

Cependant % E] 0, g {, donc a > 0.

On a donc a =

Ainsi
cos (W) _ 1 V5
5) 4
O
5. On a
sin? ( =1 —cos? <7T>

5 5

Ainsi,
2(7r> 1+v5\ 6+2v5 10-2V5
sin“ | = | =1-— =1- =

4 16 16

Ainsi, on a

T T s
_ _ 1 — > i
Comme 5 € [0,2],sm< ) >0

On peut donc affirmer,



I ]
Exercice 6. 1. On a tan (W — a) _ o (2 a) = C?S(a) = .
2 cos (5 —a) sin(a) tan(a)

Cf)S(a)‘ 0

On note parfois cotan(a) =
sin(a)
2. a. Soient de tels réels a et b, cela implique, entre autres, que cos(a) et cos(b) sont
tous deux non nuls.

On a alors
tan(a + b) =

sin(a) cos(b) + cos(a) sin(b)

cos(b) — sin(a) sin(b)
cos(a) cos(b) (Sm(a) + iifé(a))))

cos(a)

cos(a) cos(b) (1 _ sin(a) s]n(b))

cos(a) cos(b)
tan(a) + tan(b)
1 — tan(a) tan(b)

(@]
@]
n
—
S
~

O
b. Notons D = R\{ —|—k7r/l<:€Z}

On doit avoira e D,be Deta+be D.
Si tan(a) tan(b) = 1, d’aprés la question précédente, cela veut dire que, lorsque

1
tan(a) # 0, tan(b) = tan(a) = tan (72r ) autrement dit b ¢ { —a+kn/k € Z}

ce qui revient & a+b € D. Si tan(a) = 0, il faut simplement que tan(b) existe, soit
beD.[]

L1 ™ .
c. En déduire tan <2) (sans chercher les valeurs correspondantes pour le sinus et

le cosinus). On a

Toow tan (§) + tan (—7F)

tan(fz) :tan<34): 1 —tan (§)tan (%)

Souvenons nous que, tan(—a) = —tan(a) et donc que

tan (”) ~ tan (%) — tan (T

12 1+ tan (§)tan (§)
Ainsi,
™ VvV3-1_ (V3-1*  1-23+43
tan<12> 1+v3  (B+1(VB-1)  3-1 =28
O

3. a. On a, en utilisant la formule de la question précédente,

2tan(a)

tan(2a) = T tan’(a)
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b. On a alors

2t z
tan (22) __chahly) (28)

s
Or, comme tan <4> = 1, on retrouve

1 — tan? (78T> = 2tan (g) .

tan <78r> est donc solution de I’équation d’inconnue X :

1-X2=2X < X?24+2X-1=0.

Ce trinéme du second degré admet comme discriminant A = 22 — 4 x (—1) = 8.
Elle admet donc deux solutions

—2 /8
X¢:2¢:—1—¢2axg=—1+¢2

T T s
Comme 3 6} 0, 5 [, tan (8) > 0.

Ainsi, on a
tan (W> =v2-1.
8
O

4 Ensembles et dénombrement

1. Théorie des ensembles

Exercice 1. En essayant de faire un dessin, on se rend vite compte que 1’on doit avoir
A=B.

On le montre ensuite car AC AUB =ANB C B, ainsi, A C B.

De la méme facon, on a B C A.

Par double inclusion, on a donc A = B. [J

Exercice 2. 1. a. On trouve A= X N (Y UY) (on < factorise » par X).
Mais comme YUY =& et que X NE = X, on a

A=X.

O

b. On trouve B=X U (Y NY).
Mais comme Y NY =0 et que X U = X, on a

B=X.
O
c. D’apres la premiére question, (X NY)U(XNY) = X et de méme, (X NY)U (XN
Y)=X.
Ainsi,
C=XuUX=¢
O



d. D’aprés la deuxiéme question, (X UY)N (X UY) = X et de méme, (X UY) N
(XUY)=X.
Ainsi,
D=XnX=40.
O

. a. Pour la premieére implication. Soit x € X. Comme X C Y, on a x € Y donc
reXNY. Ainsi, X CXNY.

On a toyjours X NY C X. Donc X CY —= X =XNY.

Concernant 'implication réciproque, si X = XNY, alorssiz € X, alorsxz € XNY,
car X =XNY,doncz €Y.

Ainsi, X =XNY = X CY.
Par double implication, on a démontré que

XCY<—= X=XnY.

O
b. Ona XNY =(XNY)N(ZUZ).
En développant, on a

XNY=(XNYN2Z)u(XnYn2z).

OrXNnYNnZcYnZetXnNYNZcCcXnZ.
Ainsi,

XNYc(XnzZ)u(ynz).
O

¢ Ona (XUZ)N(YUZ)= (XN(YUZ)U(ZN(YUZ))
= (XNY)Uu(Xn2Z2)u(Ynz).

Or (XNY)cC (XNZ)uU(YNZ)dapres la question précédente, donc d’apres la
premiére question, (X NY)U(XNZ)U(YNZ)=(XNZ)u((YN2Z).
Ainsi, ( XUZ)N(YUZ)=(XNZ)u(YnZz).O
d. D’apres le 2b. appliqué & X et Y, on a
XNYc(XnZ2)u(¥Ynz)

En prenant le complémentaire, on obtient

(XNnZ)yu(¥nz)ycxny.

En utilisant les lois de Morgan, on a

(XNnZ)n(¥YNnZzZ)c XUY.
Que l'on continue a simplifier en

(XuZ)n(YuZz)c Xuy.
Ainsi, d’apres la 2a., on a

(XUZ)n(YuzZ)n(XuY)=(Xuz)n(yYn2z).

45 /359



Autre solution, plus directe : on a, d’apres la question précédente (X U Z)N (Y U
Z)=(XNnZ)u(YnZz).Or

(XNZ2)uYNnZ)=(XuYn2)n(Zu(Ynz)).

Ce qui donne

(XNZ)u(YNZ)=(XUuY)N(XUZ2)Nn(ZUY)N(ZU2Z).
Ainsi,
(XNZ2)u(YNZ)=(XUuY)N(XUZ)N(ZUY).
Or, rappelons nous que nous avions (X UZ)N(YUZ)=(XNZ)U(YNZ),ona

donc,
(XUZ)N(YUZ)=(XUY)N(XUZ)N(ZUY).

O]

Exercice 3. 1. Ona A C (BNC) C B, donc A C B.
De plusona BC BUC C A, donc B C A.
Par double inclusion, on a démontré que A = B.

De la méme facon, en échangeant les roles de B et C ona A= C, ainsi A =B = C.
O

2.0naB=BN(AUA)=(BnA)U(BNA).
Or BNA=AnNC.
De plus, BUA=CUA, donc (BUA)NA=(CUA)NA.
Ainsi, (BNA)U(ANA)=(CNnA)U(ANA).
Mais comme ANA=0,ona BNA=CnNA.
Ainsi, B= (CNA)U(CNA) =CnN(AUA).
Mais comme AUA =& ona CN(AUA) =C.
On a donc démontré que B =C. 0

Exercice 4. 1. Soit X € P(AN B). On a alors X C AN B. Comme ANB C A, on a
X C A, et de méme X C B. Ainsi, X € P(A)NP(B).

On a donc P(ANB) C P(A)NP(B).

Réciproquement, si X € P(A) N P(B), alors X C Aet X C B, donc X C AN B.
Ainsi, X € P(AN B).

On a donc P(A)NP(B) C P(AN B).
On a donc montré par double inclusion que P(ANB) =P(A)NP(B). O

2. Soit X € P(A)UP(B), alors on a X € P(A) ou X € P(B).
Autrement dit X C Aou X C B, donc X C AUB. On a ainsi X € P(AU B).
On a donc P(A)UP(B) C P(AUB).

Cependant, sionani A C B,ni B C A, alors AUB € P(AUB), mais AUB ¢ P(A)
et AUB ¢ P(B).. Donc AUB ¢ P(A) NP(B).

Ainsi on a toujours P(A) UP(B) C P(AU B), mais l'inverse n’est vrai que si A est
inclus dans B ou B dans A (auquel cas AU B = A ou B selon le cas et tout devient
trivial).

O]
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2. Les dénombrements classiques

Exercice 5. 1. L’expérience se modélise par une 10-liste de réponses prises dans 1’en-
semble {oui, non}, donc il y a 2!° facons de répondre. [

2. L’expérience se modélise par une 10-liste de réponses prises dans l’ensemble {oui, non,
ne se prononce pas}, donc il y a 3'% facons de répondre. [J

Exercice 6. Considérons que les éleves sont numérotés de 1 a 48. Plusieurs fagons de
voir les choses :

e On peut se dire qu'une poignée de main est représentée par une paire d’éléments

48
de [1,48]. Auquel cas, il y en a (2 )

o On peut se dire qu'il y a autant de poignées de main qu'’il y a de couples de [1, 48]
en n’oubliant pas de diviser par 2 (en comptant les couples, on compte deux fois

48 x 47 48
chaque poignée de main selon quel est le premier). On en a donc >2< = < 5 ) .

e Plus compliqué : on peut dire que I’éleéve 1 serre 47 mains, le deuxieme en serre 46

(on enléve le premier), le troisieme 45, etc. Autrement dit, formellement, ’ensemble
47

des poignées de mains est | J{(k, )/ € [k +1,48]}.
k=1
Comme il s’agit d’une union disjointe,

7 7
Card <D{(k,€)/€ €[k + 1,48]]}> - i Card({(k, €)/( € [k+1,48]}) = §(48—k).
k=1 k=1 k=1

En posant ¢ = 48 — k, on obtient

Card (6{(k,£)/€e [[k:+1,48]]}> - sz _ 4 . 18

k=1 i=1

48
Quelque soit le point de vue, il y en a ( 5 ) .

Exercice 7. Les déplacements sont représentés par la position des déplacements vers la
droite (les autres sont vers le haut). Autrement dit, un déplacement est caractérisé par
le sous-ensemble des positions ou on se déplace vers la droite.

7
Il y a exactement 7 déplacements a faire dont 3 sont vers la droite. Donc il y 3 chemins

possibles autant que de facons de fixer le sous-ensemble constitué par les 3 déplacements
vers la droite sur les 7 au total. [

Exercice 8. 1. Les podiums sont des 3—listes sans répétition (ou des arrangements)

8!
prises parmi les 8 coureurs. Il y en a i 8§ X 7x6=336.0

2. Les podiums sont des 3—listes sans répétition (ou des arrangements) prises parmi les
3 coureurs Kényans. Il y en a 3! = 6. [J

3. Il est plus simple de comptabiliser les podiums ne contenant aucun coureur Kényan. En
effet, il s’agit des 3—listes sans répétition prises dans les coureurs non-Kényans, donc

A7 /359



5!
il y en a Tk Ainsi, comme ’ensemble des podiums est I'union disjointe des podiums

|

8! 5!
sans Kényans et de ceux avec au moins un Kényan, il y en a FE 336 —60 = 276.
- ! !

4. Commencons par dénombrer le nombre de composition possibles de podiums. Il s’agit
du nombre de sous-ensembles étant la réunion d’un singleton pris parmi les 3 Kényans

3 5
(lyena 1= 3) et le nombre de paires prises parmi les autres, (il y en a <2> = 10).

Il y a donc 30 compositions possibles.

Ensuite, chaque composition donne & 3! = 6 (le nombre de permutation) podiums.

Il y a donc (?)X <Z>><3!:3X10><6:180.D

5. On peut faire la méme chose que précédemment, compter le nombre de compositions
possibles (donc cette fois-ci compter le nombre de paires de Kényans puis le nombre
5

3
de singletons des autres, soit <2> X (1

) = 3 x 5 = 15). Puis on multiplie ¢a par le

nombre de permutation 3! = 6.

Ainsi,ilyena(i) x(?) x3l=3x5x6=90.

Mais plus simplement, les podiums contenant au moins un Kényans sont I'union dis-
jointe des podiums contenant 3 Kényans (il y en a 6) ceux contenant exactement 2
Kényans (ceux qu’on cherche a dénombrer) et ceux en contenant exactement 1 (il y
en 180).

Ainsi, d’apres la propriété sur les cardinaux d’union disjointe, on a
276 — 6 — 180 = 90.
On retrouve le méme résultat. [

Exercice 9. 1. On peut modéliser le résultat par une liste sans répétition des 7 amis
(les fauteuils de gauche a droite), c’est-a-dire de permutations. Ainsi, il y a 7! fagons
de s’asseoir. [

2. Exactement autant (on part du fauteuil et on remplit vers la gauche). (]

3. Il faut remarquer que c’est la méme chose que la question précédente, sauf qu’a chaque
table correspond 7 possibilités de placer un fauteuil. Il y a donc un rapport de 7 entre
|

les deux résultats. On a donc 7 =6!. 0

Exercice 10. 1. On modélise la situation en numérotant les personnes. Les p représentants

sont un sous-ensemble de [1,n], donc il y a (n) Il y a ensuite <21?> facon de choisir
b

n
le président. Au total, il y a donc 11) fagons de choisir les représentants puis le
p

président parmi eux. []

n
2. Si on commence par déterminer le président, il y a 1 fagons de le choisir. 1l reste

a déterminer le choix des p — 1 représentants, soit le nombre de facons de choisir un
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sous-ensemble & p — 1 éléments pris parmi les n — 1 éléments restants. Il y en a donc
n—1
p—1)
. n\(n-—1 . - . ,
Au total, il y a donc 1 fagons de choisir un président puis p—1 représentants.

p—1
O

3. Et bien comme ca fait la méme chose, on a

GO -0)G) =) ()

n n! n!
p<p> " PPl =l T (- Dl(n—p)!

et ce car p > 1. Ensuite, on remarque que, comme n

\Y
\.H
=
|
B
!
=
s
[
[}
=
o

n!  (n=1n _n<n—1>
(p—Dn—p)! (@-Dn—p)! \p—1)

On a donc bien pour tous p,n entiers naturels non nuls avec p < n,
n n—1
D =n .
p p—1

Exercice 11. 1. Une question tres simple : les tirages sont les sous-ensembles de [1,n]

O]

n
a p éléments. Il y en a donc O

2. Tout d’abord, remarquons que si k < p, il n’y a aucune solution.
Ensuite, deux facons de voir les choses :
e On remarque que les tirages satisfaisants cette condition sont les sous-ensembles

de [1,k—1] a p—1 éléments que 'on a réuni avec le singleton {k}. Dans ce cas,

p—1
e On consideére I'’ensemble des tirages dont le plus grand numéro est inférieur ou

. k—1
on remarque qu’il y en a donc .

k
égal a k. Il y en a ( ) Cependant, cet ensemble est la réunion disjointe des
p

k—1
tirages dont le plus grand numéro est inférieur ou égal a k—1 (il y en a ( ) ,
p

en prenant I’habituelle convention de nullité si p < k—1) et de ceux donc le plus
grand numéro est égal a k, ce que 1'on cherche.

-1 -1
Ainsi, on en a K — K = K d’apres la formule de Pascal.
p p p—1

Un petit commentaire : la premiere facon de voir les choses semble peut-étre plus
simple mais est moins robuste que la seconde, vous en aurez l'illustration des la fin
de I'exercice. [
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3. L’ensemble des tirages est la réunion disjointe de ’ensemble des tirages dont le plus
grand numéro est égal a k pour k allant de p a n. Ainsi, on a

S0 ()

On appelle cette formule la formule de Pascal itérée. [J

4. Reprendre les deux premieéres questions dans le cadre d’un tirage avec remise. Il s’agit
désormais des listes de [1,n] & p éléments. Il y en a donc nP.

Ensuite, on utilise la deuxiéme facon de voir les choses de la question ci-dessus. On
considere ’ensemble des tirages dont le plus grand numéro est inférieur ou égal a k.
Il y en a kP (ce sont les listes de [1, k] a p éléments). Cependant, cet ensemble est la
réunion disjointe des tirages dont le plus grand numéro est inférieur ou égal a k — 1
(il y en a (kK — 1)) et de ceux donc le plus grand numéro est égal a k, ce que 'on
cherche.

Ainsi, on en a kP — (k — 1)P.

La question analogue a la formule de Pascal itérée n’a que peu d’intérét puisqu’il
s’agit tout simplement d’une somme télescopique. [

Exercice 12. 1. En distinguant selon les triples, doubles ou ceux ou tous les numéros
sont différents, on pourra ajouter tous les résultats puisque qu’il s’agit d’une union
disjointe.

e Il y a 6 triples.

o Un double peut-étre représenté par une 2—liste sans répétition (le premier élément
donnant la valeur du double, 'autre celui du terme simple). Il y a donc 6 x5 = 30
doubles.

o Les simples peuvent étre représentés par des sous-ensembles a 3 éléments de

6 6XxHx4x3x2x1
[[1,6]].Ilyenadonc<>: HOXEXIXEX

= 20.
3 (3x2x1)2

Il y a donc 6 + 30 + 20 = 56 résultats possibles. A noter (et nous reverrons ¢a en
probabilités) qu’ils n’ont pas du tout la méme probabilité d’apparaitre! [J

2. a. On représente les résultats par des 3—listes de de [1,6]. C’est le nombre de 3-listes
de [1,6] donc 6% = 216. [
b. C’est le nombre de 3-arrangements (ou listes sans répétition) de [1, 6], donc 6 x
5x4=120.0

c. Il est nettement plus rapide de dénombrer ceux n’ayant pas de 1, il y en a 5% (des
3—listes sans répétition de [2,6]), donc il y a 63 — 5% = 216 — 125 = 91 résultats
avec au moins une fois le chiffre 1. OJ

d. Il faut remarquer qu’un tel résultat peut se représenter sous la forme d’un couple
(a,b) ou a décrit le numéro du dé n’ayant pas fait 3 (donc 3 choix possibles) et b
donne la valeur de ce dé (donc 5 choix possibles). Il y a donc 3 x 5 = 15 résultats
possibles. [

3. Pour aller plus loin

Exercice 13. On représente un héritage par une 5—liste d’éléments de [1, 3] ou le iéme
élément de la liste désigne le numéro de 'enfant qui hérite du champ c;.
Ainsi, il y a 3° facons de distribuer ses champs.
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Il y a 3 héritages qui spolient deux enfants (tout & I'un des trois).

Etant donné un enfant, il y a 2° héritages qui le spolient (une 5—liste des deux autres
enfants). I y a donc 2% —2 héritages qui ne spolient que lui (on enléve les deux qui spolient
un autre enfant). Ainsi, il y a 2° — 2 héritages qui spolient uniquement un enfant fixé,
donc 3(2° — 2) qui spolient exactement un enfant.

Pour finir, il ne reste qu’a retirer le nombre d’héritages qui ne satisfont pas les conditions
au nombre total. Ainsi, le nombre d’héritages satisfaisants est :

3% —3-3(2° —2) =243 — 3 — 3(32 — 2) = 150.
O

Exercice 14. Si on numérote les lots, cela ressemble étrangement a ’exercice sur les
champs...
En numérotant les 3 lots (et les couleurs par simplicité), une répartition est représentée
par une 6—liste d’éléments de [1, 3] ou le iéme élément de la liste désigne le numéro de
lot qui contient la boule 4.
Ainsi, il y a 3% facons de distribuer les boules.
Il y a 3 répartitions qui donnent deux lots vides..
Etant donné un lot, il y a 2% répartitions qui le laissent vide (une 6—liste des deux autres
numéros de lot). I1 y a donc 26 — 2 répartition qui ne laissent que ce lot vide (on enléve les
deux qui en laisse un autre vide). Ainsi, il y a 26 — 2 répartitions qui laissent uniquement
un lot fixé vide, donc 3(2% — 2) qui laissent exactement un lot vide.
Pour finir, il ne reste qu’a retirer le nombre de répartitions incorrectes qui ne satisfont
pas les conditions au nombre total. Ainsi, le nombre de répartitions satisfaisantes est :
30 —3—3(20 - 2).
Cependant, les lots ne sont en réalité pas numérotés. Il faut donc diviser par le nombre
de permutations que ’on peut faire entre ces lots.
Le nombre de répartitions acceptables est donc :

36-3-3(20-2) 3 -1-(26-2) 243-1—(64—2)

= 90.

3! 2 2
O

Exercice 15. 1. Si A est fixé avec Card(A) = k, il y a 2% facons de choisir un B

satisfaisant (le nombre de sous-ensembles de E'\ A). Il y a Z) sous-ensembles de

n

E & k éléments, donc i

)2"’“ couples satisfaisants les conditions dont le premier

élément a k éléments.

Par union disjointe en distinguant selon le cardinal du premier élément du couple, on
trouve

Enj (Z) 2k = (142)" = 3",

O

2. Soit on procéde de la méme fagon : Si A est fixé avec Card(A) = k, il y a 2¥ facons
de choisir un B satisfaisant (le nombre de sous-ensembles de A que l'on réunit avec

A).llya Z sous-ensembles de E a k éléments, donc (Z) 2F couples satisfaisants

les conditions dont le premier élément a k éléments.
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Par union disjointe en distinguant selon le cardinal du premier élément du couple, on
trouve

3 (Z)z’f = (2+1)" =3".

k=0

L’autre solution est de remarquer que les couples (A, B) sont tels que AUB = E sont
les couples tels que AU B = (), autrement dit se sont des couples tels que AN B = ().
Il y a 3" facons de choisir le couple (A4, B) d’aprés la question précédente.

On trouve 3™ couples. [
3. On peut essayer de faire la méme chose, fixer A, puis réfléchir & la facon d’obtenir

(B, C) qui satisfont le probléme, etc. C’est un peu long et il y a beaucoup de formules
du bindéme. On va essayer de trouver une autre solution.

Remarquons qu’une telle répartition est définie par 'appartenance de chaque élément
de F,a A, B,C,AUB, AUC, BUC ou AUBUC. Ainsi, on peut associer a chaque
élément de E un numéro entre 1 et 7 pour désigner a quel(s) ensemble(s) il appartient
(P'un des 7 cas évoqués).

On peut donc modéliser un tel triplet par une n-liste d’éléments de [1,7]. Il y a donc

7" triplets satisfaisants. [J

Exercice 16. 1. On va représenter ¢a par une liste dont le premier élément donne le
numéro de 'urne accueillant la premiere boule, le deuxiéme celui de la deuxieme, et
le troisieme celui de la troisieme.

Ona (1,1,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2),(2,2,1),(2,2,2). O

2. Une répartition est caractérisée par la r—liste des éléments de [1,n] ou le iéme terme
donne le numéro de 'urne ou se situe la iéme boule. OJ

3. Nous allons représenter chaque possibilité a 1’aide de O et |.

e On commence par placer autant de () qu’il y de boules dans la premiére urne.
e On place un |.

e On place autant de () qu’il y de boules dans la deuxiéme urne 2.

e On place un |.

e On recommence jusqu’a placer les () correspondant au nombre de boules dans
I'urne n.

Une répartition est donc représentée par un < mot > der Qetden—1|. Il yena
autant que de possibilités pour choisir le sous-ensemble de [1,n+p—1] qui correspond
n+r—1 n+r—1
aux emplacements des r o, donc ( + ) = ( * ) 0
T n—1
4. Toujours dans le cas ou les r boules sont indiscernables, combien y a-t-il de répartition
sans urne vide? Si r < n, c’est impossible.

Dans le cas contraire, une fois que chaque urne contient une boule, il reste r—n boules a
n+(r—mn)— 1)

placer dans les n urnes... on retrouve le probléeme précédent, donc <
r—mn

-1 -1
<T ) = (T ) possibilités. [
r—n n—1
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Exercice 17. 1. Il y en a autant que de facons de choisir I’élément invariant ou autant
3
que de choisir la paire qui sera échangée, donc ( 2) =3. 0
2. 1 peut étre envoyé sur 2 ou 3, et 'image de 1 ne peut pas étre envoyée sur elle-méme
(elle serait invariante) ou sur 1 ('autre serait invariant). Ainsi, il n’y en a que 2. [

3. Il n’y en a pas : on peut remarquer qu’il y a 6 permutations, dont 5 ont déja été
évoquées plus 'identité.

Ou alors on peut remarquer que si deux éléments sont invariants, alors le troisieme
ne peut pas avoir d’autre image que lui-méme. [

Exercice 18. 1. Une question faussement compliquée. Si on considere I'application
(x1,22,23,...,2p) — (x1, 21 + T2, 21 + T2+ 23,..., 21 + ...+ Tp)

elle transforme un p—uplet qui satisfait la premieére condition en un p—uplet qui
satisfait la deuxiéme.

De plus, elle est bijective : sa réciproque est évidemment
(Y1592, Y3, -+, Yp) = (Y1, Y2 = Y1, U3 — Y25+ -, Yp — Yp—1)-

Il ya donc autant de p—uplet de chaque sorte. [

2. Ca, c’est facile : a(0,p) = 1 car le seul convenable est (0,0,...,0) et a(n,1) =1 car
le seul est (n). O

3. Les p—uplets qui satisfont a la contraintes se divisent en deux (union disjointe) :

o ceux donc le dernier terme est non nul : il y a a(n — p, p) puisqu’on peut retirer
1 a la derniére composante pour arriver a un total de n — p;

o et les autres dont le dernier terme est nul : ils sont au nombre de a(n,p — 1)
puisque on arrive a n en seulement p — 1 composantes.

Ainsi, on a bien a(n,p) = a(n —p,p) + a(n,p—1). O

5 Nombres complexes
1. Exercices de base

Exercice 1. On rappellera que si on a z = pe? avec p > 0, alors le module de z est p
et un de ses arguments est 6. [J

4. —92i = Qeiﬂ'eiw/Q — 263i7r/2 — 26—1'71-/2. ]

L Lti V2 (@ +42i) _E an
1—1 ﬁ(@—@z) e—im/4
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) 4 ) .
6 (Z)4_ ezﬂ'/2 _1<€z7r/2>4_6wr__1 -
i G(ZvEy) Ta\en) ST

7. —3(cos(f) + isin(0)) = 3e'"e? = 3610+ O
8. 2(cos(26) — isin(26)) = 2¢O
Exercice 2. Résoudre les équations suivantes d’inconnues = € R :

1. La premiére étape est de trouver une équation équivalente plus simple. On va donc
chercher r, ¢ tels que, Vo € R,

cos(z) + sin(z) = r cos(z + ¢).

En utilisant les techniques présentées en cours, (ici on remarque que cos(z) + sin(x)
est la partie réelle de (1 — i)e™ = /2¢"®~ 1)) on trouve

Vo € R, cos(x)+sin(z) = v/2cos (x - Z) .

L’équation de départ est donc équivalente a

\/iCOS(:U—Z) =1

5

2
Autrement dit cos (x — Z) = V2

7
Cette équation est équivalente a cos (z — J) = cos (4)

Elle est donc équivalente a ce qu’une des équations suivante soit vraie

= % + 2km, k € Z,
= —% + 2km, k € Z
Ce qui se reformule en

x = g + 2k, k € Z,

x= 2kmkeZl

L’ensemble solution est donc {g + 2km, 2kn [k € Z}.
0

2. La premiere étape est de trouver une équation équivalente plus simple. On va donc
chercher r, ¢ tels que, Vo € R,

cos(z) — sin(x) = rcos(x + ).

En utilisant les techniques présentées en cours (ici on remarque que cos(x) — sin(x)
est la partie réelle de (1 4 i)’ = v/2e'T7)) on trouve
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Vo €R, cos(x) —sin(z) = v2cos (x + Z) .

L’équation de départ est donc équivalente a

V2 cos <x+z> = \26

3
Autrement dit cos (m + Z) = \2[

. . ;o R T s
Cette équation est équivalente a cos (x + 4> = COS (6)

Elle est donc équivalente a ce qu’'une des équations suivante soit vraie

T T
—= —+2km,keZ
T+ 1 6 + 2km, Kk € 4,
T s
—= ——=+42 Z
x4+ 1 G + 2k, k €
Ce qui se reformule en
T
= ——+2km,keZ
T 9 + 2km, k € Z,
o
= —— +2kmkeZ
T 9 + 2km, Kk €
. o T
L’ensemble solution est donc {—12 + 2km, 12 + 2k /k € Z}.
O
. 14 4¢ |1+ 4 /17 34
E 3. 1. O = = _— = —, D
xercice na ‘2 — 22 3 1

2. En multipliant par la quantité conjuguée et en simplifiant, on trouve

1-iv3 _ (1-iV3)(-1+iv3) _2+2iv3 1 V3

1A 1+3 1 2 "
O
3. On a
1—i (1-i)(1—-iv3) (1—-v3)+(=1-+3)i
1+iv3 1+3 4
O
4. On a (ﬁ—z’?>(1— )|: ﬂ—i\f I1—i|=v2.0
5. On a

77
donc le module est 1 et un argument est 3

A noter que c’est aussi tres efficace pour trouver 'expression algébrique, presque plus
que la quantité conjuguée. [
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2 — /2 ) —imw/4 )
V2 iv2 =€ = ¢"™/12 donc module 1 et argument o

6. O =
ne 1—4v/3  2e7i/3 12

7. On a

\/§+ Z\/§ B 261'71'/4 \/geiﬂ'/él \/ge“r/12
: - N~ a2 /6 a2
3+iv3 2\/§(§+%2) 3 em/6 3

3
donc module \3[ et un argument est % O

Exercice 4. 1. L’astuce, comme dans tout l'exercice, est de factoriser par I’angle moitié.

Ona 1+ ¥ = ¢?/2 (e_w/Q + 610/2) = 2cos(6/2)e?/2.
0 T
Comme 6 € [0, 7], 3 € [O, 5 {, donc 2cos(0/2) > 0.
o ) 0 0
Ainsi, on découvre que 1 + € a pour module 2 cos(0/2) et pour argument —. [
2. Onal— el =2 (=002 — ¢0/2) = —9isin(0/2)e"/? = 25in(0/2)e'0 /2.

Comme 6 € [0, [, g € [0, g {, donc 2sin(0/2) > 0.

, 7r
Ainsi, on découvre que 1 — € a pour module 2sin(#/2) et pour argument O

3. Le fait que 6 — ¢ ¢ {2k7/k € Z} implique la non-nullité du dénominateur. Procédons.

On a
il 4 et ei(0+0)/2 i(0—9)/2 4 o—i(0—¢)/2

ol _civ  oil0+9)/2 gil0—9)/2 _ o—il6—9)/2"

En simplifiant et en utilisant les formules d’Euler, on a

e+ e 2cos((0 —¢)/2)
et —eiv  2isin((0 — ¢)/2)

Autrement dit, ‘ '
e et cos((0 — ¢)/2)
=—i

el —¢iv — sin((0— 9)/2)

Il s’agit donc d’un imaginaire pur dont la partie imaginaire vaut

_cos((0 —¢)/2) _ cos((p —0)/2)
sin((6 —¢)/2)  sin((¢ —0)/2)

O

cos(f)+isin(f) _ ecos(@)eisin(ﬁ) cos(0)

. 60
Exercice 5. e =¢ . Donc le module est e

ment est sin(6). [J

et un argu-

Exercice 6. Pour toutes les questions, on utilise les formules d’Euler, on développe
avec le bindme de Newton, puis on regroupe les termes ensemble de fagon a réutiliser les
formes d’Euler.

On peut s’en sortir en utilisant des formules de trigonométrie si on n’a pas peur de
méthodes laborieuses. [J
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1. On a, d’apres la formule d’Euler,

eia: 4 e—ix 4
2
€4ir +4€3ime—i:p + 662iwe—2ix +4eiz€—3i:v + e—4iz
. . 16 ‘
€4zm _|_462m —|—6 +4672m 4 6742:1:
€4zx _1_6741‘% +4(622x 4 67211) 4 6
16
2 4 8 2 6
= cos(4z) +16COS( )+ en utilisant & nouveau la formule d’Euler
cos(4x) + 4 cos(2z) + 3
8

Az) =

O]

2. De la méme facon, en accélérant un peu

) .3 ) (2
6230 _|_ e—ll‘ eZ.Z’ _ 6—11’

(637La: + 3eix 4 Be—im + 6—37La:)(62i$ — 24+ e—Qim)
8 x (—4)
e5i:v + eSix _ 26” _ 2€7im + 6731'3: + 6752‘:3
32
2 5 2 3x) —4
= - cos(5z) + C(;)z( 7) cos(2) en utilisant & nouveau la formule d’Euler
—cos(bx) — cos(3z) 4+ 2 cos(x)
16 '

O]

3. Encore une fois, on trouve

eix_efix 5
Cla) = <2>

651'1 _ 5641’1671':1: 4 10631'9:6721':1: _ 1062%6731‘:): 4 5eixef4im _ 675ix

321

651'1 _ 5631’3& 4 1061'90 _ 10671':(3 + 56731'90 _ effn'x
N 32i

9 si 105 s 9207 i
. sin(5z) 0z 531;1(3@ + 20i sin(z) en utilisant & nouveau la formule d’Euler

7

_ sin(5z) — 5sin(3z) 4 10sin(x)
N 16

sin(5z) — 5sin(3z) + 10sin(z)

16 '
On a donc sin(5x) — 5sin(3x) 4+ 10sin(x) = 0 si et seulement si 16C(x) = 0, autrement
dit sin®(x) = 0.
L’équation est donc simplement équivalente & sin(z) = 0, donc I’ensemble solution est
{kr/k eZ}. O

Contre toute attente, on trouve C(x) =
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Exercice 7. C’est exactement le contraire de l’exercice précédent. On peut soit re-
marquer que A(xr) = Re(e*™®) et remarquer que e*® = (cos(x) + isin(z))* (Moivre),
développer et garder la partie réelle. [

1. On a
A(z) = Re(e'™®)
Or
(s _ (ginyd
= (cos(x) +isin(z))*
= cos?(x) 4 4i cos® () sin(z) — 6 cos?(x) sin?(z) — 44 cos(z) sin®(z) + sin? ().
Ainsi,
A(z) = cos*(z) — 6 cos?(z) sin?(x) + sin?(z)
= cos*(x) — 6cos?(z)(1 — cos?(z)) 4 (1 — cos?(z))?
= cost(x) — 6cos?(z) + 6cost(z) + 1 — 2cos?(z) + cost(z)
= 8cos*(x) — 8cos?(z) + 1
O
2. On a
cos(3z) = Re(e*®)
= Re((c")?)
= Re((cos(z) + isin(z))?)
= Re(cos®(z) + 3i cos?(z) sin(z) — 3 cos(x) sin®(z) — isin®(z))
= cos®(z) — 3 cos(x) sin’(x)
= cos3(z) — 3cos(z)(1 — cos?(z))
= 4cos®(z) — 3cos(x).
Ainsi,
B(x) = cos(3z) sin(z)
= (4cos’(z) — 3cos(x))sin(z)
= 4cos’(x)sin(z) — 3 cos(z) sin(z).
O
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3. On a

Or
i = (i)
= (cos(z) +isin(x))®
= cos’(x) 4 5icos? () sin(z) — 10 cos®(z) sin?(z) — 10i cos?(z) sin®(x) + 5 cos(x) sin(z) + i sin®(x
Ainsi,

C(x) = 5cost(z)sin(z) — 10 cos?(z) sin®(z) + sin’(z)
= 5(1 —sin®(z))?sin(z) — 10(1 — sin?(x)) sin®(x) + sin®(x)
= 6sin’(x) — 20sin®(z) + 5sin(z).

On trouve C(z) = 6sin®(z) — 20sin®(z) + 5sin(z). O

Exercice 8. Il faut passer en notation polaire pour calculer facilement la puissance!

On a
: V3 o1 1
(\/g_ 7/)17 — [2 (2 - 22>]

_ ol7 <€fi7r/6) 17

QLT ,—1Tim /6

_ 9lT,—5ir/6

= 9l7 ;\/g _ z}
2 2

_  _9l6 /3 ;o6

La partie réelle est —2'6y/3 et la partie imaginaire —2'6.

De la méme facon, on a
—23
(1—iv/3)™2 = [2 (1 - z\/§>]

_ o923 (e—m/?,) -
923 23in /3

9—23 ,—im/3



2724 et la partie imaginaire —iy/32724,

1—iyv3 \* [2emim\*
V2+iv2)  \ 2e/4
_ ( —7m/12>24
= (e

6—14171'

La partie réelle est
Et le dernier, on a

= 1.

Ai-je vraiment besoin de préciser partie réelle et imaginaire ?
O
2. Equations du second degré

Exercice 9. Je ne détaille la rédaction que d’un, vous y rapporter pour les autres. [

1. Deux solutions, 3¢ et —3¢. [J

2. Notons A le discriminant associé. On a A = (—=1)? —4 = -3 = (iV/3)%

1—iV3 1+iV3
——— et z=—F7—

On a donc deux solutions conjuguées, z1 = 5 5

O
—1—14v15 —1+4V/15
et .0
2 2
4. Deux solutions, 1 — i et 1 4 4. [

3. Deux solutions,

5. Deux solutions,

6. Posons Z = z2. On tombe sur l’équation Z2 + Z 4+ 1 = 0. Son discriminant est
—1-1iV3

641‘7r/3 et Zy =
2

—3 = (iv/3)2. Ainsi, on trouve deux solutions Z; =

—1+iv3 _ Q2in/3.
2
On a donc deux équations possibles,

22— e4z7r/3 et 22 = 6217r/3'

Cherchons les solutions sous forme polaire (0 n’est pas solution), donc z = pe'.
On a alors
26219 — e4'L7r/3 2,260 _ 621#/3'

P et pZe

Ce qui donne pour la premiere

20 = %T—G-kak‘EZ
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Ce qui est équivalent a, comme p > 0,

p=1
2
0 — g thrkeZ
On trouve deux solutions distinctes, e2i7/3, —e2im/3 — g—in/3

Pour la deuxiéme, c’est le méme principe

20 = %ﬁmim,kez

Ce qui est équivalent a, comme p > 0,

p= 1

0 — %Hm,kez

On trouve deux solutions distinctes, ei™/3, —ei™/3 = ¢=2in/3,
On a exactement 4 solutions pour z, 62”/3, —e2im/3 — e‘i’r/3, ”/3, —elm/3 = g=2im/3,

O

(&

3. Equations diverses

Exercice 10. 1. Ca marche comme d’habitude, sauf que le discriminant est A = —4 +
4(2 — 2i) = =12+ 16i = (2 + 4i)%. Ainsi, on peut trouver les deux racines : 1 + 3i et
—1—170

2. N’oublions pas que 2% —i = 23 — (—i)3 = (2 +1)(2? —iz — 1).

Donc I’équation devient (z +4)(2% — iz — 1) = 6(z + 1), autrement dit

(z+i) (22 —iz—=T7)=0.

L — 3vV3 L+ 3v3
Donc —i est solution mais aussi (a détailler) ! 2\[ et . +2\[. O

3. Le plus urgent, mettre le membre de gauche sous forme polaire.

1—1 V2 _in
2

= —e 12, L’équation est
V3—i

8= 271/267177/12.

Onal—i:\/ief% et \/§—i:267%,donc

équivalente a :

Comme 0 n’est pas solution, on peut chercher z sous la forme pe®®, avec p > 0. On
trouve que c’est équivalent a

P = o712

T
8=~ +2%km kel
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Ce qui est équivalent a, comme p > 0,

p—= 9271/16
™ ™
b= —gsthp kel

On trouve donc 8 solutions, en ne gardant que les expressions dont I'argument est
dans [0, 27| (les autres ne sont que des expressions de celles dont 'argument est dans
[0, 27]). o

{ea6 %% /k € [1;8]}.

O

. On pose Z = z%. Z est solution de

Z* — (3—2))Z + (8 +6i) = 0.

Le discriminant de ce trindme est A = (3 — 24)% — 4(8 + 6i) = —27 — 36i = (3 — 61)°.

3—2i—(3—061¢ 3—2i+(3—61¢
On trouve donc deux solutions pour Z : ! 2( ) =27 et ! +2( ) =
3—4i
On a alors 22 = 24 ou 22 = 3 — 4i.
. 2
Or, si on se souvient que 2i = (\/56”/4) = (1 +14)%, on trouve que la premiére

équation donne deux racines, 1 + 4 et —1 — .
Quant a la seconde, grace a I'indication donnée, on a deux solution 2 — ¢ et —2 + 4.
O

. Posons z = a + ib ou a et b sont deux réels.

L’équation devient

5(a + ib) — 2V a? + b? = 5+ 20i.

Soit
—2a% — 2b® + 5a + 5ib = 5 + 20i.

En égalisant parties réelle et imaginaire, on obtient le systéeme équivalent suivant :

5a —2Va?+b02= 5
560 = 20

Soit, en injectant la valeur de b obtenue,

{5@—2\/a2+1 - 5
b= 4

Intéressons-nous maintenant a la premiere équation.
Elle est équivalente a

2v/a2 4+ 16 = 5(a — 1).

Ce qui implique
4a® 4 64 = 25(a® — 2a + 1).
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Soit
21a% — 50a — 39 = 0.

Le discriminant est
A =50% — 4 x 21 x (—39) = 5776 = 76°.

— 1
Ainsi, on a deux solutions envisageables p0 — 76 = _13 et 50 + 76 _
42 21 42

3.

1
On peut vérifier, que 3 fonctionne bien, mais —gq hon car, pour avoir 2va? + 16 =
5(a — 1), on doit avoir a > 1.

Ainsi, il n’y a qu'une solution au probléeme 3 + 44. [J

1
Exercice 11. En prenant le module de cette équation, on trouve |z[9 = W’ soit

z
|z|'% = 1. Comme |z| est un réel positif, la seule possibilité est |z| = 1. Ainsi, il existe
6 € R tel que z = €.

910 — soit €90 = 1.

L’équation devient e —
e—3i0

Ainsi, il existe k € Z tel que 660 = 2k, ce qui revient a 6 = kg, pour k € Z.
Les solutions sont {eikTw/k e [o, 5]]} O

-1+ —3
Exercice 12. Remarquons tout d’abord que 4+ - V2 Tedin/4,

Ainsi, on cherche z = peie tel que 2’3 — \/573637%/4‘
C’est équivalent au systeme :

-3
pP= V2

30 = ?%Jrz/m,kez

Ce qui est équivalent a, comme p > 0,

1 V2

Sl )
3T 2

0= —+k—kecZ
g Thgoke

2 2 . 2 o
On a donc trois solutions, \56”/4, \5611”/12, et \2f€19m/12‘

1 1611m/3 _ 1651'71'/3’ ot

Quand on les éleves a la puissance 4, on trouve Ze” = 11 1

1 4o, 1.
*619“7/3 _ 7ez7r/3.
Seule la premiere a une puissance quatrieme réelle. [

Exercice 13. On trouve presque une identité remarquable. En fait, si on considere :
[(z=1) =+ DI[(z=1)*+ (2= 1)*(e + D)+ (2 = 1)(2+1)*+ (2 +1)°] = (2 = 1)* = (z+ 1)".
(z—1D* = (z+1)4 _0

L’équation de départ est donc équivalente a

z—1\*
Comme —1 n’est pas solution, c’est équivalent a ( n 1> =1.
z
z—1
On pose Z = T On trouve 4 solutions pour Z : 1,—1,4, —i. On cherche ensuite les

z+
solutions pour z.

1 n’était pas une solution possible pour Z, , il en reste donc 3 pour z : 0,7 et —i. [
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Exercice 14. 1 n’est pas solution. Pour z # 1, en ajoutant 1+ 2™ a chaque membre et
en utilisant une formule bien connue, on voit que cette équation est équivalente a
1— Zn-i—l

22— =1 "
11— +z

On arrive donc a
2(1 — 2" = (1 +2")(1 - 2),

autrement dit
2 2t — 1y g L

On a donc

M4 1=0.
Soit

2"(z+1)—(z+1)=0.
Soit enfin

(I+2)(z"—1)=0
On arrange ¢a en (1+2)(1—2") = 0. On trouve donc —1 solution ainsi que les solutions
de 2" = 1.
En les cherchant sous la forme e* (car le module de z ne peut valoir que 1), on trouve
les €7/ pour k € [1,n — 1] (il faut retirer 1 car il ne peut pas étre solution).

Ainsi, 'ensemble solution est {e%k”/”/k: €l,n— 1]]} u{1}. O

Exercice 15. 0 est solution. Cherchons les solutions non nulles. La premiere étape est
de simplifier cette écriture. On remarque que

2T+ <I>26+ <;>z5+ <;>z4+ (DZMF <;>32+7z—|—1 =(z+1)7
7 7 7 7 -
27— <1>2’6+ (2)2’5_ (3>z4+ (4)33_ <5>22—|—7Z—1 = (2_1)7'

Onadoncz7+<2>25—|—<4>23—|—7z: (z+1) 2(Z ) '

L’équation de départ devient donc (z+1)" + (2 —1)" =0
On remarque que 1 n’est pas solution, on en déduit alors qu’on revient a

1\7 ,
<Z+ ) =—1=¢".
z—1

z+1 . .
1= pe' on trouve rapidement que
Z J—

En cherchant les solutions sous forme de

z+1 c2RHDIT/T 1 e [0, 6]
z—1
(a détailler, mais & ce moment du chapitre, vous devez avoir I’habitude désormais).
L’équation
z+1 2h+)T/T
z—1 ’
est équivalente a
241 = e(2k+1)7r/7(z o 1)’
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soit
(1 N 6(2k+1)7r/7)z _ _(€(2k+l)7r/7 + 1).

On trouve alors, en factorisant par I’angle moitié,

14 BRI cos((2k + 1)w/14)
FT e@kDiT —1 T sin((2k + 1)n/14)

pour k € [0,6]. O

4. Manipulations diverses

Exercice 16. 1. On a
1+i)" —(1—d)" = (ﬂe”/”‘)" - (\@e—”/‘*)”
_ ﬁ” (eimr/4 o e—inﬂ'/4>
= \/§n2i sin (T)
- 2" isin <m> .
4
O

2. Comme on veut, soit par récurrence (en n’ayant pas peur de la trigo ou en utilisant le
résultat de la question précédente), soit en se rappelant du cours sur les suites suivant
une relation de récurrence linéaire d’ordre 2. Essayons la deuxieme méthode.

On résout 'équation caractéristique associée X2 — 2X + 2 = 0. Le discriminant est
—4 = (24)2. On a donc deux solutions,

2—2

=1—z2et1+z.
5 1€ +1

Ainsi, il existe A et p tels que, pour tout n € N,
U = A1 —3)" + p(l+10)".
En faisant n = 0, on obtient A 4+ g = 0 puis en faisant n = 1, on récupere
AM1—=9)+p(l+1i)=2
soit

—“A+u=2

En ajoutant les deux équations, on obtient 2u = 2, soit u = 1 puis A = —1.
Ainsi, on a, Vn € N, w, = (1 +4)" — (1 —14)™.

2 nm
D’apres la question précédente, il s’agit de u,, = \/§n+ 1sin <4) O

Exercice 17. On prend a = ¢ et b = €% avec 0 ¢ {p + 2kn/k € Z}. On a

a+b el 4 et
a—b et —e¢ir’
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Le fait que 0 — ¢ ¢ {2kn/k € Z} implique la non-nullité du dénominateur. Procédons.

On a
el 4 i (il0+9)/2  Li(0—9)/2 | o—i(0—¢)/2

el — eiv  oil0+9)/2  i(0—9)/2 _ o—i(0—p)/2"

En simplifiant et en utilisant les formules d’Euler, on a

e +e?  2cos((0—¢)/2)
e —eiv  2isin((0 — ¢)/2)

Autrement dit, 4 '
e 4 et .cos((0 —)/2)

e v~ sin((6—)/2)
cos(( — 0)/2)

Il s’agit donc d’un imaginaire pur dont la partie imaginaire vaut —
s

in((¢—0)/2)°
O

Exercice 18. On prend a et b sous forme polaire, donc il existe 0 et ¢ deux réels tels
que a = e et b= e avec 0 + ¢ ¢ {7 + 2k7/k € Z}.
On a alors
a+b ¥ 4e¥
14+ab 1+ eilf+e)
ei0+9)/2  i(0—¢)/2 | o—i(0-¢)/2

ci(0+¢)/2  —i(0+¢)/2 1 ¢i(0+¢)/2
2 cos (6_—‘”>

)

/N
B
‘-Fw
A

S o

2 cos

COS (

cos( 2

>

)
o[+ | v

C’est bien un réel. [

Exercice 19. C’est I'inégalité triangulaire appliquée a

la] = a+b+a—b‘

2 2

o b b
a a—

Le cas d’égalité revient au cas d’égalité de 'inégalité triangulaire, a savoir que a + b et
a — b doivent étre liés par une relation de proportionnalité & coefficient positif. Ainsi,
dans ce cas, il existe A > 0 tel que a +b = A(a —b) Soit (1 — X)a = (—1 — )b, ou encore
A—1
b=
14+ A
O

a.

Exercice 20. Comme |z| # 1, on a z # 1, ainsi,

1— Zn—i—l

n
Z k
—_— = z".
1—-2 P
En appliquant le module et en utilisant 'inégalité triangulaire, on a

n
>
k=0

n

<>l

k=0

1_Zn+1
1—2
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n . 1— ‘Z|n+1
De plus, comme |z| # 1, on a Z |z|" =

k=0 L=z
On a donc bien, pour tout z € C, |z| # 1,
‘1 — 2t 1— |z|"
1—z 1— 7|

O

Exercice 21. 1. On a

32
(ﬂ \/§> _ (em/4>32 — 32w/ _ Sim _

PR
]
2. On a
(i) = () =" = 5 = e
1+iv3 2ein/3 4096 4096
]

0

Exercice 22. Prendre z sous forme €' avec 6 €] — 7, 7] et remarquer que

e’p/Q‘ ‘e‘ia/Q + ew/z‘ = 2|cos(0/2)].

|1—|—z|:‘1+ei9

0
Comme g €] —7%,%], cos (2> > 0, donc

6
|1+ z| =2cos <2>

De la méme facon, on a

‘1+22‘:’1+e2w = | = 2|cos(0)] .

’6—19 + 610

2r 2 1
11 suffit alors de remarquer que si § € [—W, W} , alors Q € [—W, W} , donc cos <9) > -,
373 2 3’3 2 2
. 27 27 1
et sinon, 6 €| — m, —5 | ov RS 57 et alors cos(f) < ~53 donc 2|cos(0)| > 1. O

Exercice 23. On remarque que, comme ab # 1,

a—b| 2 12
T =l<=la—b"=|1—-ab|".
Ou encore
b (a—b)@=b) = (1 —ab)(T—ab)
1—6() = a a = a a
— (a—b)@—"b)=(1—ab)(1—ab)
— |a|* —ab—ab+ |b]* =1 — ab—ab + |ab|?
= |a|*+[b]* =1+ |a]* b
= |afA-pP+p*-1=0
= (1—[b*)(jaf>-1)=0
< (1—=[p))(1+[b])(|la] = 1)(Ja] + 1) = 0.
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Cette quantité est nulle si et seulement si |a| =1 ou |b| = 1. O
Exercice 24. 1. Siz € {2kn/k € Z},ona S =2n+ 1. Si z ¢ {2kn/k € Z}, on trouve
2n
S = ef'mz Z eifx'
£=0
1 — 2ntl)iz

1— e

On factorise ensuite par ’angle moitié.

Donc § = e "™

e €22 95 6in((2n 4 1)x/2)  sin((2n + 1)x/2)

S - " =
‘ eiz/2 —2isin(x/2) sin(x/2)
O
L oon Nk
2. Remarquons que Cq +1S1 = Z eilathb) — gia Z (eZb) .
k=0 k=0

Sibe {2kn/keZ, Ci = (n+1)cos(a) et S; = (n+ 1)sin(a). Sinon,

1 — ei(n+1)b _ gila+nb/2) —2isin((n + 1)b/2)
1—ei —2isin(b/2)

Ci+1iS = el

i(atnby2)sin((n +1)b/2) '

En simplifiant, on trouve Cy +1i51 = e sin(b/2)

Ainsi,
. ((n+1)b
by S —
Cl = COS <CL+2) <b)
sin [ =
2
et
. ((n+1)b
' nby St —g
S1 = sin (a+2) Sm<b)
2
L]

3. C’est le méme principe, on considére Cy + i.S2, on reconnait une formule (du bindéme
cette fois-ci) :

Cy + 1Sy = Z <Z> €iak = (1 + eia)n‘

k=0

En factorisant par ’angle moitié, on a

Cy + iy = e™Me/? {2 cos (g)] = 2" cos” (g) eina/2,

On obtient

Cy = 2™ cos <n2a> cos" (;)
et

So = 2™ sin <712a> cos” (;)
UJ



n
4. Cette fois-ci, on pose S3 = Z cos®(x) sin(kx), donc
k=0
n .
C3+ 153 = Z cos®(x)e*®,
k=0

On remarque que si x € {kn/k € Z}, C3 =n+ 1 et S3 = 0 (attention, c’est bien les
multiples de m par de 27 pour avoir le terme qui vaut 1). Sinon,

1 — COSn+1 (m)ei(n+l)x

1 — cos(z)e™™

C3 4153 =

Sauf que la, pas de miracle d’angle moitié pour récupérer la partie réelle, il faut
multiplier par le conjugué du dénominateur et récupérer ce qu’il faut.

On trouve apres un peu de calcul

1 — cos?(z) — cos™ () cos((n + 1)x) + cos™ 2 (x) cos(nz)
1 — cos?(x) '

Cs =

O]

Exercice 25. On remarque qu’un tel z est forcément non nul.
Si z # 0, on multiplie tout par 2z et on a I’équation équivalente :

22— 2224+1=0.

Cette équation a deux solutions, z; et zo tels que z1z0 = 1. Si on note p; et ps leurs
modules respectifs, on a p1p2 = 1, donc si p; < 1, alors py > 1 et inversement. Il reste a
exclure le cas p; = 1 (qui implique py = 1).

Supposons |z1| = |z2] = 1.

Rappelons que 'on a z1 + 29 = 2.

Si z € C\ R, alors 21 et z3 ne sont pas conjugués car z1 + 2o ¢ R, donc z129 # 1.

Sixz € R\ [-1,1], on a |2z > 2, donc 2 < |z1| + |z2| par inégalité triangulaire mais
z1 4+ 29 = 2, donc on a 2 < 2 ce qui est exclus.

On en déduit donc que z; et 25 ne peuvent pas tout deux étre de module 1 puisque
xzeC\[-1;1].

Ainsi, on en revient a la conclusion précédente : au moins une des deux racines est de
module strictement supérieur a 1. [J

Exercice 26. Comme ¢ n’est pas solution, on peut prendre z # i et on a alors

o n

)

z—1

z4+1 2ikm
- =ec n .

z—1
On remarque qu'il suffit de prendre k € [0,n— 1] et que le terme en k = 0 est impossible
(car z — i # z +1).
2ikm

On a alors, z4+i= (2 —i)e » , donc

Autrement dit, il existe k € Z tel que

(1— e¥)z = —i(e%

+1).

Ainsi, on a
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ikm

En factorisant au numérateur et au dénominateur par e »

2 cos (—’k”)
. n
z = —1

Zisin(“%r)'
<k‘7r
cos | —
_\n/
n (%)
sin | —
n
5

1—
Exercice 27. 1. Onazj + 25 + 2 + 20+ 1= 1 0 =0car 29 # 1. O

On trouve alors, z = — , pour k € [1,n — 1].

O]

2. 1 suffit de factoriser la premiére équation par z3 # 0 et d’arranger un peu les termes
ou sans trop réfléchir remarquer que

1\? 1 5 1 1
20+— ) +l20t+t—)-1=z+2+—5+20+——-1
20 20 20 20

donc )
1 1 1 1
(zo+) —|—(zo+> —1=0<=2{+2+14+—+—5=0.
20 20 20 )
Il suffit de remarquer qu’on peut multiplier cette derniere égalité par 23 # 0 pour
avoir 1’égalité de la question précédente. []

1 , . 2 2
3. On a 2o+ — = e2/% 4 = 27/5 — 2 o3 (;) Il s’ensuit que 2 cos (;) est solution
20

de X2+ X —-1=0.

—-1—-v5 -1 5 2
Cette équation a deux solutions (& détailler), 5 V5 et —; \[ Comme cos <57T) >
0, on a forcément
(27r> -1++5
2cos8 | — | = ————
5 2
soit
(277) -14+v56
cos = —.
5 4

O]

6 Elements d’analyse

1. Applications

Exercice 1. Ce sont deux applications de R dans R mais
fog(@) = flg@) = F(1+a2) =2+ 22

alors que
go f(z) =g(1+x) =2+ 2z +2°

Nous n’avons donc pas égalité. [
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Exercice 2. 1. f est surjective car Yy € Z, on a f(2y) = y.
f n’est pas injective car, par exemple, f(0) = f(1).
Remarquons que 'image par g d’'un nombre pair est pair, 'image d’un nombre impair
est impair.
Si on prend z,2’ € Z tels que g(x) = g(2’) alors ils ont tous deux la méme parité.

S’ils sont pairs, on a 2z = 2/, s’ils sont impairs on a 2z + 1 = 22’ + 1, dans tous les
cas, r = 7. Ainsi g est injective.
Prenons 1. S’il avait un antécédent, il serait forcément impair d’apres la remarque

précédente. Or pour avoir 2x + 1 = 1, il faut avoir x = 0 qui est pair. Ainsi 1 n’a pas
d’antécédent. g n’est pas surjective. [

2. Remarquons que go f et f o g sont deux applications de Z dans Z.

Soit x € Z. Si x pair, on a g(x) = 2x, donc f(g(z)) = 2; = . Si = est impair, on a
2z +1-1
2

Remarquons que f(0) = f(1), donc g(f(0)) = g(f(1)), ainsi g o f n’est pas injective.

g(x) =2z + 1 donc f(g(x)) = x. Ainsi, f o g =idy qui est bijective.

Par ailleurs, on a vu que 1 n’avait aucun antécédent par g donc pas non plus par go f.
Ainsi, g o f n’est pas surjective. [

Exercice 3. 1. Soient z,z’ € E tels que f(z) = f(z'). On a alors

9(f(@)) = g(f(2))) == go f(z) = go f(2').

Or, g o f est injective, donc = = 2.

Ainsi, f est injective. [

2. Soient y,y’ € F tels que g(y) = g(v').
Comme f est surjective, il existe x € E tel que f(z) = y et il existe 2’ € E tel que
@)=y
Ainsi, on a go f(z) = g(f(x)) = g(f(2')) = go f(2’). Comme go f est injective, on a
z = 2'. En appliquant f, on a

Ainsi, g est injective. [

3. Soit z € G. Si g o f surjective sur G, alors il existe z € E tel que go f(z) = z.
Donc z = g(f(x)). Ainsi, g est surjective. [J]

4. Soit y € F. On a ¢g(y) € G, donc il existe x € E tel que go f(x) = g(y).
Autrement dit, g(f(z)) = g(y). Comme g est injective, on a y = f(z). Ainsi f est
surjective. [

Exercice 4. 1. Soit y € E. Comme h o g o f est surjective, il existe z € FE tel que
hogo f(z) =y, autrement dit h(g o f(x)) =y, donc h est surjective.
De méme, comme g o f o h est surjective, g est surjective.

Ensuite, soit v,y € F tels que g(y) = g(¢'). On a alors f o h(g(y)) = foh(g(y’)) et
comme f o h o g est une injection, on a y = y/. Ainsi, g est une injection, donc une
bijection.
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Soient z,2" € G tels que h(z) = h(2'). Comme g est une surjection, il existe y,y’ € F

tels que g(y) = z et g(y') = 2. On a f(h(2)) = f(h(2)) qui devient fohog(y) =
fohog(y). Donc comme f oho g est injective, on a y = 3. En appliquant g, on a
g(y) = g(y'), soit z = 2’ c’est-a-dire h injective. Ainsi, h est une bijection.

Soient maintenant x,z’ € F tels que f(x) = f(2’). On a alors 'existence de 2,2’ € G
tels que h(z) = h(2’) puisque h est surjective, puis celle de y,y’ tels que g(y) = z et
g(y') = 2’ car g est surjective. Ainsi, on a fohog(y) = fohog(y') ce qui donne par
injectivité de fohog, y =% donc x =hog(y) = hog(y') = ', soit f injective.
Soit désormais y € F. On a alors hog(y) € E, donc il existe x € F tel que hogo f(x) =
hog(y). Comme h est injective, on a g o f(z) = g(y). Et comme ¢ est injective, on a
f(x) =y donc f est surjective. Ainsi, f est bijective.

O

2. De la méme fagcon que dans la question précédente, on récupére immédiatement 1’in-
jectivité de f et h et la surjectivité de f.
Ainsi, f est bijective.
Soit x € E. On a f(x) € F, donc il existe y € F tel que fohog(y) = f(x). Comme f
est injective, on a hog(y) = z, ce qui donne la surjectivité de h. Ainsi, h est bijective.

Soit y,y" € F tels que g(y) = g(y'). Comme f est surjective, on trouve z, 2’ € E tels
que f(z) =y et f(2') = y'. Comme g(y) = g(y'), on a g((f(z)) = g(f(2')). On a donc
forcément hogo f(x) = hogo f(z') et comme hogo f est injective, on a = 2’ donc
y = f(x) = f(2') = y. Ainsi g est injective.
On prend désormais z € G. On a donc f o h(z) € F, donc il existe y € F tel que
fohog(y) = foh(z). puisque f o ho g est surjective. Comme f est injective, on a
hog(y) = h(z) puis comme h est injective, g(y) = z ce qui donne la surjectivité de g.
Ainsi, g est bijective. O]

Exercice 5. 1. Soit y € f(AN B), donc il existe x € AN B, tel que f(z) =y.
Ainsi, y = f(z) avec x € A, donc y € f(A). De méme, y € f(B).
Ainsi y € f(A) N f(B). On a donc

f(ANB) C f(A) N f(B).
O

2. Si f est injective, il suffit de montrer I'inclusion inverse de la question précédente (on
vient de montrer que 'autre est toujours vraie).

Prenons donc y € f(A) N f(B). Comme y € f(A), il existe z € A tel que f(z) = y.
De méme, comme y € f(B), il existe 2’ € B tel que f(z') = y.

On a donc f(z) = f(2/). Or f est injective, donc x = 2/, donc x = 2’ € AN B donc
ye f(ANB).

On a donc f(A)N f(B) C f(AN B) ce qui donne 'inclusion réciproque de la question
précédente.

On a donc montré que si f est injective, on a V(4, B) € (P(E))? = f(ANB) =
f(A) N f(B)

Réciproquement, soient z, 2’ € E tels que f(z) = f(2').

Ona f({z} n{a’}) = f({z}) N f({'}) = f({z}). Or,siz #2', ona {z} N{a'} =0
et donc f({z} N{a’}) =0, ce qui est exclu. On a donc x = 2/, et ainsi f est injective.
O
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Exercice 6. 1. Soit Y un élément de P(E). Soit il contient a un antécédent possible est
Y \ {a} soit il ne le contient pas et un antécédent est Y U {a}.

Sion prend X et X’ deux éléments de P(FE) tels que f(X) = f(X’), alors on remarque
qu’ils contiennent tous les deux a ou non et que pour le reste, les éléments sont les
mémes puisque f ne change que la présence de a. [J

2. On trouve rapidement que f o f consiste a ajouter a puis 'enlever, ou I’enlever puis
l'ajouter. Dans tous les cas f o f = idp(g), donc f était bijective et sa bijection
réciproque est elle-méme (on parle d’involution). [J

2. Etudes de fonction

Exercice 7. 1. Il s’agit de la composition de cos qui est dérivable sur R a valeurs dans
[~1;1] C R avec = + 23 qui est dérivable sur R. Ainsi, f est dérivable sur R et on a
Vo € R, f'(z) = —3sin(z) cos?(z). O

2. 1l s’agit de la composition de la fonction dérivable sur R a valeurs dans R, x +— 3z
avec la fonction cos qui est dérivable sur R. Ainsi, Vx € R, f/(z) = —3sin(3z). O

3. La difficulté est de déterminer ot cos(2z) = 0, soit quand 2z = g + kmouk € Z.

Ainsi, on a R\ {§ + k5 /k € Z} — R\ {5 + kn/k € Z};x — 2z est dérivable. On
la compose avec R\ {§ + kn/k € Z} — R*;x —— cos(x) qui est aussi dérivable.
On a donc la fonction R\ {§ + k5 /k € Z} — R*; 2 —— cos(2z) est dérivable et ne
s’annule pas, donc son inverse est aussi dérivable sur le méme ensemble.

—2sin(2r)  2sin(27)

cos?(2r)  cos?(2z)’

Pour tout x € R\ {§ + k5 /k € Z}, on a f'(z) = —
0

4. 11 aurait fallu déterminer I’ensemble des réels tels qu'’il existe k € Z avec 22 = g+ k.

L’ensemble de dérivabilité sera R privé de I’ensemble de ces points.

Ensuite, sur cet ensemble, on a la composition de z — z? avec tan qui sont deux
fonctions dérivables, I'une sur I'ensemble évoqué a valeurs dans R\ {5 + kn/k € Z}

sur lequel tan est dérivable. Ainsi, pour tout x dans cet ensemble, on a f'(z) =

2x
21’(1 + tanQ(:EQ)) = m D

5. Sur R \ {1}, f est le quotient de deux fonctions dérivables dont le dénominateur ne

1 -1
s’annule pas. Ainsi, pour tout z € R \ {1}, f'(z) = % 0

(In(z))?
6. I1 s’agit du quotient de deux polynémes donc, f est dérivable sur I’ensemble sur
lequel le dénominateur ne s’annule pas. Ainsi pour tout z € R\ {—%}, ona f'(x) =
49(2z —1)8

. O
(bx +1)8

7. C’est le quotient de deux fonctions dérivables dont le dénominateur ne s’annule qu’en

(x — l)ex' .

0. Ainsi, pour tout z € R*, on a f/(x) = 5

X

8. Sur | — 1, +o0], la fonction x +— 1 + x est dérivable est a valeurs dans R* , donc, par
composition, x — In(1 4 z) est dérivable sur cet intervalle.
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10.

11.

12.

13.

14.

Ainsi, comme sur | — 1, 0[U]0, +00], le dénominateur ne s’annule pas, f sera dérivable
r—(14+z)In(l+=z)

sur cet ensemble. Pour tout x €] — 1,0[U]0, 40|, on a f'(z) = (1 1 )

O]

. Attention, il faut absolument réaliser qu’il faut passer en notation exponentielle. Ainsi,

on a f(z) = el@t2)n@),
Par produit de fonctions dérivables, on a x — (2 4 2)In(z) dérivable sur R% qu’on
compose avec exponentielle, dérivable sur R. Ainsi, f est dérivable sur R%} et pour

zIn(z) + 242 oro)me)

tout z € R* , on a f'(z) =
x

Par produit de fonctions dérivables sur R, f est dérivable sur R’ , on a pour tout
xeRY, f/(z) =In(z)+1. O
Sur |1, +o0[, In est a valeurs dans R’ , donc on peut composer par In. Ainsi, f est

.0

dérivable sur |1, 400 et on a pour tout x €]1,4o00[, f/(x) =

1
zln(x)
Attention a bien séparer le cas R et R*.

Sur R* , on trouve f(z) = xIn(x) qui est dérivable par produit et on trouve Yz € R |
f(z) =In(x) + 1.

Sur R* | on trouve f(z) = zln(—x) qui est dérivable par composition de x — —x a
valeurs dans R* avec In puis par produit. Ainsi, on a Vo € R* , f'(z) = In(—=z) + 1.

On peut résumer ¢a en simplement, f dérivable sur R* et Vo € R*, f'(z) = In(|z|)+1.
O

f(z) = e20B) | 11 9’agit d’une composition de 3 fonctions dérivables sur R tout entier.
Ainsi, f est dérivable sur R et on a, pour tout z € R, f/(z) = 3 cos(3z)e(32),

Remarquons que f(z) = /22(x + 6). Ainsi, sur [—6, +-00[, > 2%(x+6) est & valeurs
dans R,. Cependant, la fonction racine n’est pas dérivable en 0. Ainsi, on doit se
placer sur | — 6; 0[U]0, +-00[ ot & — z%(x + 6) est dérivable a valeurs dans R* donc on
peut composer par la fonction racine carrée qui est dérivable sur R

322 4+ 12z 3z(x +4)
On a alors Vz €] — 6;0[U]0, +o0], f/(z) = = .
] V] L (@) 2V 4+ 622 2y a3 4 622

Exercice 8. 1. Elle est dérivable sur R, comme produit de fonctions dérivables sur R.

On a pour tout x € R, f'(x) = (1 — x)e”®. On en déduit qu’elle est croissante
sur | — 0o, 1], décroissante sur [1,+oo[, tends vers —oo en —oo; vers 0 en 400 (par
croissances comparées pour cette derniére limite).

Y




O
2. x> e2% et dérivable sur R par composition de deux fonctions dérivables sur R. De
plus, f est alors un produit de fonctions dérivable sur R donc elle est dérivable sur R.

On a alors Vo € R, f'(z) = (1 — 422)e~2*" donc décroissante sur | — oo, —3], puis
croissante sur [—3, 3] et enfin décroissante sur [3,4o0l.

Par croissances comparées, elle tend vers 0 en —oo et +o0.

1
=
|
[oy)
l
[\
1
=
(@)
—l
\&
(5
W
8

O

3. Elle est dérivable sur R+* par produit de fonctions dérivables sur R’ . On a pour tout
z € RY, f/(z) = In(z) + 1. f est donc décroissante sur ]0,e™'], puis croissante sur
[e~!, +oo[. Par croissances comparées, elle tend vers 0 en 0 et par produit vers +oo
en +oo.

OT / 2 x

O
Exercice 9. A connaitre quasiment par coeur tellement c’est classique (et une technique
classique).
Notons h la fonction définie et dérivable sur | — 1;4o00[ par h(z) = z — In(1 + z), bien

définie et dérivable car sur cet intervalle 1 + 2z > 0, donc on compose des fonctions
dérivables puis on ajoute des fonctions dérivables.

Onah/(z) =1- oz H% Ainsi, h'(x) est du signe de x puisque 1+ z > 0. Donc
h est décroissante sur | — 1;0] et croissante sur [0, +oo[. Ainsi h est minimale en 0. Or

h(0) =0, donc Vz €] — 1+ oo|, h(z) > 0, ce qui est équivalent a

Ve €] —1;4o00[; In(l+4+2z) <.
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Exercice 10. Posons f la fonction définie sur R par f(x) = z — sin(x). Il s’agit d’une
somme de fonctions dérivables sur R, donc dérivons-la.

On a pour tout « € R, f/(x) = 1—cos(z) > 0. Ainsi, f est croissante sur R. Par ailleurs,
f(0) = 0 donc f est négative sur R_ et positive sur Ry ce qui est équivalent aux deux
inégalités démandées. [

Exercice 11. 1. Remarquons que f est la somme (ou plutot la combinaison linéaire)
de fonctions dérivables sur R. Dérivons-la.

On a f'(z) = =1+ e . Or, f'(x) > 0 si et seulement si e™® > 1, soit —z > 0, soit
r <0.

Ainsi, f est croissante sur R_ et décroissante sur Ry et f(0) = 0.

Ainsi, pour tout z € R, f(z) <0.O

Exercice 12. Notons f la fonction définie sur R par f(z) =e* —1—z — ‘%2 — ‘%3. Elle

est dérivable sur R et on a

ZE‘2

f’(m):e$—1—$—?.

f’ est aussi dérivable sur R et on a
f"(z)=¢e"—1—uz.

Continuons encore une fois, f” étant encore dérivable sur R. On a alors f®)(z) = e* — 1.
Ainsi, f® est négative sur R_ et positive sur R.
On a donc f” décroissante sur R_ et croissante sur R . Par ailleurs f”(0) = 0, donc f”
est positive.
Ainsi, f’ est croissante sur R. Comme f/(0) = 0, f’ est négative sur R_ et positive sur
R4. On a donc f décroissante sur R_ et croissante sur R .
Comme f(0) =0, on a alors, Vo € R, f(x) > 0 ce qui est équivalent a
2 3
R R

O]

Exercice 13. 1. Notons T' € R’ une période de f.

Commengons par montrer que, pour tout € R et pour tout n € N, f(x+nT) = f(z)
en faisant une récurrence.

Soit z € R. Notons, pour n € N, P(n) : < f(x +nT) = f(z). »
Il est clair que P(0) est vraie.

Soit n € N quelconque fixé. Supposons P(n) vraie. On a f(z + (n+ 1)T) = f(x +

nT +T) = f(z+nT) car f est T-périodique, puis en utilisant P(n), on a
fle+(n+1)T) = f(z).

Donc P(n+ 1) est vraie. Ainsi, on a démontré par récurrence que pour tout x € R et

tout n € N, f(z +nT) = f(z).

Notons 7" un de ses périodes. On prend z < y deux réels quelconques. Il existe n € N

tel que x < y < x +nT (grosso modo n = L%J + 1 si vous n’étes pas slirs que ¢a

existe). On applique f a cette égalité pour obtenir que f(z) < f(y) < f(z+nT) = f(x)
si f est croissante. Ainsi f(x) = f(y). Si f est décroissante, I'inégalité change de sens
mais la conclusion reste vraie.

Ainsi, pour tous réels z,y, on a f(x) = f(y) donc f est constante. [J
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2. On peut affirmer assez rapidement qu’elle est 127-périodique. Pour en savoir plus
(est-ce la plus petite ?), il faudrait bien connaitre ses formules de trigonométrie. [

Exercice 14. Remarquons que g et h sont bien définies sur R car f l'est et x — —x est
a valeur réelles (pour la composition).

De plus, Vx € R, —z € R (autrement dit, R est bien centré autour de 0).

Ensuite, Vx € R, on a

gy = LERHICCR) S v _

et

g est paire, h est impaire.
Remarquons par ailleurs que f = g + h. On dit que g est la partie paire de f alors que
h en est sa partie impaire. [J

Exercice 15. 1. Notons g :  — f(—x). Par composition de fonctions dérivables, la
composition étant évidemment licite, g est dérivable. En la dérivant on a, Vz € R,
g' (@) = —f'(—=).

Mais si f est paire, g = f, donc Vx € R f'(z) = — f'(—z) & f'(—x) = —f'(x) avec [’
définie sur R qui est centré en 0. Ainsi, f’ est impaire. [J]

2. Avec la méme fonction que la question précédente, on a cette fois ci g = —f, donc
Vr e R, ¢'(z) = —f'(x).
Ainsi, Vo € R —f'(z) = —f'(—z) & f'(z) = f/(—z). Comme [’ est définie sur R
centré en 0, on a cette fois-ci f/ paire. [

3. Notons 7T une période de f. Cette fois-ci, posons h : z +— f(x + T'). Par composition
de fonctions dérivables, la composition étant évidemment licite, h est dérivable. En la
dérivant on a, Vo € R, b/ (z) = f'(x + T).

Ainsi, comme f est périodique, on a f = h, donc Vx € R, f'(z) = f'(z + T).
Ainsi, f’ est T-périodique. [
Exercice 16. 1. On peut bien entendu montrer que la fonction est dérivable, I’étudier

et regarder ce qu’il se passe. Sinon, on peut se souvenir de la forme canonique du
trinéme du second degré et remarquer que Vr € R,

1

O ey

4
I1 devient donc clair que Donc f admet un maximum car Vo € R, 0 < f(x) <= 3=

1
f (—2> et est minorée par 0. Elle n’a pas de minimum car clairement lim f(z) = 0.

T—>+00
O
‘ 1, 1 o
2. On sait que Vo € R%, |—| < —, donc en multipliant par = > 0, on a
x T
1
fl)=z|-]<z-=1
T
. 1
De plus, on sait que Vz € RY, f(z) =2|—-] >0
x



On a donc Vo € R,
0< f(z) < 1.

1
Par ailleurs, f(2) =0 et f <2> =1, donc 0 et 1 sont respectivement le minimum de
f et son maximum. [J
Exercice 17. 1. Pour tout z € R, —z € R (donc R est bien symétrique par rapport a

0), et on a ch(—xz) = ch(x) et sh(—z) = —sh(x). La fonction ch est donc paire et sh
impaire. [J

2. Il suffit de développer et simplifier. On a pour tout z € R,

T —x\2 r _ ,—x\2 2x 2x _ (,2¢ __ —2z
() —sh(@) = (CEE (E T Ta2r et (Ro2ne D g

]
3. Remarquons que, Yz € R, e = ch(z) + sh(z).
Ensuite, on a pour a, b réels

eatb 4 g—a—b  gagh 4 o—ap—b
2 2

ch(a+0b) =

En utilisant la remarque qu’on vient de faire, on obtient

(ch(a) + sh(a))(ch(b) + sh(b)) + (ch(—a) + sh(—a))(ch(-b) + sh(—b)).
2

ch(a +b) =

En utilisant la parité, on peut un peu simplifier

ch(a) 4 sh(a))(ch(b) + sh(b)) + (ch(a) — sh(a))(ch(b) — Sh(b)).
2

ch(a +b) = (

Il ne reste qu’a développer pour obtenir

2ch(a) ch(b) + 2sh(a) sh(b)

ch(a +b) = = ch(a) ch(b) + sh(a) sh(b).

2
De la méme facon, on a
6a—i—b _ e—a—b eaeb _ e—ae—b
sh(a +b) = 5 = 5
Puis
sh(a +b) = (ch(a) 4 sh(a))(ch(b) + sh(b)) ; (ch(a) —sh(a))(ch(b) — sh(b))‘
Et enfin,
sh(a +b) = 2ch(a)sh(b) + 2sh(a) ch(b) _ ch(a) sh(b) + sh(a) ch(b).

2

On remarque que 1'on retrouve un semblant de formules trigonométriques (avec des
signes qui ne sont pas forcément les mémes). [
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4. On peut remarquer que les fonctions ch et sh sont dérivables sur R car elles sont
combinaison linéaire de z — e et z — e~ * qui le sont.

Par ailleurs, on a pour tout z € R

On a donc ch’ = sh et sh’ = ch. O

ch/(z) =

T —T

e” —e

2

5. Comme ch est une somme d’exponentielles donc toujours strictement positive. sh est
donc strictement croissante sur R. De plus sh(0) = 0, donc sh(x) < 0 pour x € R_ et
sh(z) > 0 pour x € Ry. En résumé :

t —00 0 +00
ch(x) +
400
sh /0/
—00

La dérivée de ch est sh. ch est donc strictement décroissante sur R_ et strictement
croissante sur RT. On a

t —00 0 +00
sh(x) - 0 +
+00 +00
Ch \ /
! 0

6. Pour tout z € R, ch(z) —sh(x) = e™* > 0 donc la courbe de ch est toujours au-dessus
de celle de sh.

En pointillés, la courbe représentative de sh, en trait plein, celle de ch avec sa tangente

horizontale
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O

Les questions suivantes nécessitent d’avoir vu la définition d’application surjective et
injective du chapitre sur les applications. Je laisse ces questions dans ce chapitre car
elles concluent cet exercice que je vous conseille de reprendre une fois ces définitions
apprises.

7. On prend z, 2’ € R tels que sh(xz) = sh(a’), ce qui est équivalent a

sh(z) = sh(z') & sh(z) —sh(z') =0

et — e T et _ e
& I ,—_O
- et —e —(26 —¢ )70
—2)/2 —(x—2")/2 —(—z")/2 —2/)/2
& e(x"'xl)/Qe(x o _26 — —e‘(w—i-x’)/Qe S Q_e(z - =0

o eleta)/2gy (33 —2 95/) _ e @=a)/2 gy (_“:_235,) =0
J— / / - /
o eleta)/2 gy <x 5 * > + e (@=2)/2gp <:L‘2:1:> = 0 car shimpaire

Xr — ZII/ ’ ’
(z+2")/2 —(z—a")/2\ _
& sh( 5 ) (e +e ) =0

x—a z—a
2sh h =0.
o s(2>c(2> 0

Or ch ne s’annule jamais et sh ne s’annule qu’en 0, ainsi *5% = 0 donc z = 2’. On a
donc

sh injective.
Il aurait été plus malin de remarquer que sh(a+b)+sh(a—b) = 2ch(a) ch(b) d’apres les
/
T —x

formules précédemment démontrées et donc de remarquer qu’il faut choisir a = 5
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z—a
2
On a alors sh(z) qui sera équivalente a (e —e¥)(e” +e7Y) = 0 donc... O

et b= —

8. Le plus simple est d’utiliser le théoréme des valeurs intermédiaires. On a sh continue

sur R avec lim sh(z) = —oo et lim sh(z) = +oo. Ainsi, d’apres les théoreme des
T—>—00 T——+00

valeurs intermédiaires, pour tout y € R, il existe = € R tel que sh(z) =y. O

9. Soit y € R. On cherche z tel que sh(zx) = y, soit € —e™* = 2y. On multiplie tout par
e’ # 0 ce qui donne

e2x — 1 = 2ye®.
Pose X = €%, I’équation est donc équivalente &
y 1€q q

X2 —2yX — 1.

Son discriminant est A = 4y? +4 = 4(y? +1) > 0.

OH a donc deux SOhltiOl’lS
2y V 4(y2 1) 2 2
X = > =y—y2+lou X =y+/y2+1.

Cependant, on a y% + 1 > y? donc en appliquant la racine carrée on a |y| < /y2 + 1.,
donc y < v/y? + 1, ainsi la premicre solution est négative ce qui est exclu.

Par ailleurs, on a y+ /42 + 1 > y+|y| = 0, donc la deuxiéme est strictement positive.

Ainsi, on a €® = y + /y2 + 1 > 0. On peut donc écrire que, pour tout y € R, on a
lexistence d'un unique = € R tel que sh(z) =y, et il s’agit de x = In(y + /3% + 1).

Ainsi, on a ainsi démontré la bijectivité de sh et sh™1(y) = In(y + /y2 + 1).
Bien entendu, cela redémontre au passage le résultat des deux questions précédentes.

O]

10. Est-ce que ch est injective 7 surjective sur R 7 Bijective de R dans R ? Si elle est bijec-
tive, exhiber sa réciproque. ch est paire donc ch(—1) = ch(1), ce qui implique qu’elle
n’est pas injective. Et comme Vz € R, ch(xz) > 0, 0 n’admet pas d’antécédent donc
elle n’est pas surjective. Elle n’est donc pas bijective et n’admet pas de réciproque.

Remarquons que si on considere la restriction de ch & Ry et qu’on considére son
ensemble d’arrivée comme étant [1,+oo[, cela change tout et dans ce cas, elle est
bijective et on peut déterminer une réciproque, avec le méme principe que ce qu’on a
fait pour sh. OJ

Exercice 18. 1. a—f(a:,y) =y + 92%y% et g(w,y) =z + 2y + 625y O
Oz y
af 2 Y af 2z 1
2. 2L g+ —L et 2L —r— =
g L0 Y) vttt o oe et ay(ﬂw) LAy e
of _ elrayry? o OF — Itay+y?
af l—zy af

ZJ - _ ZJ - _ 1—zy
4 oo (@,y) =y(1 —ay)e ™ et ay(ar,y) z(1—zy)e O
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10.

3.

of 1 of 1

%(x,y):m—i-h'et ETy(x’y):x—kyD
ﬂ _ Z/2 ﬂ 2y
6.%'<x7y)_ 1+xy2 et 8y(x’y)_ 1+:1:y2
g — zy g — 2,7y
ax(ac,y)—(l—i—xy)e et 8y(x,y)—xe O
g(x ) = 2z g(gc )__ﬂ
oc Y T2 T ey Y T T
of _(1—:U2)y2 of . 2xy
8$<x’y)_ (1_1_1,2)2 et 8y<x’y)_ 1—|—SE2.
of 1—9? af 1— a2

0s ) = Ty 0y Y T W

Déterminer des primitives

Exercice 19. 1. La fonction que nous nommerons f est continue sur Ry en tant que

produit de fonctions continues donc admet une primitive sur cet intervalle.

2 5 2
On a, Vzx € Ry, f(z) = z3 3. Ainsi, sur Ry, une primitive est z — 5335 —3%

2

2
g:cQ xr — gx\/i O

njw

. La fonction considérée est continue sur | — co; —1[ ou sur | — 1; +oo[, donc elle admet

des primitives sur I’'un ou l'autre de ces intervalles.

3 1+2 2
On remarque que TS _ T tl =1+ ce qui permet de trouver qu’une
z+1 r+1 z+1
primitive sur | — 1, +o0[, est par exemple x — x + 2In(x + 1).
z+3 —1
Sur | — oo, —1], on écrira plutot rEs =14 2——— — ce qui donnera une primitive
x+1 —(x+1)

sous la forme x +— x + 2In(—z — 1).
Autre possibilité, rédiger a ’aide du changement de variable qui rend les choses plus
faciles. OJ

La fonction est un quotient de fonctions continues sur R dont le dénominateur ne
s’annule pas, et on reconnait qu’elle admet une primitive sur R de la forme z —
In(1 + e”).

Autre possibilité, rédiger a I'aide du changement de variable qui rend les choses plus
faciles. OJ

Il s’agit du produit de deux fonctions continues sur R* , donc elle admet une primitive
sur cet ensemble.

Pour la chercher, on va devoir faire une intégration par parties. On cherche, pour
z € RY,

/1 "t n(t)dt.

Posons u, v deux fonctions C*(R%) définies par



On a alors

Ainsi
/xtl it = ) - L[ tar
. n =3 n(z 5 ), )
Soit ) .
z T 1|z
1 S P I i
/1 thn(t)dt = - n(z) — 5 [2]1
On a alors

z T T 1
tin(t)dt = —1 - — 4+ -.
/1 n(t)dt = - In(a) - 2+

2 2
xln(x)_mi'D
2 4

5. Sur l'intervalle considéré, ces deux fonctions sont des quotients de fonctions continues
dont le dénominateur ne s’annule pas donc admettent des primitives.

Ainsi, sur RY , une primitive est z

Remarquons que (u + v)(x) = 1 donc w + v a pour primitive x.

sin(z) — cos(x)

Par ailleurs, (u — v)(z) = avec sur cet intervalle cos(z) + sin(z) > 0.

cos(x) + sin(z)
Ainsi v — v a pour primitive x — — In(cos(x) + sin(z)).

1
Ainsi, u admet pour primitive x +— 5(1’ —In(cos(z) +sin(z))) et v admet par exemple
1
x +— —(x + In(cos(z) + sin(z))), ce qu'on obtient en faisant la moyenne de u + v et

u — v ou la demi-différence.

Ca peut s’étendre & n’importe quel intervalle ol cos(z)+sin(x) est strictement positif,
voire strictement négatif a condition de gérer une primitive de u — v sans se tromper.

O]

Exercice 20. 1. Sur [—1, 400,  — v/x + 1 est continue par composition de x — =+ 1
a valeurs dans R avec la fonction racine carrée continue sur R.

On peut remarquer que z/1+z = (z+ Ve +1—+Vo+1=(z+ 1)% —(x+1)
intégrer terme a terme.

N

et

Autre possibilité, rédiger a I'aide du changement de variable qui rend les choses plus
faciles.

L’ensemble des primitives de cette fonction est constitué des fonctions définies sur
[1, +00[ par
2 4

nlw

2
w,_>,($_|_1)§_

7 (x+1)

W N

O]

2. Cette fonction admet des primitives sur chaque intervalle ne contenant ni 1 ni —1
puisque qu'’il s’agira alors d’un quotient de fonctions continues dont le dénominateur
ne s’annule pas.

Il faut ensuite penser a écrire

1 1 1 11 -1 1

1
1—22  (1-z)(1+2) _2(1—x)+2(1—|—x) P E g
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qu’on peut intégrer terme a terme.

On trouve alors que les primitives sont les fonctions définies sur un intervalle ne
contenant ni 1 ni —1 de la forme

1 1
x> —iln(\l—x\)+§ln(\1+w\)+k; k € R.

O]

. Il s’agit d’un produit de fonctions continues sur R.

Pour chercher une primitive, on va devoir faire une intégration par parties. On cherche,
pour z € R,

/ (2t — 1)e3dt.
0

Posons u, v deux fonctions C*(R) définies par

u(t) =2t—1 u'(t) =2

3¢
Ainsi,
/Ox(Qt —1)e3tdt = {(215 - 1);e3t]: - /OI geStdt = é(z@ —1)e* + % — Eeﬂz.
rom /x(2t —1)edtdt = 1(233 — 1) + 1 ge?’“E + 2
0 3 3 9 9

1
Donc sur R, I’ensemble des primitives est {x — §(6x —5)e3 +k/k e R}. O

. Il s’agit d’un produit de fonctions continues sur R, donc elle admet des primitives sur
R.

Pour chercher une primitive, on va devoir faire une intégration par parties. On cherche,
pour z € R,

/I tsin(t) cos(t)dt.
0

Posons u, v deux fonctions C*(R) définies par

u(t) =t u'(t) =1
1
V' (t) = sin(t) cos(t) wv(t) = 5 sin’(t)
Ainsi,
T t 2]’ 1.9
/ tsin(t) cos(t)dt = |- sin“(t —/ —sin“(t)dt
0 2 o Jo 2
T VRN N L
= 5 sin (x) 5/, sin“(t)dt
1 — cos(2t) z 4 x — 3 sin(2z)
Or, sin?(t) = — donc / sin®(t)dt = —
0
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Ainsi, on a
x

o . 1 .
/0 tsin(t) cos(t)dt = 5 sin?(x) — g(Qw — sin(2x)).

Sur R, 'ensemble des primitives est
xr . 2 1 .
{z — 5 sin (x) — §(2m —sin(2z)) + k/k € R}.

1 — cos(2t
Le plus simple est encore d’utiliser sin?(t) = 2() ce qui donne, apres simplifi-

cations,

{;1: — é(sin(2x) — 2z cos(2z)) + k/k € ]R} .

Il est bien entendu tout & fait possible que vous trouviez une expression différente en
ayant choisi d’autres formules de trigonométrie. [

. Sur R? il s’agit du produit de fonctions continues, donc elle admet une primitive.
Encore une fois, on va devoir faire une intégration par parties. Soit z € R* |

z 1n(t)
t.
S

Posons u, v deux fonctions C*(R%) définies par

1
u(t) =In(t) o/'(t) = :
1 1
'U,(t) = ? 'U(t) = —Z
Ainsi,
T In(t 1 r T o1 1 17"
/ n®) gy — {—ln(t)} —/ g @) H .
1 t2 t 1 1 t2 xr t 1
Donc - | .
/ —n(;)dt _ @) 1
1t x x
- —1 —In(z)
On en conclue que I'ensemble des primitives sur R est o — ——— + k/k € R.
T

O]

Exercice 21. Remarquons que F est définie sur R, et si x € R, —z € R.

—T
Ensuite, considérons pour z € R, F(—x) = / f(t)dt. Posons le changement de variable
0

uw = —t qui est C! sur R avec du = —dt. On a alors

Fea) = [ 0t = [ f-)(=dw) = = [ f(~u)du

Or f est paire, donc f(—u) = f(u). Ainsi,

F(—z) = — /0 F(w)du = —F(z).

Ainsi, F' est impaire. [
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7 Suites usuelles

Exercice 1. 1. Remarquons que, si 'on note r la raison de cette suite arithmétique, on
a
ugo = u1s + (80 — 15)r
393 — 133 _4
65
Ainsi, u; = w15 + (1 — 15)4 =133 —56 =T77.

Par ailleurs,

soit r =

80 80
Sgo = Zuk: Zul—i-(k—l)él
k=1 k=1
79
= 80u; +4 Z k par linéarité et avecl = k — 1
£=0

_ g0 x 77442 x80

— 80(77+2 x 79)
= 80 x 235

= 18800

Pour les fans de formules, il était confortable de se servir de Sgg = 80% a condition
de s’en souvenir. []

2. Si on se souvient que S5 = 15% =15 x 73 = 1095, ¢a va vite.

Sinon, en notant r la raison de la suite, on trouve que r = “5* = 10.

Ainsi,
15 15
Sis = Zuk = Zu1+(k—1)10
k=1 k=1
14
= 16uy + 10 _ k par linéarité et avecl =k — 1
=0
14 x 15
— 15 x3+10—
= 45+10 x 105
= 1095.
O
3. Si on note r la raison de la suite, on cherche n tel que u, = —16, donc u; + (n—1)r =
—16 soit encore 5+ (n — 1)r = —16.
7
Par ailleurs, on veut S, = — 5

n n
Or S, = Z up = Z 5+ (k — 1)r. En utilisant la linéarité de la somme et en posant
k=1 k=1

(=k—1, ona
n—1
-1 1 -1
Sn:5n+r2k:5n+rn(n ):n0+(n )T.
= 2 2
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Or, pour le n cherché, (n —1)r = —16 — 5, donc

10 — 21
Sp,=n 5
Cependant, S, = —%7.
On a donc I'équation —% = n_T, soit n =T7.
Encore une fois, on aurait pu gagner un peu de temps en se souvent que S, = (n —

1)“1+T”" On trouve n = 7 (il faut poser le calcul de S,, avec une raison inconnue et
celui de u,, avec la méme raison inconnue, on trouve un systéme a deux équations et
deux inconnues et on récupere n.) O

Exercice 2. 1. On a
24
So4 = Z Ug,
k=0
24

= > 3"

k=0
1— (_3)25
1—(=3)
1+ 3%
1 .

—325 parce que 25 est impair, mais c’est une

On remarquera bien que (—3)% =

remarque inutile bien entendu. [J

2. On a
15
Sis= > u
k=0
15 1 k—1
By
PN
15 I\
= —2><12Z<—2>
"0 16
1— (=1
= -2 21>
=)
1
= —16(1—21>.
[

3. Si on note ¢ la raison de la suite, on a uy = ¢3uq, donc 54 = ¢32, ainsi ¢® = 27 ce qui
est équivalent & ¢> — 27 = 0 soit encore

(¢—3)(g*+3¢+9)=0

qui n’a pour seule solution réelle que 3.
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On a alors
4

54: Zuk

k=0
4

= Z3k_1ul
Ic:O4
2 k
= §223
k=0
21-—23°
31-3
1
= -(3° -1
537 =1)
242

3

O

Exercice 3. 1. On note, pour tout n € N, P(n), < u,, existe et u, > 0. >
On a ug = 1 donc P(0) est vraie.
Soit n € N quelconque fixé. Supposons P(n) vraie.

On a uy, > 0, donc 4u,, > 0. On peut bien appliquer la racine carrée qui est strictement
croissante pour obtenir
vViu, > 0.

Ainsi, on a bien montré I'existence de u,11 et sa stricte positivité. P(n+ 1) est vraie.
On a montré par récurrence que (uy)nen est bien définie et strictement positive.

Remarquons que presque a chaque fois qu’on vous demandera de montrer qu’une
suite est bien définie, il faudra faire une récurrence avec la propriété <« u, existe >.
Attention, si vous mettez des parenthéses autour de u,, on ne parle plus du terme wu,,
mais de la suite dans son intégralité, donc ce n’est plus une propriété portant sur un
entier donc impossible de faire une récurrence. [J

2. Voir plus bas. O

3. On peut bien la définir puisqu’on a démontré précédemment que Vn € N, u,, > 0.

On a, pour n € N,
Ung1 = In(tny1) — In(4)
= In(v4u,) —In(4)
_ %(1n(4) +In(uy,)) — In(4)
- %(ln(un) —In(4))

= —vp.

1
Ainsi (vy,) est géométrique de raison ok On a alors Vn € N,

_ 1
Un_2n’00.
—In(4
Or v = Infug) — In(4) = ~In(4). On a done ¥n € N, v, = a7
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4. Comme, Vn € N, v, = In(u,) —In(4), on a

On trouve u, = 92(1=3r).

Comme lim on = 0, on trouve (par composition avec la fonction exponentielle
n—-+o0o
continue, nous le reverrons ultérieurement) wu, —— 22 = 4. [J
n—+00

Exercice 4. 1. Il s’agit d’une suite arithmético-géométrique. On cherche ¢ € R tel que
{=—-L—5,

soit £ = —10.
On pose alors Vn € N, v, = u,, + 10.

On a alors, pour n € N,

Upntl = Upy1 + 10

1
= Sun— 5+ 10
Or u, = v, — 10, donc
1
Upgl = i(vn —10)+5
1
= ivn.

Ainsi, (vn)neN est une suite géométrique de raison >

1
Ainsi, pour tout n € N, v,, = Q—nvo. Or vg = ug + 10 = 13, donc

13
Uy = 27
On revient alors a la question posée et on peut désormais affirmer que pour tout
N _ 13 O

2. Il s’agit d’une suite arithmético-géométrique. On cherche ¢ € R tel que

{=-20+1,
1
it { = —.
soi 3
1
On pose alors Vn € N, v,, = u,, — 3"
On a alors, pour n € N,
1
Un4+1 = Up41 — g
1
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1
Or up = v, + 3 donc

1 2
Un+1 = -2 'Un“‘g +§

= —2vuy,.

Ainsi, (v, est une suite géométrique de raison —2.
) neN

Ainsi, pour tout n € N, v, = (=2)"1v1. Or vy = ug — % = %, donc

(=2)" 1
3 T3

Remarquons que 'on aurait aussi pu déterminer ug et se rapporter a la valeur de uy,

mais c’est moins efficace. [J

On peut désormais affirmer que pour tout n € N, u,, = —

. Il s’agit d’une suite arithmético-géométrique. On cherche £ € R tel que

£=20+43,
soit £ = —3.
On pose alors Vn € N, v, = u, + 3.
On a alors, pour n € N,
Upgl = Upg1 +3
= 2u,+3+3

Or u,, = v, — 3, donc

Un+1 = 2(Un—3)+6
= 2v,.

Ainsi, (vp)nen est une suite géométrique de raison 2.

Ainsi, pour tout n € N, v, = (2)"2vy. Or vg = ug + 3 = 5, donc

vy = 27725,

On peut désormais affirmer que pour tout n € N, u,, = 2725 — 3

Exercice 5. Il s’agit d’une suite arithmético-géométrique. On cherche ¢ € R tel que

50 =10+ 8,
soit £ = 2.
On pose alors Vn € N*, v,, = u,, — 2.
On a alors, pour n € N*,
Uptl = Upyl — 2
1 8
= - - =2
35Ut
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Or u,, = v, + 2, donc

1 2
Un+1 = 5(Un + 2) — 5
1
= 57)71.
Ainsi, (vn)neN* est une suite géométrique de raison 6
Ainsi, pour tout n € N*, v, = Wul' Or vy =u; —2 = —1, donc
_ 1
Up — —F
On a pour tout n € N*, u,, = T + 2. O

Exercice 6. 1. Soit (u,)nen une suite arithmétique. Notons r sa raison. On a pour tout
n € N upt1 = upn + 7 et donc pour tout n € N*, wy = tp—1 +7 00 Up—1 = up — 1.

Ainsi, pour tout n € N,

Up+l T Up—1 _ Up +7+ Uy — 7T

2 - 2

= Up.

On peut montrer que la suite (up41 — Up)nen est constante ce qui permettra de
conclure. [

2. Cette relation est équivalente a Vn € N*| 2uy, = un41 + un—1 OU encore a
Up41 — Up = Up — Up—1-

Ainsi, la suite (up4+1 — Un)nen est constante. Autrement dit, il existe r € R tel que,
Vn € N,
Up+l — Up =T <= Upt]l = Up + 7.

Il s’agit donc d’une suite arithmétique. [J

Exercice 7. On peut le faire directement en cherchant si on peut trouver a,b € R tels

que
1 a b

Uk Uk+1 Ul Uk+1
en écrivant que ugi1 = up + r ou 7 est la raison de la suite arithmétique (ux)gen. Il
faut ensuite procéder par télescopage et tout réduire au méme dénominateur une fois les
simplifications faites.

n
. . 1 n+1
Sinon, on peut aussi poser, pour n € N, P(n) : < E = L>.
o UkUk+1  UoUn+1

Tout a bien du sens puisque par hypothese, la suite (uy)n,en ne s’annule pas.

0
1 1
Ona » = donc P(0) est vraie.
o UkUk+1  UoUl

Soit n € N quelconque fixé. On suppose P(n) vraie.

On a
(a2 | G| 1
Z Uper1 Z UpU + Upt1U
b—0 YkUk+1 k=0 ‘kYk+1 n+1Un4-2
1 1
- T + d’apres P(n)

UoUn4-1 Un4+1Un+2
(n + 1)upt2 + uo

UQUn+1Un+-2
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Comme (up)nen est arithmétique, notons r sa raison. On a alors
(n+D)upyotup = (n+1) (upt1+7r)+uo = (n+1)upr1+uo+(n+1)r = (n4+1)upt1+unt1.

Ainsi,
(n+ Dupta +uo = (n+ 2)Upy1.

Ainsi, on a

ntl 1 B (n + 1)un+2 + ug
192:%) UkUk+1 N UOUn+1Un+2
_ (n + 2)uni1
B UOUn+1Un+2
. n+2
B Uoun+2'

Ainsi, P(n + 1) est vraie.
On a donc démontré que si (up)nen est une suite arithmétique dont aucun de ses termes
n’est nul, on a, pour tout n € N,

" 1 n+1

o UkUk+1  U0Un+1
O

Exercice 8. 1. Supposons l'existence d’une telle suite arithmétique (wy,)nen. Alors il
existerait deux réels a et b tels que pour tout n € N, w, = an + b. Injectons ¢a dans
la relation de récurrence. Elle devient

VneN; a(n+1)+b=2(an+b) —n—2.

Soit
(a—2a+1)n+2+a—b=0.

Ainsi, en prenant n = 0, on doit avoir a — b = —2 puis en faisant n = 1 on récupére
a = 1. Par suite il vient b = 3.

Si une suite arithmétique (w, )nen vérifie (1), alors on a pour tout n € N, w,, = n+ 3.
Il s’agit donc de la suite arithmétique de raison 1 et de premier terme 3.

Réciproquement, il suffit de vérifier qu’elle vérifie bien 1’équation (1) : on a bien
m+1)+3=2n+3)—n-—2
donc elle remplit bien ce qu’on lui demande. [J
2. On a alors pour tout n € N,
Upt1 = 2Up — M — 2
Wpt1 = 2Wy, — N — 2
En faisant la différence de ces deux lignes, on récupére
Unt1 — Wpt1 = 2(Up — W)

ainsi Vn € N, v, 11 = 2v,. On trouve qu’elle est géométrique de raison 2. [
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3. Soit n € N.
On a d’apres la question précédente v,, = 2"vg. Or vg = ug — wg = A — 3.
Ainsi, v, = 2"(A — 3).
Or v, = Uy — Wy = up —n — 3.

On a donc
VneN, u, =2"(A—3)+n+3.

O]

Exercice 9. 1. On note, pour tout n € N, P(n), < u,, existe et u, < 0. >
On a ug = —2 donc P(0) est vraie.
Soit n € N quelconque fixé. Supposons P(n) vraie.

On a u, < 0, donc 3—wu, > 0 puis on peut bien former le quotient (bien défini puisque
U
3 —u, #0), et avoir 3 " <0.

Un

Ainsi, on a bien montré l'existence de w41 et sa stricte négativité. P(n+1) est vraie.
On a montré par récurrence que (uy)nen est bien définie et strictement négative.
O

2. a. Parce qu’on a jamais u, = 1 puisque Vn € N, u,, < 0. I

b. Soit n € N. On a
Un+1

I —uppr
Un

Un+1 =

3— uUp
1 2Un,

3—up
2uy,
3 — Uy — 2up
2 uy
31 —u,
2

= —Up.

3

2
Ainsi, la suite (vy)nen est géométrique de raison §'D

. . 2 (N —2
c. (vp)nen est géométrique de raison — et vy = = —.
3 1-— () 3

2 n+1
Ainsi, Vn € N, on a v, = — (3) .

Yr_ done (1 — up)vy, = uy, et ainsi v, = (1 + vy)uy.

Ensuite, on a v, =
—uy,

_ (z)"“
On a donc Vn € N, u,, = 1:}_”1) = (32)n+1.
n 1_

3
En multipliant tout par 3"*!, on récupere

2n+1

VTLEN, Up = —m
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Exercice 10. Je vous renvoie aux exemples du cours pour la rédaction. Vous ne trou-
verez que les résultats dans les 6 questions suivantes. [

3
1. On trouve, pour tout n € N, u,, = - o + - (=2)". [
2. On trouve, pour tout n € N, u, = 2n. O

3. On trouve, pour tout n € N, u,, = 52” —

3
nmw
4. On trouve, pour tout n € N, u,, = 2" !sin ()

2
Ce qui s’arrange en u, = 0 si n est pair, et lorsque n impair, u,, = 2"~ 1(—1)=1/2,
O
2v/3 2m
5. On trouve, pour tout n € N, u,, = \?)f sin <3n)
Cela s’arrange aussi : pour k € N, ugp =0, usgr1 =1 et ugppo = —1. O
6. On pose pour tout n € N, v, = u, — 1 et on trouve que v, = (n + 1)2" puis

up, =(n+1)2"4+1.0

Exercice 11. On note, pour tout n € N, P(n), < u, existe et u, > 0. >
On a up = 1 donc P(0) est vraie. De plus, u; = e donc P(1) est vraie.
Soit n € N quelconque fixé. Supposons P(n) et P(n + 1) vraies.
On a u, > 0, et upr1 > 0 donc upriu, > 0, soit u,4o > 0. Ainsi, on a bien montré
Pexistence de u,2 et sa stricte positivité. P(n + 2) est vraie.
On a montré par récurrence que (uy)nen est bien définie et strictement positive.
Ensuite, prenons le logarithme de la relation de récurrence (on peut grace a ce qu’on
vient de démontrer).
On a Vn € N,

In(upt2) = In(upt1) + 2 1n(uy,)

Donc en posant, Vn € N, v, = In(uy,), on a Vn € N,
Unt2 = Unt1 + 20p.

Ainsi, (vp)nen suit une relation de récurrence linéaire d’ordre 2.
Résolvons son équation caractéristique associée

X2=X+2

Autrement dit
X2_X-2=0.

On voit rapidement que les deux racines du trinémes sont —1 et 2. Ainsi, il existe deux
réels A et u tels que, pour tout n € N, v,, = A(—1)" + p2™.

Or on a vg = In(up) = 0 donc A+ = 0.

Et on a v; =1In(u;) =1 donc =\ +2u = 1.

On a donc le systeme

Adp= 0

“A+2u= 1
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A+p= 0

<~
3u= 1 Lo+ Lo+ 14
. . . 1 1
Ce qui donne comme unique solution A = —— et y = 3

1 1
On a donc Vn € N, v, = —g(—l)” + §2".
Or, on a, pour tout n € N, u,, = exp(v,) = exp (—%(—1)" + %2”) .0
Exercice 12. 1. On trouve uz = 4, uy = 11 et us = 26. I

2. Deux fagons de faire.

def suite(n):

u0=0

ul=0

u2=1

for k in range(3,n+1):
u3=4xu2-5*%ul+2*xul
u0=ul
ul=u2
u2=u3

return u2

Ou bien

def suite(n):

u0,ul,u2=0,0,1
for k in range(3,n+1):

u2,ul ,u0=4*%u2-5*xul+2*xul,u2,ul
return u2

.

O]

3. On a, pour tout n € N,

Un+2 = Un+3 — Un+2
3Un+2 — DUp41 + 2Uy car Upy3 = 4Upt2 — DUnt1 + 2uy
3(Vn41 + Un+1) — DUpt1 + 2uy AT Upio = Upgl + Unt1
3'Un+l - 2un+1 + QUn
= 3Upy1 — 2(Un+1 - Un)

3Un+1 — 20y CAT Uy = Upt] — Up-

O

4. D’apres la question précédente, (vy,)nen suit une relation de récurrence linéaire d’ordre
2.

Résolvons son équation caractéristique associée
X?=3X -2

Autrement dit
X2 _-3X+4+2=0.
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On voit rapidement que les deux racines du trinémes sont 1 et 2. Ainsi, il existe deux
réels A et u tels que, pour tout n € N, v,, = A2" + pu.

Oronawvy=wu; —uy=0donc A+ pu=0.
Et ona vy =ug —u; =1donc 2\ 4+ = 1.

On a donc le systeme

Adp= 0
22+pu= 1
A4upu= 0
<~
A= 1 LQ%LQ—Ll
Ce qui donne comme unique solution A =1 et = —1.

On a doncVn e N, v,, =2" — 1. [

5. OnaVn € N, v, = tp41—uy, donc d’apres la question précédente Vn € N, w1 —uy =
2n — 1.

C’est surtout pour donner la réponse & ceux qui n’auraient pas réussi la question
précédente.

O]

6. On trouve que

n—1 n—1 n—1
Z U] — U = Z U1 — Z uy par linéarité
k=0 k=0 k=0
n n—1
= Zw— Zuk en posant £ =k + 1
=1 k=0
n—1 n—1
= Zug—i—un— (uo—l—Zuk)
=1 k=1
= Up — U
= Up.
D’autre part, on a aussi
n—1 n—1
Youp—up= Yy (28 -1
k=0 k=0
n—1 n—1
= > 2=
k=0 k=0
1-2"
= -n
1-2
= 2" —n-—1

On trouve donc, Vn € N, u,, = 2" — 1 —n. [
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Exercice 13. 1. On a, pour tout n € N,

Up4+2 = —Un41 — Untl
4 5
= —Unp41 — gun + Svn
4 5
= —Un+1 gun gvn
4 5
= —Up+1 gun - g(_un—i-l - un)
2 1
gun—l—l + gun
2 1
On en conclue que, pour tout n € N, u,49 = gun+1 + gun. ]

2. D’apres la question précédente, (uy, )nen suit une relation de récurrence linéaire d’ordre
2.

Résolvons son équation caractéristique associée

2. 1
X?=ZX+-
37 73

Autrement dit
3X2-2X -1=0.

On voit rapidement que les deux racines du trinémes sont 1 et —1. Ainsi, il existe
deux réels A et u tels que, pour tout n € N, u,, = A (—;)n + p.

Or on a ug=2donc A+ p = 2.

Etona u; = —uy—v9 =1 donc —%)\—i—u: 1.

On a donc le systéme

Ad+p= 2
1
—=A =1
g
Adpu= 2

<~
4M: 5 L2<—L1+3L2

3
Ce qui donne comme unique solution y = 1 puis A = 1

4 4 3

3. L’erreur est de tout refaire a partir du début, alors qu’on peut remarquer que, pour
tout n € N, on a

1 n
Ainsi, pour tout n € N, u,, = > =+ 3 (—) .

IR
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O

8 Systéemes linéaires

Exercice 1. 1. On a le systeme équivalent
20 +3y= 1 20 = 2
-y = 1 L2%2L2—5L1 Y = -1

L’ensemble solution est {(2,—1)}. O

2. On a le systeme équivalent
dor —2y= 5
0= 17 Lo+ 2Ly+ 3L

Il n’y a donc pas de solutions. [J

3. On a le systeme équivalent

7y: -7 L1 %L1—2L2 Yy = -1
r—2y= 5 =9 x—2y= 5

9

5y = —9 L3+« L3—2Lo Yy = —5

4
Ce qui est impossible (Lg < L3 — L donne 0 = —5) O

4. Le systéme est équivalent a :

2c+4y = 10
= 2x+4y=10<= 2 =5 —2y.

0= 0 L2<—2L2—3L1

L’ensemble solution est {(5 — 2y,y)/y € R} que l'on peut aussi écrire {(5 — 2X,\)/
AeR}E O

5. Le systeme est équivalent a :
2r4+y—32z2= -1

Tx—4z= 3 Lo+ Lo+ 21,4

11z — 10z = 1 Ly« L3+ 3L,

y+2r—3z2= -1
— Tr—4z= 3
—13z= -13 L3 — 2L3 — 519
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y—3z+2x= -1

— 4z +7x = 3

Il y a une unique solution (1,0, 1). O

6. Le systeme est équivalent a :
14+ 102 = 24 Lq+ L1+ 3L3

14 +20z2 = 34 Lo+ Lo+ 3L3

—y+dr+4z= 7

10z= 10 Ly <+ Ly — L,
— 14z 4+ 20z = 34

—y+dr+42= 7

y= 1

L’unique solution du systeme est (1,1,1). O

7. Le systeme est équivalent a :
r+2y+3z2= 3

—y+2z= -5 Lo+ Ly—2Iy

—4y+8z2= —8 L3+ L3—3L;

r+2y+3z= 3

A —y+2z= -5

0= 12 L3<—L3—4L2

Le systéme n’a pas de solution. []
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8. Le systeme est équivalent a :
—5y—5z= ) Ll%L1—2L2
r+y+2z= 3

y+z= 1 L3+ L3— Lo

0= 0 Ly« Li+5L;3
9y rz+y+2z= 3

y+z= 1

0= 0

— r+z= 2 Lo+ Lo—Ls

y+z= 1

= —z+2
<~

y= —z+1

L’ensemble solution est {(2 — z,1 — z,2)/z € R}. O

9. Le systeme est équivalent a :
r+2y—324+2t= 2
y—2z2+4+2t= 1 Lo+ Loy—214

—2y+42—4t: —2 L3<—L3—3L1

r+z—2t= 0 Ll(—Ll—QLQ
=y y—22+2t= 1

0= 0 L3« L3+2Ls

r= —z+2t

y= 2z—-2t+1
L’ensemble solution est {(—z + 2t,2z — 2t + 1, 2,t)/(2,t) € R?}. O

10. Le systeme est équivalent a :
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r+y—z= 1
y+(a—|—2)z: 1 Lo+ Lo—2I,4

(Oé—l)y+4Z: 1 Ly« L3— Ly

r+y—z= 1

— y+(a+2)z= 1

d—(a—1)(a+2)z= 1—(a—1) L3+ L3—(a—1)Ls
r+y—z= 1

— y+(a+2)z= 1

6-—a—-0a?)z= 2-a

Or6—a—a?=—(a—2)(a+3).

On doit distinguer 3 cas.

a. Si a = 2, alors le systéme est équivalent a

r+y—z= 1
y+4z= 1
0= 0

r—5z= 0 L1<—L1—L2

<~
y+4z= 1
Ainsi, 'ensemble solution est {(5z, —4z + 1,2)/z € R}.
b. Si a = —3, le systéme est équivalent a
z+y—z= 1
y—z= 1
0= 5

Ce systéme n’a pas de solution.

c. Dans les autres cas, le systeme est équivalent a
r+y—z= 1

y+(a+2)z= 1
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r= 1
=1y _ a+2 _ 1
a+3 a+3
B 1
- a+3
R . . 1 1
Le systeme a alors une unique solution, (1, ——,
a+3 a+3

O]

Exercice 2. Ce genre de probleme devra étre résolu rapidement et efficacement I’an
prochain, donc on commence & s’entrainer dés maintenant. N’oubliez pas qu’il est interdit

toute opération de la forme
L+ (1 — )\)Ll + Lo

pour essayer d’éliminer une inconnue, car on ne sait pas si 1 — A = 0. Par contre, on

peut tout a fait faire
Lo+ (1 — )\)Ll + Lo

qui enlévera la méme inconnue et ne pose aucun probléme : si A = 1, on fait Lo + Lo
ce qui n’est pas interdit ! [J

(Sihe systéme est équivalent a
(A4=2=XN(-1=X)y= 0 Li+ L —(2—X)Ly

z+(-1-Ny=0

r+(-1—-Ny=0
<~

6+AX=XN)y= 0 L; < Ly

Le systéme est échelonné. Il admet une infinité de solutions lorsque au moins un de
ses coefficients diagonaux est nul, ce qui n’arrive que lorsque

A+ A +6=0.
C’est-a-dire lorsque A = —2 ou A = 3.

z+y=20
Si A = =2, le systéme est équivalent a

0= 0

L’ensemble solution est alors {z(—1,1)/z € R}.

r—4y =0
Si A = 3, le systeme est équivalent a

0= 0
L’ensemble solution est alors {z(4,1)/z € R}. O

(Sd)e systeme est déja échelonné. Il admet une infinité de solutions lorsque au moins un
de ses coeflicients diagonaux est nul, ce qui n’arrive que lorsque A = 1. Dans ce cas,
lensemble solution est {z(1,0)/z € R}. O
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(Sd)e systeéme est équivalent a
(=18 = (5—=XA)(-6—A)y= 0 Ly« 3L;—(5—A)Lo

3z +(—6—-Ny=0

3z +(—6—-Ny=0
<~

(12=A=M)y= 0 L < Ly

Le systéeme est échelonné. Il admet une infinité de solutions lorsque au moins un de
ses coefficients diagonaux est nul, ce qui n’arrive que lorsque

12-A-X=0
soit pour A =3 ou A = —4.

3 —2y =0
Si A = —4, le systéme est équivalent a

0= 0 Ll(—)LQ

Ainsi, ’ensemble solution est {(%y, y) Jy € R} ={a(2,3)/a € R}.

3r—9y =0
Si A = 3, le systeme est équivalent a
0= 0 Ly Lo
Ainsi, ’ensemble solution est {(3y,y)/y € R} = {y(3,1)/a € R}. O
(Sd)e systeme est équivalent a
(—1+Ny+2+A=X)z= 0 Ly Ly —(1—)\)L3
(I-XNy= 0

z4+y—Az= 0

Réorganisons un peu les lignes et les colonnes
z—Xz+y= 0

= 2NNz (—1+Ny= 0

(I-XNy= 0

Le systéme a une infinité de solution si et seulement si un de ses coefficients diagonaux
est nul, donc si
1-A=0o0u2+A-A=0.

On trouve trois valeurs pour A : —1, 1 ou 2.

r+z+y= 0
Pour A = —1, le systeme est équivalent a —2y= 0
2y= 0
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On trouve alors comme ensemble solution {(—z,0,2)/z € R} = {2(—1,0,1)/z € R}.

Pour A =1, le systeme est équivalent a

r—z+y= 0
2z= 0
0= 0

On trouve alors comme ensemble solution {(—y,y,0)/y € R} = {y(—1,1,0)/y € R}.

Pour A = 2, le systeme est équivalent a

r—2z4+y= 0
y= 0

On trouve alors comme ensemble solution {(2z,0,2)/z € R} = {2(2,1,0)/z € R}. O

(Sd)e systeéme est équivalent a

(—44+1 =22+ )y +(4+2-2\)z =

0 L1+ 2L1+(1—=X\)Lo

—2r+(1-Ny+2z= 0
(=3+Ny+B—-XNz= 0 L3+ Ly — Ly
—2z+(1-Ny+2z= 0
— (=34+Ny+B—=XNz= 0 Li+ Ly<+ L3+ L
(=3 =22+ Xy +(6—-2\)z= 0
2x+(1-XNy+2z= 0
9 (3+Ny+B-XNz= 0
(3—4X+M)y= 0 L3+« L3—2Ly
—2r+2z4(1-XNy= 0
=y B=XNz+(-3+Ny+= 0
(3—4XN+X)y= 0 L3+« L3—2Ly

Le systéme a une infinité de solution si et seulement si un de ses coefficients diagonaux
est nul, donc si
3—4A+X=00u3—-\=0.

L’équation de degré deux admet 1 comme racine évidente, et comme le produit fait
3, l'autre est 3.

Ainsi, le systeme a une infinité de solution si et seulement

A=1oul\=3.
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Dans le cas A = 1, le systeme est équivalent a
—2rx+2z= 0
22—2y= 0

0= 0

L’ensemble solution est {(z,z2,2)/z € R} = {2(1,1,1)/z € R}.

Dans le cas A = 3, le systéme est équivalent a

—2x—-2y+2z= 0

L’ensemble solution est {(z,y,x +y)/y € R} = {x(1,0,1) + y(0,1,1)/z € R}.
O

9 Equations différentielles

1. Premier ordre

Exercice 1. 1. Il s’agit d’une équation différentielle linéaire homogene du premier ordre.
Ses solutions sont les fonctions y telles qu'il existe A € R avec Va € R, y(z) = \e2.

De plus, on a y(0) = —2 ce qui est équivalent & A = —2.
Ainsi, la fonction recherchée est la fonction y définie sur R par Vo € R, y(z) = —2e37.
O

2. Il s’agit d’une équation différentielle linéaire du premier ordre.

L’équation homogene associée est Vo € R, y/(x) 4+ 2y(z) = 0 Ses solutions sont les
fonctions yo telles qu’il existe A € R avec Vo € R, yo(x) = Ae™ 2.

Cherchons une solution particuliere y, sous forme d'une constante, c’est-a-dire telle
qu'il existe a € R pour que Vz € R, y,(x) = a.

Ainsi, on a y,(x) + 2y,(x) = 6 <= 2a = 6 <= a = 3. Une solution particuliere est
donc la fonction y, telle que Vz € R, y,(z) = 3.

Les solutions de ’équation sont donc les fonctions y telles qu’il existe A € R définies
par Vz € R, y(x) = 3 + \e 27,

De plus, on a y(0) = 0 ce qui est équivalent 4 3+ X\ =0 <= A = —3.
Ainsi, la fonction recherchée est la fonction y définie sur R par Vo € R, y(z) =
3—3e 2. [

3. 1l s’agit d’'une équation différentielle linéaire du premier ordre.

L’équation homogene associée est Vo € R, y/(z) + y(x) = 0 Ses solutions sont les
fonctions yq telles qu'il existe A € R avec Vo € R, yo(z) = Ne™*.

Cherchons une solution particuliere y, telle qu’il existe a € R définie par Vo € R,
Yp(z) = ae”.

Ainsi, on a y,(z) + yp(r) = 4e” <= 2a = 4 <= a = 2. Une solution particuliere est
donc la fonction y, telle que Vz € R, y,(z) = 2¢e*.
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Les solutions de ’équation sont donc les fonctions y telles qu’il existe A € R définies
par Vz € R, y(z) = 2e® + Ae™ ™.

De plus, on a y(0) = —2 ce qui est équivalent & 2+ A = —2 <= \ = —4.

Ainsi, la fonction recherchée est la fonction y définie sur R par Vo € R, y(z) =
2e* —4e7*. O

. Il s’agit d’'une équation différentielle linéaire homogene du premier ordre. On peut la
x
réécrire sous la forme : Vz €] — 1, +oo|, v/(z) + ?y(m) =0.
x

x x 1+2-—-1
Cherchons une primitive de £ — ——. On peut remarquer que = =
P 1+ P 4 d 1+ 14z

ce qui est facile & primitiver, mais sinon, déterminons, pour x €] — 1, +00],

Tt

/ 1 dt. Posons le changement de variable de classe C! sur | — 1+ oo, u =1+1¢
0

donc du = dt. Ainsi,

T t x+1u_1 x+1 1 ol
/0 mdtzfl . du:/l 1= du = [u— (@)} = o+ 1-In(e+1) -1,

Une primitive de z — est donc z +— = — In(z + 1).

+x
Ainsi, les solutions de I’équation sont les fonctions yg telles qu’il existe A € R avec
Ve € R, yo(z) = de~@=In042) — \(z 4 1)e—7.
De plus, on a y(0) = 2 ce qui est équivalent & A = 2.
Ainsi, la fonction recherchée est la fonction y définie sur R par Vx € R, y(z) =

2z + e . O

. Il s’agit d’'une équation différentielle linéaire du premier ordre. On peut la réécrire

1
sous la forme : Vo €] — 2, 400[, ¥/'(z) + ——y(x)

2427V T 24
1
L’équation homogene associée est Va €] — 2, +o0l, v/ (z) + o y(x) = 0 Ses solutions
x
A
sont les fonctions yg telles qu’il existe A € R avec YV € R, yo(x) = Ae™ m+2) = o
x

A(z)
24z

Cherchons une solution particuliere y, sous la forme y,(z) = ol A\ est une

fonction de classe C!(] — 2, +oc]).

N(z) Az) | Mz)
241 (2+x)(2+m)2 * 2+2

Ainsi, on a (2 + 2)y,(z) + yp(r) = 1 <= (2 + )
1= \N(x)=1.

On peut donc prendre \(z) = x, et ainsi, une solution particuliére est donc la fonction

T

yp telle que Vo € R, yp(x) = o

Les solutions de ’équation sont donc les fonctions y telles qu’il existe A € R définies
x A T+ A

par¥o € R y(2) = 5+ 5, T ah .

A
De plus, on a y(0) = 1 ce qui est équivalent a 5= 2= =4

r+4
x+2
Remarquons que nous aurions pu remarquer que la fonction constante égale a 1 était
solution particuliere ce qui nous aurait donné une forme un peu différente mais le
méme résultat final. [

Ainsi, la fonction recherchée est la fonction y définie sur R par Vo € R, y(z) =
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Exercice 2. 1. Résolvons I’équation différentielle homogene associée, 3/ (z) —2y(z) = 0.
Les solutions sont les fonctions yg ot il existe A € R tel que Vo € R, yo(t) = \e??.

Revenons a notre probléme. Cherchons une solution particuliere sous la forme y,(t) =
A(z)e?* ot A est une fonction C!(R).

Dans ce cas, on a y,(z) = (N (z) + 2X\(z))e** donc
y;,(x) —2yp(z) = )\/(x)e%.

Ainsi, y, est solution si et seulement si Vz € R, X' (z)e?® = (x — 1)e**, autrement dit

1 1
N(z) =2z — 1. On prend alors \(z) = 53:2 —x, donc yp(z) = (2x2 - x) e,

On trouve que l’ensemble des solutions est constitué par les fonctions y définies sur
1
R par Vo € R y(z) = <2:U2—x+)\> e ouleR. O

2. Résolvons I’équation différentielle homogene associée, y'(z) +2y(z) = 0. Les solutions
sont les fonctions yo ot il existe A € R tel que Va € R, yo(t) = Ae 2.

Revenons a notre probléme. Cherchons une solution particuliere sous la forme y,(t) =
A(z)e 2 on A est une fonction C(R).

Dans ce cas, on a y,(z) = (N (z) — 2\(z))e”** donc
/ RV —2x
yp(a:) —2yp(x) = N (x)e .
Ainsi, y, est solution si et seulement si Vo € R, N(z)e ?* = 22 — 2z + 3, autrement

dit N (z) = (2% — 2z + 3)e**.

Cherchons alors une primitive de x + (2% — 2z + 3)e?*.
€T
Par exemple, considérons A définie par Vz € R, A\(x) = / (t* — 2t + 3)e*dt.
0

Posons u, v deux fonctions C*(R) définies par

ut)=t*—2t+3 u'(t)=2t—2

1
V() = e* v(t) = §€2t

On a alors N

2 — 2t x
A@):[2+38f —/(ﬁ—DJ%t

0

0

Faisons encore une intégration par parties, pour calculer cette derniere intégrale. Po-
sons u, v deux fonctions C!(R) définies par

wlt)y=t—1 4'(t)=1

1
V() =€ w(t) = §e2t

Ainsi,

22 —22+3 5, 3 [t—14]% [*1 4
Ma) = =—————e —2—[26]0+Azem.
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Soit )
T —2m+362x_3_x—162m_1+[1 Qt]z.
0

A = Z -
() 9 27 2 9 7 1°
On a donc
2 2
¢ —3r+4 4 1, 1 22°—-6x+9 o, 9
() 2 ¢ 19 ] A © T

202 — 6z +9 ,,
—— 7,
4
Ainsi, une solution particuliére est la fonction y, définie sur R par, Vx € R,

Pour plus de légereté, on prendra A\(z) =

202 — 62+ 9
yp(z) = ————

On trouve que l’ensemble des solutions est constitué par les fonctions y définies sur
222 — 6z + 9 .

R par Vo € R y(z) = f+)\6_2x ou \ € R.

On se permettra de remarquer que si la méthode de variation de la constante marche

trés bien dans certains cas, il faut pas mal travailler dans d’autres. Ici, il aurait

été nettement plus rapide de chercher une solution particuliere sous la forme d’un

polynoéme de degré 2. [J

Exercice 3. La modélisation ameéne & 'existence d’un réel a tel que y/(t) = ay(t) ou t
est exprimé en minutes et y(¢) est exprimé en gramme.

Ainsi, il existe une constante K telle que, V¢ € R, y(t) = Ke®'. On peut méme remarquer
que K = y(0) = 20, donc y(t) = 20e“t.

Ensuite, on sait que nous avons que y(5) = 10, soit 20e5* = 10.

—In(2)

5
Ensuite, on cherche ¢ tel que y(t1) = 1 ce qui se traduit par 20e** = 1, donc

Ainsi, on obtient o =

—1n(20) In(20)

a  In2)°

1=

O]

Exercice 4. Ici, la modélisation ameéne a existence d’un réel « tel que y'(t) = ay(t)
ou t est exprimé en heures.
Ainsi, il existe une constante K telle que, Vt € R, y(t) = Ke®'. On peut méme remarquer

que K = y(0).
Ensuite, on sait que nous avons que y(50) = 2y(0), soit y(0)e*® = 2y(0).
o : In(2)
Ainsi, on obtient o = =0
Ensuite, on cherche t; tel que y(t1) = 3y(0) ce qui se traduit par e*! = 3, donc
In(3) In(3)
t1 = =50 .
! a In(2)

O]

Exercice 5. Remarquons que Vz € RY, x # 0, donc I’équation est équivalente a

1
1422

(@) + Zy(e) =
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2
Résolvons 'équation homogene associée, y'(x) + ~y(z) = 0.
x

Une primitive de  — 2 est  +— 2In(z) car Va €]0, 4+o0[, 2 > 0.
Les solutions de I’équation homogene associée sont donc les fonctions yg définies sur RY
par

A
v ER*, :)\ —2111(2?):7
€z + yo(l‘) e 2
ou A € R. \
Cherchons une solution particuliére y, telle que Va €]0,+oo|, yp(z) = @ ou \ €
x
C'(®3).
On a alors
2 1
/ _
Yp(x) + gyp(fﬁ) ]
N(x) Az) 2 \(x) 1
— ) = =
x2 x3 + x 22 2 +1
— N@) 1
x2 2241
— N(z)= v
2241
?4+1-1
— N@2)="—F——
1
— Na)=1- ———.

Or une primitive de z — 1 — est x — x — arctan(x).

22 +1
Ainsi, on prend
x — arctan(x)

Ve eR, yp(x)= 5

x
Ainsi, les solutions sont les fonctions y définies sur R par

— arct A
Ve €R, ylz) == arc;;(“j” ol AER.

O
Exercice 6. Nous allons tout d’abord nous placer sur | — 1, 400[. Sur cet intervalle, on
a 1+ x # 0, donc ’équation est équivalente a

1
r+1

Vz €] — 1,400, '(t)— y(z) = 0.

Les solutions sont les fonctions y de la forme y(z) = @+ = X\(z +1) ot A € R.
Sur intervalle | — oo, —1[, on a 1 + x < 0, donc 1’équation est équivalente &

1
T+ 1Y

Vz €] — 1,400, 9(t)— (x) =0.

Les solutions sont les fonctions y de la forme y(z) = pe™#+1) = 4|z + 1| = —p(z + 1)
ou u € R.

Remarquons que sans la moindre perte de généralité, on peut prendre y(z) = p(z + 1).
Par ailleurs, en —1, on a 0y'(—1) = y(—1) donc y(—1) = 0.

Ainsi, les fonctions solutions semblent étre de la forme

Mz+1) siz>-—1
y(x)=4¢ 0 sixz=—1
wrx+1) six<—1.

109 / [359)



ou A et u sont deux réels.
Ainsi, y est C! sur ] — 1, +o00[ et sur ] — oo, —1[ et on a

A siz>—1
y’(fC)Z{

pwoosix < —1.

Pour que y soit C! sur R, la dérivée doit étre continue en —1 donc les limites & droite et
a gauche doivent étre les mémes, ce qui donne A =

En résumé les solutions de I’équation différentielles sont les fonctions y de la forme
y(z) = Mz + 1) avec A € R. Elles sont bien C!(R).

O

Exercice 7. 1. Sur cet intervalle, on a x # 0, donc I’équation est équivalente a
x / 2
Vo e RY, y(t)—;y(x):x.
L’équation homogene associée est

2
Ve e RY, y(t) — ;y(m) =0.

Les solutions sont les fonctions o de la forme y(x) = X\e2(®) = \22 ou A € R.

Cherchons une solution particuliére sous la forme y,(x) = A(z)z? ot A est une fonction
C'(RY).
On a alors Vo € RY,

—
—= N@)* =2
—

On prend donc \(z) = In(z) puis y,(z) = 2 In(z).

On peut donc conclure que les solutions sont les fonctions y définies sur R’ par
Vo e R%, y(z)=2?(\+1In(x)), ot A € R.

O

2. C’est exactement la méme chose :
Sur cet intervalle, on a x # 0, donc ’équation est équivalente a
* / 2
Ve e RY,  y'(t) — ;y(x) =z
L’équation homogene associée est

2
Ve e R, /(t)— Ey(w) =0.

Les solutions sont les fonctions gy de la forme y(z) = pe?™#) = p22 ot A € R.
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2

Cherchons une solution particuliere sous la forme y,(z) = p(x)z* ou p est une fonction

CL(R*).
On a alors Vr € R* |

h(0) ~ Zypla) =

! —
= u(x) = =
On prend donc p(x) = In(—x) puis yp(r) = 22 In(—x).

On peut donc conclure que les solutions sont les fonctions y définies sur R* par

Ve e R*, y(z)=2*(u+1n(jz]), ot p € R.

O
. On remarque rapidement que pour z = 0, ’équation ne donne pas d’information sur
la valeur de y(0).
On a donc, Vx € R,

22(A+1In(|z])) siz >0

ylz) =< v sizx=0

2?(p+In(jz])) siz<0

ou A, u et v sont trois réels.

Remarquons que les limites a gauche et a droite en 0 valent 0 donc pour que y soit
continue, on doit avoir v = 0.

Remarquons que le taux d’accroissement a droite est

y(0+h)—y(0)
- = h(A+In(h)) — 0

et de méme a gauche. Ainsi, y est dérivable en 0 et y'(0) = 0.
Enfin, regardons la dérivée de y. On a Vx € R,
2e(A+In(|z])) +2 siz >0

y'(z) =14 0 siz=0
2z¢(p+1In(|z])) +2 siz <0

Il est clair que la dérivée est bien continue en 0.
Ainsi, les fonctions y solutions sont les fonctions pour lesquelles il existe deux réels A

et u tels que, Vo € R,

2?(A+1In(|z])) siz >0
y(x) =4 0 siz =0
2?(p+In(jz])) siz<0

On remarquera que contrairement & d’autres cas, on a bien deux parametres différents.

O]
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Exercice 8. 1. Sur cet intervalle, on a 1 — 22 # 0, donc 1’équation est équivalente &

v — 00, —1 '(t

5y(r) = 0.

Linj1=a?)) _ A

Les solutions sont les fonctions y de la forme y(z) = A\je™ 2 T ou
—x
AeR.
O
2. De la méme fagon, les solutions sont les fonctions y de la forme y(z) = /\Qe_% In(|1-a?]) _
Ao N
——=ou R
11— 22|
]
3.D : ions 5 - — Ngezn(l1-2?])
. De la méme fagon, les solutions sont les fonctions y de la forme y(z) = A\ze™ 2 =
A3 .
ou A € R.
11— 2|
O

4. Un telle fonction y vérifie Vo € R\ {—1,1},

A

! six < —1

1 — 2|

A

y(x) = |12 ; si —1l<zx<1

—x

A

3 siz>1

11— 2

ol A1, Ao et A3 sont trois réels.

Pour qu’elles soient continues sur R, il faut qu’elles aient une limite finie en —1 et 1.
Si on ne prend pas Ay = Ay = A3 = 0, ce n’est pas le cas. Une fois qu’on a remarqué
¢a, on remarque que la seule solution doit étre nulle sur chaque intervalle considéré,
et continue sur R donc nulle sur R tout entier.

On réalise donc que la seule fonction qui remplit les conditions est la fonction nulle.
O

Exercice 9. Plagons-nous sur R’ . On a alors Vx € R},

3 x
5 [ f0dt = f@)

Ainsi, si f est continue sur R* alors x — [ f(t)dt est C! donc par produit =
o= 3 f(t)dt aussi. Ainsi, f € C1(RY).
En dérivant I’équation de départ, on récupere

Ve e RY, 3f(z)=2f(z)+2zf (z).
Ou encore

VreRY, f'(z)— %f(x) ~0.

Les solutions sont les fonctions de la forme f(z) = Aez (@) = Az ou A eR.
De la méme facon, sur R* , on récupere

Ve eRY, fl(z)— %f(x) _ 0.
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Les solutions sont les fonctions de la forme f(z) = ue%h‘('x‘) = /|| ot p € R.
Ainsi, les fonctions continues sont les fonctions qui vérifient Vr € R*,

I RPRVL sixz >0
f(x)—{ py/—x  six <0

ou A et u sont deux réels.
Enfin, pour que f soit continue, il faut que f(0) = 0. Cela permet de conclure. Yz € R*,

DV siz>0
flx)=4¢ 0 siz=0
w/—x six <0

ou A et u sont deux réels. [

y' ()

2(x) >

Exercice 10. 1. Puisque y ne s’annule pas, on a —

Soit z > 0, en intégrant de 0 & z, on obtient

T / t x
/ _ul )dt—/ 3dt
o y3(t) 0
. 1 1
Autrement dit — — —— = 3x.
y(x)  y(0)
.. 2
Ainsi on a, Vz € Ry, y(z) = el O

2. On appliquera exactement la méme méthode que ci-dessus pour obtenir Vo € Ry,

1
1
Exercice 11. On pose Vx € Ry, z(z) = ek Ainsi, z est bien C}(R) (inverse de
y(x
fonction C! qui ne s’annule pas).
/ 1 — =)
On a ainsi, Vo € Ry, 2/(z) = — yz(a: = _y(az)(z i)
y*(z y*(z)
Cela se simplifie en
() =~ = —a(a) +
oyl K K’

On reconnait une équation linéaire du premiere ordre a coefficients constants, dont une
1
solution particulieére est la fonction définie par z,(x) = e et les solutions de I’équation

homogene associée sont zp(x) = Ae™®, ou A € R.

1
Ainsi, il existe A € R+, tel que Vo € R, z(x) = Ae™® + e Or
1 1 2
A+ —==2(0)= — = —,
K =0 y(0) K
1
donc A\ = —.
onc e 1 1 B
éinsi, Vo € Ry, z(z) = 7 + ?6*1 puis y(z) = T
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1
Exercice 12. 1. Si y ne s’annule pas et ne vaut jamais 5

On a alors Vt € R,
Y'(t)
y(t) _ 1.

"(aw)

1
Comme y(0) = 3’ et que y est continue, on a Vt € Ry, 0 < y(t) <

In (2;@)) > 0.

On reconnait ainsi une dérivée classique, donc si on integre entre 0 et > 0, on a,

0] _[f_
1>dt —/0 dt.

1
> donc

Autrement dit

Donc
vz > 0,1 <1 ( ! >> In(In(4))
z ,In (In —In(ln =—x
2y(z)
On a donc
Vo > 0,1n (111( ! )) =In(2In(2)) — x
’ 2y(x)
Puis )
Vm>0,ln( >_21H2€_$
2y () @)
Et enfin !
Vz >0, —— = ¢2@)e™”
2y(x)

Pour finir, on a
1 _
Vit > 0,y(t) = 56_2111(2)6 "

O
2. Supposons que la taille ne s’annule pas et qu’il s’agit d’une fonction C'(R,).

1
On pose Vt € Ry, z(t) = Ok Ainsi, z est bien C*(R4.) (inverse de fonction C! qui ne
Y
s’annule pas).
"t t)(1 —2y(t
On a ainsi, Vt € Ry, 2/(t) = —yz( )y ~ y(t))
y*(t) y2(t)

Cela se simplifie en



On reconnait une équation linéaire du premiére ordre a coefficients constants, dont une
solution particuliére est la fonction définie par z,(t) = 2 et les solutions de I’équation
homogene associée sont 2o(t) = e, ot A € R.

Ainsi, il existe A € R+, tel que Vt € R, 2(t) = de™! + 2. Or

1
A+2=20)= — =8,
© y(0)
donc A = 6.
1
Ainsi, Vt € R t)=2 ~tpuis y(t) = ————.
insi, Vt € Ry, 2(¢) + 6e™" puis y(t) 6o
]

3. Non, dans les deux cas, on trouve la méme limite. [

1 1 -
4. Sans traitement il faut résoudre 1= 56*2111(2)6 ", soit —In(2) = —2In(2)e* et fina-
lement t = In(2).
1
Avec traitement, il faut résoudre 1= 956t soit e~ = 1, soit ¢ = In(3).
e

On aura donc gagné In(3) — In(2) moisﬂ O

2. Second ordre

Exercice 13. 1. Il s’agit d’une équation différentielle linéaire du second ordre.

Résolvons I'équation caractéristique associée, X2 + X — 2 = 0. Il s’agit d’un trinéme
du second degré dont 1 est racine évidente. Le produit des racines fait —2 donc 'autre
est —2.

Ainsi, les solutions de I’équation différentielle homogeéne associée sont les fonctions
telles qu’il existe (\, ) € R? définies par yo(z) = \e® + pe 2%,

Cherchons une solution particuliere sous la forme y,(x) = acos(x) + bsin(x) avec
(a,b) € R2.

Or y,(z) = —asin(x) 4 bcos(x) et y,(x) = —acos(zx) — bsin(x).

Ainsi, on a
Yy () +y,(2) —2yp(x) = (—acos(x)—bsin(x))+(—asin(z)+bcos(x))—2(a cos(x)+bsin(z))
Ainsi, on doit avoir

(—=3a + b) cos(x) + (—a — 3b) sin(x) = 10 cos(z).

Résolvons
—3a +b =10 — —3a +b =10 — b =1
—a —3b =0 Lo<Lo+3L4 —10a =30 a =-3

Ainsi, une solution particuliere est la fonction y, définie par, Vo € R, y,(z) =
—3cos(z) + sin(z).

Ses solutions sont les fonctions y telles qu'il existe (A, u) € R? avec

Ve €R, y(z) = —3cos(z) + sin(z) + \e® + pe .

2. En pratique, on utilise en général le méme modele avec ou sans traitement, c’est en général les
constantes qui varient, mais je souhaitais faire une comparaison de deux modeéles
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De plus, ona y(0) = -3 <= —-3\+u=-3<= A+ u=0.
Ensuite, Vo € R, /(x) = 3sin(x) + cos(z) + Ae® — 2ue~2%, donc

Y (0)=d4<=14+X-2u=4= \—2u=3.

Cela revient au systeme

)\+M:0<:> A+u=0(:>A =1
)\ —2# == 3 Lo+ Lo—14 _3,LL == 3 'LL — _1

Ainsi, la fonction recherchée est la fonction y définie sur R par

2

Ve e R, y(x)=¢e"—e “* —3cos(z) + sin(x).

O]

. Il s’agit d’'une équation différentielle linéaire du second ordre.

Résolvons I’équation caractéristique associée, X2 +4X +4=0<+= (X +2)2=0.11
s’agit d’un trindome du second degré avec une seule racine —2.

Ainsi, les solutions de I'équation différentielle homogene associée sont les fonctions
telles qu’il existe (A, 1) € R? définies par yo(z) = (A\z + p)e 2%,

Cherchons une solution particuliere sous la forme y,(z) = az?e™* avec a € R.
Or

yp(x) = 2axe” % — 2az%e™?® = a(2z — 222)e %
et

yy(x) = a(2 — 4a)e™? — 2a(2z — 22%)e™* = a(2 — 8z + 4a?)e .

Ainsi, on a y))(x) + 4y, () + 4yp(z) = 2ae™>".

On doit avoir
20 % = 4e % = q = 2.

Ses solutions sont les fonctions y telles qu'il existe (A, 1) € R? avec

Ve €R, y(z)=22%"% + x4 pe .

De plus, on a y(0) =1 <= p = 1.

Ensuite, Vo € R, ¢/(2) = (4o + N)e 22 — 2(22% + Az + p)e 2% = (—42% + (4 — 2\)z +
A —2u)e~%* donc
Y0)=1le=A-2u=1<= =3,

Ainsi, la fonction recherchée est la fonction y définie sur R par
Ve €R, y(z)= (222 + 3z 4 1)e™ .
O

. Il s’agit d’une équation différentielle linéaire du second ordre.

Résolvons 1'équation caractéristique associée, X2 +2X +2 = 0. Il s’agit d’un trinéme
du second degré dont le discriminant A = —4.

. ., 2= . .
Il a deux racines conjuguées 5 =—1—iet —1+1.
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Ainsi, les solutions de I’équation différentielle homogeéne associée sont les fonctions
telles qu’il existe (\, ) € R? définies par yo(z) = e~ (A cos(z) + psin(z)).

Cherchons une solution particuli¢re sous la forme y,(z) = az? + bz + ¢ avec (a,b,c) €
R3.
Or y,(7) = 2ax + b et y, (v) = 2a.

Ainsi, on a
yn(x) + 2y () + 2yp(x) = 2a2® + (da + 2b)z + (2a + 2b + 2c).

Or, on doit avoir Vz € R, 2az? + (4a + 2b)z + (2a + 2b + 2¢) = 222 + 6x + 6. Par
unicité de I'écriture développée réduite d’'un polyndéme, cela revient au systeme

2a =2 a =1
4a +2b =6 <— b =1
2a +2b +2¢ =6 c =1

Ses solutions sont les fonctions y telles qu'il existe (A, 1) € R? avec
Ve eR, y(z)=a*+2+ 14+ e “(Acos(z) + pusin(z)).

Deplus,onay(0)=1<=1+A=1<= \=0.

Ainsi, la fonction recherchée est telle qu'il existe p € R définie par Vo € R, y(z) =
2?2+ 2+ 1+ psin(x)e 2.
Donc, Vx € R, y/(z) = 22 + 1 + pcos(x)e™?® — psin(z)e™*, donc

Y(0)=2<=1+pu=2<=p=1.
Ainsi, la fonction recherchée est la fonction y définie sur R par
Vr e R, y(z)=2?+2z+1+sin(z)e ™.

O]

Exercice 14. Vous trouverez les résultats ci-dessous mais pour la rédaction, vous vous
rapporterez a ’exemple illustrant le principe de superposition dans le cours. [

1. Résoudre sur RVz € R, ¢"(x) +y(z) =0 {A\cos(z) + usin(z)/(\, p) € R?}. O
1

2. y(z) = zwxsin(x). O

2

3. y(x) = —% sin(2x). O

4. {x — Acos(z) + <;a: + u) sin(z) — ésin(%:)/()\, p) € R} O

Exercice 15. Vous trouverez les résultats ci-dessous mais pour la rédaction, vous vous
rapporterez & l’exemple illustrant le principe de superposition dans le cours. [J

1. f(z) = —% cos(2x) — 6—75 sin(2x). O

1
2. g(x) = i:):ex. O
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1
3. h(z) = ﬁe”. O

4 7 1 1
4. {z = X3 4 pe® — & cos(2x) — 6 sin(2z) + Zaze’” + ﬁe”/()\,,u) eR?}. O

Exercice 16. Remarquons que si f est C!(R), alors par composition = ++ f(—x) aussi.
Ainsi, f" est C'(R), donc f est en réalité C2(R).
Dérivons cette relation. Par composition, on obtient

Ve eR,  f(z) = —f(~a).
En utilisant I’équation de départ, on obtient

Ve eR, f"(z)=—f(x).

Autrement dit, les fonctions f qui satisfont cette égalité sont & chercher parmi les solu-
tions de I’équation différentielle
y' +y=0.

Cette équation différentielle homogene tres classique a pour équation caractéristique
associée X2 + 1 = 0 qui a deux racines i et —i. Ainsi, on sait qu'il existe A et p deux
réels tels que

Ve eR, f(z)= Acos(x)+ psin(x).

Vérifions ces fonctions pour savoir si elles sont bien solutions. Si il existe A et p deux
réels tels que
Ve eR, f(x)= Acos(x)+ psin(x),

on a alors
Vo € R, f'(z) = —Asin(z) + pcos(x).

SionaVzeR, f/(z) = f(—=x), alors on a
Ve € R, —Asin(z)+ pcos(x) = Acos(—x) + psin(—x) = Acos(x) — psin(z).

En prenant z = 0, on obtient A = p.
Ainsi, on a forcément Vz € R, f(x) = A(cos(z) + sin(x)), et donc

F'(@) = Acos() — sin()) = f(a).
Les solutions sont donc les fonctions f avec A € R, telles que Va € R,
f(z) = A(cos(x) + sin(z)).
O]

Exercice 17. 1. Il s’agit d’une équation homogeéne dont ’équation caractéristique as-
sociée est X2 — 1 = 0, donc I’ensemble des solutions est I’ensemble des fonctions qui
s'écrivent x — Ae”* + pe® ou A et p sont deux réels.

O]

2. Remarquons que y®* — 2y +y = 0 est équivalent a (3" —y)” — (v —y) = 0, donc
que la fonction z = y” — y est solution de I’équation précédente.

y est solution si et seulement si il existe deux réels A et p tels que Va € R,

y"(x) —y(z) = Ne” + pe™".
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Il faut donc désormais résoudre vy’ —y = Ae ™™ + pe®.

On remarquera que ’équation homogene associée est 1’équation de la question 1.
Cherchons une solution particuliere sous la forme y,(z) = azxe® + bre™".
On a alors y,(z) = (ax + a)e” + (—bx +b)e™™.

Et y,(z) = (ax 4 2a)e” + (bx — 2b)e™™.

A
Ainsi, y;,’(x) — yp(x) = 2ae” — 2be™™. On peut ainsi prendre a = 5 et b= —g.

A
Et une solution particuliere est y,(x) = 5633 - ge_z.

Ainsi, les solutions de 1’équation sont les fonctions de la forme

A
y(z) = §$e$ - %xe_m +Ne¥ +pule™™

ot A\, X, u, p/ sont 4 réels.

On peut plus simplement écrire que les solutions sont exactement les fonctions telles
qu’il existe 4 réels a, b, ¢, d avec

Ve e R, y(z)= (ax+0b)e"+ (cx+d)e™

O]

3. Autres équations, pour s’entrainer
Exercice 18 (Equations homogenes). 1. Il est clair qu’il existe K € R tel que, Vt|inR,
y(t) = Ke3t.

Par ailleurs, comme y(0) = 2, on a K = 2. Ainsi, y est définie par, pour tout ¢t € R,
y(t) = 2¢%. 0O

4
2. C’est équivalent a vy’ — gy = 0. Ainsi, il est clair qu’il existe K € R tel que, Vt|inR,
y(t) = Kes'.
Par ailleurs, comme y(0) = —1, on a K = —1. Ainsi, y est définie par, pour tout
teR, y(t) = —est. O

3. Il est clair qu'il existe K € R tel que, Vt|inR, y(t) = Ke.

Par ailleurs, comme y(3) = €, on a Ke? = 3. Ainsi, y est définie par, pour tout

tER, y(t) =e %3 =376 O

4. 11 est clair qu’il existe K € R tel que, Vt|inR, y(t) = Ke?t.
Ainsi, I’ensemble des fonctions solutions est {t — et /A eR}. O

Exercice 19 (Equations non homogenes). 1. Résolvons I’équation différentielle homogene
associée, iy’ — 2y = 0. Les solutions sont les fonctions yg ou il existe K € R tel que
vVt € R, yo(t) = Ke?t.

Revenons a notre probleme. Une solution particuliere est la fonction y, définie sur R

1
par Vt € R, y,(t) = —5

Ainsi, les solutions sont les fonctions y définies sur R ou il existe K € R tel que Vt € R,
1
y(t) = Kezt — 5
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1 5
Par ailleurs, on a y(0) = K — 5 et y(0) =2, donc K = 5
D o 1

Ainsi, la solution recherchée est la fonction y définie sur R par, Vt € R, y(t) = 2¢ ~3
]

. Résolvons 'équation différentielle homogene associée, 3/ — 4y = 0. Les solutions sont
les fonctions g ou il existe K € R tel que Vt € R, yo(t) = Ke*t.

Revenons a notre probleme. Une solution particulicre est la fonction y, définie sur R

3
par Vt € R, y,(t) = 7
Ainsi, les solutions sont les fonctions y définies sur R ou il existe K € R tel que Vt € R,

y(t) = Ke*t + z

3 )
Par ailleurs, on a y(0) = K + 1 et y(0) =2, donc K = T
3

5)
Ainsi, la solution recherchée est la fonction y définie sur R par, Vt € R, y(t) = 164t+ T
]

. Résolvons I’équation différentielle homogene associée, 3y’ — 4y4: 0. Les solutions sont
les fonctions o ou il existe K € R tel que V¢ € R, yo(t) = Ke3'.

Revenons a notre probleme. Une solution particuliere est la fonction y, définie sur R

3
par Vt € R, y,(t) = 7

Ainsi, les solutions sont les fonctions y définies sur R ou il existe K € R tel que Vt € R,
3
y(t) = Kest — =,

4
. 3 1
Par ailleurs, on a y(0) = K — 1 et y(0) = —1, donc K = -7
Ainsi, la solution recherchée est la fonction y définie sur R par, V¢ € R, y(t) =
1 3
_Zegt — Z ]

. Résolvons 'équation différentielle homogene associée, iy’ — 2y = 0. Les solutions sont
les fonctions yo ot il existe K € R tel que Vt € R, yo(t) = Ke*.

Revenons a notre probleme. Une solution particuliere est la fonction y, définie sur R

par Vt € R, y,(t) = g

Ainsi, les solutions sont les fonctions y définies sur R ou il existe K € R tel que Vt € R,

y(t) = Ke2 + g

3
Ainsi ensemble solution est {x - Ke + §/K € R} .O

. Résolvons 'équation différentielle homogene associée, iy’ — 3y = 0. Les solutions sont
les fonctions o ou il existe K € R tel que Vt € R, yo(t) = Ke3t.

Revenons a notre probleme. Une solution particuliere est la fonction y, définie sur R

2
par Vt € R, y,(t) = -3

Ainsi, les solutions sont les fonctions y définies sur R ou il existe K € R tel que Vt € R,

2
y(t) = KeSt — g

1
De plus, on a Vt € R, y/(t) = 3Ke®. Or y/(0) = 1, donc 3K = 1 soit K = 3
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1 2
Ainsi, la solution recherchée est la fonction y définie sur R par, Vt € R, y(t) = ge?’t— 3
O

3
. Résolvons ’équation différentielle homogene associée, 1y’ — V= 0. Les solutions sont

les fonctions yy ou il existe K € R tel que Vi € R, yo(t) = Keit.

Revenons a notre probleme. Une solution particuliere est la fonction y, définie sur R
par Vt € R, y,(t) = —4.

Ainsi, les s;)lutions sont les fonctions y définies sur R ou il existe K € R tel que Vt € R,
y(t) = Kei — 4.

Ainsi 'ensemble solution est {t s Kel — 4/K € ]R} :

O

. Résolvons 'équation différentielle homogene associée, 3/ — 4y = 0. Les solutions sont
les fonctions g ou il existe K € R tel que Vo € R, yo(z) = Ke*?.

Revenons & notre probleme. Cherchons une solution particuliere sous la forme y,(t) =
Ae® ou A € R.

1
Dans ce cas, on a y,(x) = Ae” donc y,(z) —4y,(x) = —3\e”. Ainsi, en prenant A\ = ——,

on obtient une solution particuliere. On a donc une solution particuliere y, définie sur
1

R par y,(z) = —ge:”.

Ainsi, les solutions sont les fonctions y définies sur R ou il existe K € R tel que

1
Vo € R, y(z) = Ke*® — gem.
) 1 7
Par ailleurs, on a y(0) = K — 3 et y(0) =2, donc K = 3
Ainsi, la solution recherchée est la fonction y définie sur R par,
Ve eR, y(x)=-e""— -e".
O

. Résolvons I’équation différentielle homogene associée, 3y’ — 4y = 0. Les solutions sont
les fonctions yg ou il existe K € R tel que Vx € R, yo(t) = Kes™.

Revenons a notre probleme. Cherchons une solution particuliere sous la forme y,(t) =
ax + b ol a et b sont deux réels.

Dans ce cas, on a y,(z) = a donc 3y, (x) —4y,(xr) = —4ax + 3a — 4b. Ainsi, en prenant
1 3 3 . . L

a = ~1 puis b = Za = —1g,» on obtient une solution particuliere. On a donc une

solution particuliere y,, définie sur R par y,(z) = —Zx — 13—6.

Ainsi, les solutions sont les fonctions y définies sur R ou il existe K € R tel que

4 1 3
R = Kei® — g 2
Vz e R, y(x) R AT
. 3 13
Par ailleurs, on a y(0) = K — 16 et y(0) = —1, donc K = =T

Ainsi, la solution recherchée est la fonction y définie sur R par,
13 4 1 3

Ve eR; y(x)= —E@x RVEARETS
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9.

10.

11.

Résolvons 1’équation différentielle homogene associée, 3’ — 2y = 0. Les solutions sont
les fonctions yo ot il existe K € R tel que Vz € R, yo(t) = Ke**.

Revenons a notre probléme. Cherchons une solution particuliere sous la forme y,(t) =
(ax + b)e?* ol a et b sont deux réels.
Dans ce cas, on a y,(x) = (2az + a + 2b)e** donc y,,(x) — 2y,(x) = ae®”. Ainsi, en

prenant a = 1 et b = 0, on obtient une solution particuliere. On a donc une solution

particuliére y, définie sur R par y,(r) = xe?®.

Ainsi, les solutions sont les fonctions y définies sur R ou il existe K € R tel que
Vr € R, y(z) = (z + K)e*?.

Ainsi, ’ensemble solution est {z — (z + K)e** /K € R}. O
Résolvons 1’équation différentielle homogene associée, y' — 3y = 0. Les solutions sont
les fonctions g ou il existe K € R tel que Vo € R, yo(t) = Ke32.

Revenons a notre probleme. Cherchons une solution particuliere sous la forme y,(t) =
ax? + bz + c ol a,b et ¢ sont trois réels.

Dans ce cas, on a y,(z) = 2az+b donc y () — 3y,(x) = —3az®+ (2a— 3b)x + (b—3c).

2 1 2
Ainsi, en prenant a = —— et b = %a = -9 et enfin ¢ = gb = —25 on obtient
une solution particuliere. On a donc une solution particuliere y, définie sur R par

1 2 2
Yp(z) = —53?2 9t T o7

Ainsi, les solutions sont les fonctions y définies sur R ou il existe K € R tel que

1 2 2
v R — K 3z _ ~,2 “~_ il
z € R, y(z) e 3 5% T o7
insi. I : 3. 1 o 2 2
Ainsi, I’ensemble solution est < x — Ke”* — 3% g%~ ﬁ/K eR;. O

3
Résolvons I’équation différentielle homogene associée, y' — Y= 0. Les solutions sont

les fonctions yp ou il existe K € R tel que Vo € R, yo(t) = Kei®.

Revenons a notre probleme. Cherchons une solution particuliere sous la forme y,(t) =
acos(x) + bsin(z) ol a et b sont deux réels.

Dans ce cas, on a y,(z) = —asin(z) + bcos(x) donc

Y () — %yp(a:) = (b - ia) cos(z) + <—a — ib) sin(x).

Ainsi, on a une solution particuliere lorsque

—jatb =1
3
— —7b =
a 1 0

—3a+4b =4 L1+ 4L,
da+3b =0 Lo+ —4L,

—3a+4b =4
25b =16 Lo+ 3Ly +4L,

— —75a = 36 L1 — 25L1 — 4L2
250 =16
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12

a =

— 25

16

25

. TN (oo 12

On a donc une solution particuliere y, définie sur R par y,(z) = T cos(x) +
16 . (2)
— sin(z).
57 Sin(@

Ainsi, les solutions sont les fonctions y définies sur R ou il existe K € R tel que

12 1
Ve e R, y(z) = Ket® — % cos(x) + % sin(x).

12 16
Ainsi, 'ensemble solution est {x > Kel1” — % cos(x) + % sin(z)/K € ]R} .0

Exercice 20. 1. Aucune difficulté, les solutions sont les fonctions y définies sur R par
Ve € R, y(x)= Nexp(—exp(x))

ou A est un réel.
O

2. Remarquons que Yz € R, 1+ 22 # 0, donc I’équation est équivalente &

2z T
/ J—
y(@) =2y = e
, 's . . oy 2z
Résolvons 1’équation homogene associée, y'(x) — T 5y(r) = 0.
x
Une primitive de z — IJQF“;Q est z +— In(1 +2?%) car Vo € R, 1 + 22 > 0.

Les solutions de ’équation homogene associée sont donc les fonctions gy définies sur
R par

Ve eR, yo(x)= Aeln(1+e?) — A1+ 2?)
ou A € R.

Cherchons une solution particuliere y, telle que Vx € R, y,(z) = A(z)(1 + 2?) ou
A € CHR).

On a alors
2x T
/
W) = T el) = T
2x
/ 2 2y
— N(z)(1+2%)+ 2z (x) — m)\(az)(l + %) = 522
= Na@)(1+2}) =2
@+ =
T
— N(z)=
@)= T2y
0) imitive de z — < tx— 11
r une primiti — -
une p ve de x e est x 31122
1
Ainsi, on prend A(z) = 31ia? donc
1
Ve eR, yylx)= —5



Ainsi, les solutions sont les fonctions y définies sur R par
1
Ve €R, y(z) =1+ 2?) - 3 ou A € R.

Bien entendu, si on avait remarqué qu’une fonction constante pouvait étre solution
particuliére, on aurait gagné pas mal de temps! [

. Remarquons que Va €] — 2, +00[, 24 2 # 0, donc I’équation est équivalente a

1 2
/ —
Y@+ g v =5
1
Résolvons 1'équation homogene associée, y'(z) + 7T y(x) =0
x

Une primitive de z — 2%0 est z — In(2 + x) car Vo €] — 2,400, 2+ x > 0.

Les solutions de ’équation homogene associée sont donc les fonctions gy définies sur
R par

A
Vz € R, = e~ no) — 2
T yo(x) e 3
ou A € R.
. R Az)
Cherchons une solution particuliere y, telle que Vz €]2, +o00], yp(x) = Gy ou \ €
x
CL()2, +o0|).
On a alors
2
/ _— e
(@) + () = 5
)\/
— () A=) 1 Ax) _ 2
24+ (2+2)? 2422+ 24x
PN N(z) 2
2+ 2+
— N(z)=2.
Or une primitive de x — 2 est = — 2.
Ainsi, on prend
VrER, yp(z) = —2
x T) = .
W 2+
Ainsi, les solutions sont les fonctions y définies sur R par
A 2x
Ve eR = uAeR.
vER, yl@) =5 +o o of
ou encore A2
x
Vr e R = u A€ R.
reR, y(x) 2+m,0u €

Si on est trés malin, on remarque que

)\+2w_)\—4+2(2—|—x) _)\—4
2+x 24+ x 24z

+ 2.
Et alors, qu’en réalité, on peut dire que les solutions sont les fonctions y définies sur
R par

A
Vx € R, y(:c):m+2, ou A € R.
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On aurait pu remarquer qu’en réalité, une solution particuliere était la fonction
constante égale a 2 ce qui nous aurait simplifié la vie. [

. Remarquons que Vx €] — 1, +00[, 1 + = # 0, donc ’équation est équivalente a

1
/ .
=5 )
V(@) + 1o (z) = sin(z)
) 's . . oy 1
Résolvons 1’équation homogene associée, y'(x) + T y(z) =0
T

Une primitive de z —

1
est z +— In(1 + x) car Vo €] — 1, +o0[, 2+ x > 0.
x

Les solutions de I’équation homogéene associée sont donc les fonctions yg définies sur
R par

A
v R =\ —In(1+4x) -
ou A € R.
. o Az)
Cherchons une solution particuliere y, telle que Va €] — 1, +o0[, yp(z) = Ttz ol
AeCl(]—1,+c0]).
On a alors
yp () + myp(l“) = sin(z)
N(x) A(z) 1 Axo) )
— 14z  (1+a) 1—|—:L“1+x_sm(x)
)\/
=7 4(-:6;1)5 = sin(x)

< N(z) =sin(x)(1 + z).

Prenons A(z) = /Ogc sin(t)(1 + t)dt.

Posons u, v deux fonctions C!(] — 1, +o0]) définies par

u'(t) =sin(t) wu(t) = —cos(t)
v(t)=1+t J(t)=1
Ainsi, on a
@) = [ cos(t) (1 + )] + /0 " cos(t)dt.
Ainsi, on a
AMz) = — cos(@)(1 + z) + 1 + [sin(£)]¢ = — cos(z)(1 + z) + sin(z) + 1.

Prenons plutét A(z) = — cos(x)(1 + x) + sin(z).

Ainsi, on a

sin(z)
1+z’

Vo e R, yp(x)=—cos(z)+
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Ainsi, les solutions sont les fonctions y définies sur R par

sin(z) + A

Ve € R -
reR, y(x) cos(x) + 1+

, ou A €R.

O]

Exercice 21 (Equations homogenes). Vous trouverez les résultats ci-dessous, mais pour
la résolution on se rapportera aux exemples du cours. [

4 2
1. y(t) = get + ge_Qt. D
2. {t = Xe™t 4 pe¥ /(A p) € R?Y. O
4 9
3. y(t) = —ge_%t + ge%t. O

10. Si y est impaire, y(—0) = —y(0) donc y(0) = 0. y(t) = sin(z). O
11. {t — 7o ()\ cos(\gﬁm) + usin(?w)) /(A ) € R?}. O

Exercice 22 (Equations non homogenes). Vous trouverez les résultats ci-dessous, mais
pour la résolution on se rapportera aux exemples du cours. []

1
Loz = Xe ™ + pe” — = /(\, pu) € R?}. O

2
(3 NT O NT VT 1
2. y:x ez (2005(2 )—1—14511(2@)_2_[]
z 2 2
3 y::m—)efT2 ()\cos(\g:c)qt,usin(\gx)) +1.0

.
<
&
®
NE)
/N
o
o
BN
&
S~—
+

ot

Az e ()\ cos(\fx) + usin(?z)) + %em/()\, p) € R?}. O

6. {z— 3 ()\ cos(\fx) + usin(?w)) + 2% +2v2c +2/(\, ) € R?}. O
7. {x—e2 ()\ cos(\égx) + ,usin(?:c)) — % cos(3z) — % sin(3z)/(\, 1) € R?}. O

126 / [359)



10 Matrices

8 1 -1
Exercice 1. 1. a. K=1]9 8 —% ]
3 3 17
1 -4 4
b.L=A+C=|0 1 -0
3 0 1
6 —12 18
c. M =6A= |12 0 =24 | O
12 6 6
0 00
d N=0=|0 0 0
0 00
O
0 -1 -5
e. P=1-9 6 10|0O
-1 -5 3
0 -5 13 0 -6 0 8 20
2.0na AB = |4 2 -24|;BA= 1|7 -2 -9|; AD = |-2 -14]|; AFE
5 5 1 10 5 5 1 10
-1 7 4
est impossible; FA = 6 -3 3  ED = 110 i DE=|-3 —4 -3];
5 3 -10 -4 0
-3 11 6
—4 15
EBD-(_3 30>.D

3. a. On trouve quasi-immédiatement que ’équation est équivalente a

1 1 -1 -3 5
2 1 —4
O
b. L’équation est équivalente a
2A —6C =2X
donc
1 4 0
X=A-3C=]|8 -3 —6
-1 4 1
O

4. a. Le systéme est équivalent a
X-Y=F
3X= F+G Ly« Lo+ 1Ly

2 1

Y= -F+:-G
13 13

X = *F‘i‘gG L2<—L2+L1

3
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1 1 0 -2
OnadoncX-(3 _1> etY—<1 _2>.D

b. Le systéme est équivalent a
X-Y+Z= ED

2Y+Z= —-ED+H Ly<+ Ls— 1Ly
3Y —2Z= —-ED+G L3+ L3— 14
X-Y+Z= ED

= 2Y+/Z= —-FED+H

77 = ED—-2G+3H L3+ —2L3+ 3L,

7TX -7V = 6ED+2G —-3H L1+ 7L — Lj
14Y = —-8ED +2G +4H Lo+ 7Ly — L3
2= ED-2G+H

{ 14X = 4ED+6G —2H Ly < 2Ly + Loy

< 14Y = —8ED+2G +4H

7= ED-2G+H

TX= 2ED+3G—-H L+ 3L,
1 W= —-4ED+G+2H

77— ED-2G+H
. 1(7 20 1/0 —40 1{-2 10
AmSI’X_7(11 —13)’Y_7<27 —2)’2_7<—16 9>'D

Exercice 2. 1. Supposons qu’il en existe deux. On aurait alors M = aA+bB = o’ A+V'B
ol a,b,a’, b’ sont des éléments de K.

a+b a _fd+V a’
b a+b] b a +b ]

Les coefficients antidiagonaux entrainent directement a = a’ et b =1¥'.

On a alors

Ainsi, si on peut écrire M comme combinaison linéaire de (A, B), elle est unique.

Autrement dit, en utilisant un vocabulaire que vous verrez plus tard, la famille (A, B)
est libre. [J

2. Supposons qu’il existe a,b € K tel que M = aA + bB.

zr y\ [(a+b a
z t) \ b a+b)’

Ce qui est équivalent au systéme

C’est équivalent a

a+b= =z
a= 1Y
b= =z
a+b =t
0= r—Yy—=z Ll%Ll—LQ—Lg
a= vy
<~ b= =
0= —y—2z+t Ly Ly— Ly— Ls

Ainsi, il existe a,b € K tel que M = aA + bB si et seulement si
r—y—z= 0
—y—z+t= 0
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{:cz Y+ z
—
t= y+=z

Autrement dit, vous verrez ultérieurement qu’on vient de démontrer que
Ty
Vect(A, B) = I eMoK)/x=t=y+z,.0
Exercice 3. C’est le classique!

2
0
0

O =

0
On remarque que A= —-3I3+ Nou N = |0

0

(—

On a bien entendu (—3I3)N = —3N =
binoéme.
Ainsi, pour tout n € N, on a

3I3) donc on peut utiliser la formule du

puisque Ig‘k = I.

0 0 2

Par ailleurs, on remarque que N2= |0 0 0| et N3 =0.
0 00

Ainsi, Vk > 3, N¥ = 0 et on a tout simplement,

k=0

en posant que (7)) = 0 si k > n.
On a alors

A" = (=3)"I3 + n(=3)""IN + n(n2_ D)

On peut factoriser par (—3)"~2 pour alléger un peu l'écriture,

(—3)"2N2.

A" = (=3)"2 (913 —3nN + n(”;l)N2> .
(=3)" 2n(=3)""" n(n—4)(-3)"?
L’écriture matricielle est A" = 0 (=3)" n(=3)"1
0 0 (=3)"
Astuce : pour vous assurez que vous ne vous étes pas trompés, il peut étre habile de
vérifier si pour n = 0 on trouve bien 'identité et pour n = 1 la matrice de départ. [

Exercice 4. 1. Comme l'exercice précédent, on remarque que A = als + bN ou N =
0 1
0 0)
On a bien entendu (alz)(bN) = abN = (bN)(alz) donc on peut utiliser la formule du
binoéme.

Ainsi, pour tout n € N, on a

A" — zn: (Z) (alo)" F(bN Yk = zn: (Z) akpk Nk

k=0 k=0
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puisque Igik = I.
Par ailleurs, on remarque que N2 = 0. Ainsi, Vk > 2, N¥ = 0.

On a tout simplement :
1
AN — Z (Z) Ak pk NF

en posant que (j) = 0si k> n.

On a alors

A" = a"Iy +na" 'ON = "' (aly + nbN).

n nflb
L’écriture matricielle est A" = <a0 naan > .g

. On remarque que A% = I3. Ainsi, si n est pair, il existe k € N tel que n = 2k, on a
alors

A" = A% = (A =15 = I3,

Si n est impair, il existe k£ € N tel que n = 2k + 1, donc

A" = AR = A%k A = A = A
En résumé, si n pair, A" = I3, sinon A" = A. O

. Utilisons l'astuce suggérée. On a A = (a — b)I2 + bB.

On a [(a — b)I3](bB) = b(a — b)B = (bB)(a — b)I, donc on peut utiliser le bindme de
Newton.

Ainsi, on a, pour n € N,

A=Y <Z> (o~ DL 0B =3 (Z) b (a — b)"*BF.

k=0 k=0

On se pose alors la question de savoir ce que vaut B*.

2 2
2 _
OnaB-(2 9

) = 2B. Ainsi, on peut supposer que, Vk € N*, BF = 2k-1B,
On le montre par récurrence en posant P(k) : B¥ = 2F-1B,

Il est bien évident que B! = 2°B, donc P(1) est vraie.

Soit k € N* quelconque fixé. Supposons P (k) vraie.

On a B¥! = B¥B. Or d’aprés 'hypothése de récurrence, on a B¥ = 2571 B, ainsi
Bk+1 —_ 2k71B2 — 2k712B — 2/€B

en se souvenant que B? = 2B.
Ainsi, P(k + 1) est vraie.
On a donc, pour tout k € N*, BF = 2F-11,

Revenons-en a A™. On a
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A”:i(:)bk(a—b)"’“Bk a—b“12+z<> — )" kB,

k=0

On isole le terme en k = 0 parce que la formule sur B¥ n’est vraie que pour k > 1

En utilisant ce que nous venons de démontrer, on a
" [(n
A= (a—b)"L+ ) ( )bk(a —b)nkok-1p,
k
k=1
En essayant de faire apparaitre une formule du binéme, on a

A’I’L

(a—b)"Ip + (5:1 (Z) b (a — b)“’“2’“1> B

= (™ (205 (0 — 0+ | B
(“(k><>< ) )
k=0

((a+b)"—(a—0b)")B.

1
(a=b)"lr+ 5

1
= (a=b)"I+;

L’écriture matricielle est donc :

O]

An:1<(z+b)n+(a—b)" <a+b>n—<a:b>">,

Exercice 5. On peut tout a fait faire utiliser la formule du bindme en écrivant que
A = 3I3 + B, vérifier que les matrices commutent, calculer B comme dans 1’exercice
précédent et faire a nouveau apparaitre une formule du binéme. Ou on peut faire une
récurrence parce que 1’énoncé a gentiment donné le résultat. Faisons la récurrence pour
changer.

3n71
On note, pour n € N, P(n) : A" = 5
On a A° = I3 et 37(30 —1)B + 3°I3 = I donc P(0) est vraie.
Soit n € N quelconque fixé. Supposons P(n) vraie.
On a A"t = AA™. Or en utilisant P(n) on a

(3" — 1)B + 3"I.

n—1
A A (3 (- 1)B+ 3n13>

n—1

= (B + 3[3) ( (3“ — ]_)B + 3”]3
3n71 n—1

3
= 5@ - 1)B? +3"B + 313

(3" —1)B + 3"*1s.
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12 12 12
Or B2= |12 12 12| =6B. Ainsi,

12 12 12
3n71 R
At = 5~ (3" = 1)6B+3"B+ =-(3" —1)B + 3t
3n71 3n
= (6B -D+3"+ B -1 B+ 3"

3TL
- <3"(3" — 1)+ 3"+ 3(3" - 1)> B +3"tr

Tl

3”—1+1+

—1
>B+3n+11’3

B+3",

“
"

_ <3><3 _1>B+3”+1I
o

2><3”—|—3"—1>

3n+1
>B+3n+1_[

Donc P(n + 1) est vraie.
3n—1
Ainsi, Vn € N, P(n) : A" = ?(3” —1)B+3"I;.
L’autre solution est de voir que A = B + 313 donc, comme B(3[3) = 3B = 3I3B, on
peut appliquer la formule du binéme et remarquer que

AN — Zn: (Z) B*(31;)"F = zn: (Z) gn—k gk

k=0 k=0
12 12 12
Orona B?= (12 12 12| = 6B. Ainsi, on peut supposer que, Vk € N*, B = ¢*~1B.
12 12 12

On le montre par récurrence en posant P(k) : B¥ = 65-1B.

Il est bien évident que B! = 6°B, donc P(1) est vraie.

Soit k € N* quelconque fixé. Supposons P(k) vraie.

On a B¥*1 = B¥B. Or d’aprés 'hypothése de récurrence, on a B* = 65~ B, ainsi

Bk’+1 — 6k71B2 — 6k716B — GkB

en se souvenant que B? = 6B.

Ainsi, P(k + 1) est vraie.

On a donc, pour tout k € N*, B¥ = 6*~1B.
Revenons-en & A™. On a

A= <Z> 3 kBk =371+ 3 <Z> 3"k Bk,

k=0 k=1

On isole le terme en k = 0 parce que la formule sur B* n’est vraie que pour k > 1
En utilisant ce que nous venons de démontrer, on a

n n
n_gny 3n_k6k_1B.

En essayant de faire apparaitre une formule du binéme, on a
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" (n
A" = 371[ n—kpk—1 B
3—1-(2 <k>3 6
k=1
1 n
= 3L+ "et3n k) B
6 = k
1 (S (n
= 3"[3+ = 6"3"* _3" | B
5 (2 (0) )
1
- 3"13+8(9"—3”)B
371
= 3"+ (3"~ 1)B
37171
= 3"I;+ (3" —1)B

Ce type de matrice est croisé tres régulierement, et on a besoin de calculer sa puis-
sance éniéme avec ou sans connaissance du résultat final. Il faut donc maitriser les deux

méthodes. [

Exercice 6. 1. Non elle a deux colonnes identiques. [J

1 0 0
2. Ontrouve A2=|—-a a+1 a+1]|et A3 =A. 0O
a —a —a

3. Si n est pair, il existe k € N tel que n = 2k.

Montrons que, pour tout k € N*, A% = A2

On le montre par récurrence en posant P(k) : A% = A2,

Il est bien évident que A2*! = A2 donc P(1) est vraie.

Soit k € N* quelconque fixé. Supposons P(k) vraie.

On a A2(k+1) — A2k+2 — A2k A2 Or d’aprés Phypothése de récurrence, on a A2+ = A2,

ainsi

A2(kH1) — 4242 — A3 A4 — AA — A2
car on a vu que A3 = A.
Ainsi, P(k + 1) est vraie.
On a donc, pour tout k € N*, A%k = A2,
Par ailleurs, si n est impair, il existe k € N tel que n = 2k 4 1.
Ainsi, A" = A%+ = A28 A = A%A = A3 = A.

En résumé, si n est pair non nul, A® = A? et si n est impair, A" = A. O

Exercice 7 (Méme genre que le précédent). 1. Le systéme homogene associé est

—Sr+2y+2z =0 z =0 L1+ L1—2Ls
—3r+y+z =0 << -3x+y+z =0
—9r+4y+4z =0 3r =0 L3« L3—4Lo

qui est un systeme

de rang 2 (puisque les premieres et derniéres lignes sont équivalentes). Ainsi, la matrice

n’est pas inversible. [

1
2. On trouve A2 =] 3
-3

0
-1
2

0
-1
2

et A3=A.0
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3. I semblerait que, pour A* = A3A4 = A2 et A = A*A = A?A = A3 = A.
On peut donc penser que, pour tout k € N, P(k) : A%+l = A,
Il est bien évident que A2*%*! = A, donc P(0) est vraie.

Soit k € N quelconque fixé. Supposons P(k) vraie.
On a A2(h+D+L — A2k+3 — A2k+1 42 Or d’aprés I'hypothése de récurrence, on a
AZEFL — A ainsi
A1+ 442 — A3 — 4
car on a vu que A3 = A.
Ainsi, P(k + 1) est vraie.
On a donc, pour tout k € N, A2¢+1 = 4.
Par ailleurs, si k € N*, on a A% = A%F—14 = AA = A2
Et pour finir, on a comme d’habitude, A° = I3. O
Exercice 8. 1. A3 = —I3, ce quon peut réécrire en A(—A?) = I3. On a donc A~ =

—-A%2. 0O

2. A% = A, donc si A était inversible, en multipliant par A~!, on aurait A=1A43 = A~1A,
ce qu'on écrit en A2 = I5. En calculant A3, on a bien vu que A% # I3, donc A n’est
pas inversible. []

1
3. A3 —2A% —5A4+10I3 = 0 ce qui est équivalent & A <—1O(A2 —2A — 5[3)) = I3,donc

1
A7l = - (A2 -24-50;) O
10
d .
4. En isolant le terme en kK =0, on a agl,, + ZaiA’ =0.
i=1

Lorsque ag # 0, c’est équivalent a

1< ,
(— ZO&Z‘AI_1> A= In
@0 ;=

Ou encore, en posant k =147 — 1, a

df
L Zl a1 AR ) A=1,.
Q0 1 5o

d—1
1
Autrement dit, A est inversible et on a A7 = —— Z ak+1Ak.
@0 1o
Si on considére un polynéme qui le vérifie du plus petit degré possible (donc tel que
tout polyndéme de degré inférieur strictement n’annule pas A), on peut montrer que
A est inversible si et seulement si ag # 0. O

-3 2 1
Exercice 9. 1. a. Les techniques habituelles ameénent & P~' = [ -4 3 1|0
4 -2 -1
1 0 0
b. En la calculant, on remarque qu’elle est diagonale : D = 01 (1) O
00 3
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c. On a P7'AP = D, donc en multipliant & gauche par P et & droite par P~!, on a
PP 'APP~' = PDP~! donc A= PDP~'. O
d. La question qui revient presque tous les ans.
Notons, pour n € N, P(n) : « A" = PD"P~1 ».
Pour n =0, on a A = I3 et PD°P~! = PP~! = I3. Ainsi, P(0) est vraie.
Soit n € N quelconque fixé. Supposons P(n) vraie. On a alors

Artl = A4

APD"P~! d’aprés P(n)

PDP~'PD"P~! d’apres la question précédente
= PDD"pP!

— PDnJrlel'

Donc P(n + 1) est vraie.
Ainsi, pour tout entier naturel n, on a A" = PD"P~1, [J

2. a. Pas de secret, il faut poser proprement le calcul pour avoir :

—342nt2 9g_9ontl 1 _9on
A" = | —4 42772 3 _9ntl 1 _9™n
—4 4272 9_9ontl 9 _9n
O
n 1
b. Il est clair que 27" = (%) —— 0, car -1 < = < 1, donc lim A" =
n—+o0o 2 n——+o00
-3 2 1
-4 3 1|.0O
-4 2 2

Exercice 10. Il n’y a pas de technique cachée non plus. On peut utiliser la formule
quand on est dans My (K) sinon, il faut passer par le systéme associé et le résoudre. On
trouve les résultats suivants : [

5
A=|8% 30O
-3
1(2 1
B—7<1 —3>D

C = Non inversible. [J

1 1 0 -1
Dzi -2 0 0|0
-1 -2 -1
0 1 1
EF=-12 -1 1|0
0 -1 1
1 -10 -2 8
F:% -5 8 =20
0 6 6
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G:% -4 0|0
1 =7 2
1 1 0 1
H:g 4 -5 —-1|0O
1 -5 1

Exercice 11. 1. Attention a ne pas faire d’opération interdite !

On pose le systeme homogene associé :
B=XNz—-2y+2z= 0
3c+(-2—Ny+3z2= 0
2 —2y+ (3—N)z= 0

B-Nz—-2y+2z= 0
= 6+B=XN(-2=AN))z+(2=-2N)z= 0 Lo+ 2Ls+(—2—-)N)L4
(—1+)\)$+(1—/\)Z: 0 L3« L3— L,

T 0
= 1=XNz+(-1+Nz= 0
)x 0

—2y+2z2+@B-Nz= 0
= (1-XNz+(-1+Nz= 0
(2—-3A+A)z= 0 L3« L3—2Ly
Le systéme n’est pas de rang 3 lorsque 1 — A = 0 ou 2 — 3\ + A% = 0 (dont les deux
racines évidentes sont 1 et 2).

La matrice Ay n’est donc pas inversible lorsque A =1 ou A = 2. [J

2. On pose le systéme homogene associé :
2-Nz+y—Tz= 0
2r+(B3—-Ny—8z= 0
2042y + (=7T=XN)z= 0
2=-Nz+y—-Tz= 0
= 2-B-N2-N)z+(-8+T7B—-A)z= 0 Ly Ly—(3—NL;
(—2+2/\)l‘+(7—)\)22 0 Lg<+ Ls—2I,
y+2=-Nzx—-7z= 0
= 2(=1+XNz+(7T=XNz= 0
(=4 +5X = A2+ (13—-TNz= 0 Ly < L3
Or —4 + 5\ — A2 = —(\ — 1)(\ — 4), donc le systéme est en fait
y+(2-Nz—Tz= 0
= 20—Dz+(7T—=XNz= 0
—A=1)A =4z + (13 -TN)z =
y+2-Nzx—-7z=
= 20 =1z +(7T—N)z=
213 -=TA)+AN=H)(T—-N)]z= L3 < 2L3+ (A —4)Ls
Le systeme n’est pas de rang 3 lorsque 2(A—1) =0 ou 2(13—-7A)+(A—4)(7—X) = 0.

La premiere égalité donne A = 1, la deuxieme par contre est équivalente a

0
0
0
0

26— 14\ — 28 + 1IN = N2 =0 <= —2—-31 =)\ =0.
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On reconnait —1 comme racine évidente, le produit des deux doit faire 2, donc 'autre
est —2.

La matrice B) n’est donc pas inversible lorsque A = —2,—1 ou 1. [

3. On pose le systéeme homogene associé :

2-XNz—y+z= 0
—dr+(B-Ny—2z= 0
—6x+6y+(—3—XN)z= 0

2-Nz—-—y+z= 0
<~ —2)\$+(3—)\)y: 0 Lo+ Lo+ 21,4
(—6+(B+N)2—-\)z+B-Ny= 0 Ly« Ly+(3+ Nt

z—y+2-XNz= 0
= B=XNy—2 = 0
B=Ny+ (A= )z= 0

z+2=Nz—y= 0
= B=Ny—2X\x= 0
()\—)\2).’,12‘: 0 L3%L3—L2
Le systéme n’est pas de rang 3 lorsque 3 — A = 0 ou A — A\? = 0.
La premiere égalité donne A\ = 3, dans la deuxiéme on reconnait 0 1 comme racines

évidentes.

La matrice Cy n’est donc pas inversible lorsque A = 0,1 ou 3. [

Exercice 12. 1. a. On a A+ B = (ai; + bij)1<i<n, donc
1<j<n

TT(A + B) = Z(au‘ + bii) = Z a;; + Z b
i=1 i=1 i=1
On a donc Tr(A+ B) =Tr(A)+Tr(B). O
b. On a A = ()\aij)lgign, donc

1<j<n

n

i=1

i=1

On a donc Tr(AA) = \T'r(A). O

2. 0Ona AB = (Z aikbkj> , donc
k=1 1<i

Tr(BA) =Y birari = > Y aibri

i=1k=1 k=1i=1
en échangeant les sommes. C’est exactement la méme chose que ci-dessus sauf que le
nom des indices a été échangé.

Ainsi, on a Tr(AB) = Tr(BA). O
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3. Supposons qu’il existe un tel couple.
On aurait alors Tr(AB — BA) = Tr(I,), or Tr(I,) = n.
Ainsi, on aurait Tr(AB — BA) = n.
Or d’apres la premiere question Tr(AB — BA) = Tr(AB) + Tr(—BA).
D’apres la question d’apres, on a Tr(—BA) = —Tr(BA).
Et d’apres la derniére question, on a T'r(BA) = Tr(AB).
Ainsi, Tr(AB — BA) =Tr(AB) — Tr(AB) = 0.
On aurait donc 0 = n ce qui est bien entendu exclu. Il ne peut donc pas exister de tel
couple. [
Exercice 13. 1. a. On trouve A =1+ 2N. O

b. Remarquons que I et N commutent. On peut donc utiliser la formule du binéme
pour calculer A” avecn > 1. On a

A”:(MV+]Y%:55<Z>@NﬁP“@

k=0

Remarquons de plus que N2 = 0. Les seuls termes non nuls de cette somme sont
donc obtenus pour £ =0 ou 1.

On trouve donc A" = I + 2nN. Ce qu’on peut aussi écrire :
14 2n 2n
A" = .
< —2n 1-— 2n>
Cette formule est encore vraie pour n = 0. [

2. a. On calcule A? puis on résout A% = aA+bI. On trouve trés rapidement qu’on peut
écrire A2 =24 — 1.

b. Supposons qu’on a a n fixé A™ = u, A+ v,1.
A = A A" = 0, A% 4 v, A
Cependant, A2 =24 — I, on a donc
A" = (Quy, 4 v,) A — up .

On trouve donc t,41 = 2uy + vy, €t V1 = —Up. O

c. Ona A% =7 donc ug =0 et vg = 1. De plus A = A, donc u; = 1 et v; =0 et
nous venons de trouver les relations de récurrence suivantes :

Upt1 = 2Up + Uy
Upn4+1 = —Up

On a donc upi2 = 2Upy1 + Unt1 = 2Unpt1 — Uy. C’est une relation de récurrence
linéaire d’ordre 2. On sait parfaitement exprimer u,, en fonction de n. Commencons
par résoudre I’équation caractéristique. Il s’agit de X2 = 2X —1ou X?2—2X+1 =0,
c’est-a-dire (X —1)2 = 0.
uy, s'écrit donc u, = (An + p)1" = An + p.
Faire n = 0 donne

nw=20
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et faire n = 1 donne
A+ p=1

On récupére donc A =1 et g = 0. On en déduit donc
vn € Nyu, =n.
Par ailleurs, comme v,, = up4+1 — 2uy,, on trouve v, =n + 1 — 2n et donc
Vn € Nyv, = —n—+1.

O
d. On a donc A™ = nA+ (—n+ 1)I c’est-a-dire

2n+1 2n
n _
vnen,4 _<—2n —2n+1>'

Cela correspond bien au résultat trouvé dans la premiere partie. [

11 Suites réelles

Exercice 1. 1. On note, pour n € N*, P(n) : < u,, existe et u,, > 0. > Comme u; = 1,
P(1) est vraie.

Soit n € N* quelconque fixé. On suppose P(n) vraie.

On a, d’apres P(n), u,, existe et u, > 0, donc u, + 12 > 12. On peut donc prendre la
racine de ce terme, ce qui assure ’existence de uy41, et on a

Upt+1 = Vup, +12 2 V12 20

comme la fonction racine carrée est croissante sur R.
Ainsi P(n + 1) est vraie.

On a démontré par récurrence que (uy,),en+ est bien définie et, si ca devient utile dans
la suite, que Vn € N*, u,, > 0. [

2.0nawu =1, ups = V13 et ug = /12 + +/13. La suite (u,)nen+ semble croissante.
Démontrons-le par récurrence.

On note, pour n € N*, P'(n) : < up < Upg1. >
Comme u; =1 et ug = /13, P'(1) est vraie.
Soit n € N* quelconque fixé. On suppose P’(n) vraie.

On a, d’apres P'(n), un < tpi1, done u, +12 < uyy1 +12. Comme d’apres la question
précédente, u,, > 0, on peut appliquer la fonction racine carrée qui est croissante sur
R,.

Ainsi, Vu, + 12 < V/up+1 + 12 ce qui se traduit par u,41 < uppo.

On a donc démontré que P’'(n + 1) est vraie.
On vient de démontrer par récurrence que la suite (uy,)pen+ st croissante.
O]

3. Et si on faisait une récurrence pour la troisieme fois de ’exercice 7
On note, pour n € N, P"(n) : <0 < u, < 4.> Comme u; = 1, P"(1) est vraie.

Soit n € N* quelconque fixé. On suppose P”(n) vraie.
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On a, d’apreés P”(n), 0 < u, < 4, donc 12 < u,, + 12 < 16. On peut donc prendre la
racine de ce terme (tout est positif), et on a

V12 < Uiy = Vg + 12 < V16 >0

comme la fonction racine carrée est strictement croissante sur R.
Comme /12 > 0, P"(n + 1) est vraie.

On a démontré par récurrence que Vn € N*, 0 < u,, < 4.

O

4. La suite (up)pen+ est croissante et majorée par 4 (évitez de dire bornée, ¢a laisse un
doute sur la pertinence de votre argumentation) donc elle est convergente d’apres le
théoréme des suites monotones.

Notons ¢ sa limite. Comme, d’apres la question précédente, Vn € N; 0 < u, < 4, on a

0<l<4.

Orupyg —— Letupy +12 —— 0+ 12.
n—+400 n—4o00o

Comme la fonction racine carrée est continue sur R, elle 'est a fortiori en 12 + /¢

donc
Vup +12 ——— V£ 4+ 12.

n—-+00

Ainsi, comme on a, Vn € N*/ u,41 = u, + 12, en passant a la limite dans cette
relation, on obtient

=0+ 12
= P2 =(+12
— 2Z_/r-12=0.

Or ce trindome du second degré admet —3 et 4 comme racines évidentes (si ce n’est
pas le cas, déterminez-les comme vous le souhaitez). Ainsi, les seules limites possibles
sont —3 et 4. Mais on a vu que 0 < £ < 4, donc £ = 4.

On a donc démontré que
lim wu, = 4.
n—-+o0o

O

Exercice 2. Soit n € N. On a w1 — up, = —e % < 0. Ainsi la suite (up)nen est

strictement décroissante.

Si la suite était convergente vers un réel ¢, on aurait u,11 —+> { et, par continuité
n—-+0oo

de la fonction exponentielle, u,, — e %" —— £ — e ¢,

n—+oo
On doit donc avoir £ = £ — e~¢ ce qui est équivalent & e = 0. Or cette égalité est
impossible, ce qui implique que la suite ne peut pas étre convergente.
D’apres le théoréme de convergence des suites monotones, comme (uy, )pen est décroissante
et ne converge pas, on a lim wu, = —o0.
n—-+o0o
Exercice 3. 1. On note, pour n € N, P(n) : < u, existe et 0 < u, < 12. > Comme

ug € [0,12], P(0) est vraie.

Soit n € N quelconque fixé. On suppose P(n) vraie.
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On a, d’apres P(n), u, existe et 0 < u,, < 12, donc 0 > —u,— > —12.. En ajoutant
12, on obtient 12 > 12 — u,, > 0. On peut donc appliquer la fonction racine carrée et
comme cette fonction est croissante, on obtient

V12 > 12 —uy, = 0.

Ainsi on assure l'existence de u,41 et comme /12 < 12, on a

12 > upyq = 0.

On a donc montré que P(n + 1) est vraie.

On a démontré par récurrence que (uy)nen est bien définie et que, Vn € N, u,, € [0, 12].

O

. Si (un)nen converge vers un réel ¢, alors, comme ¥n € N, u,, € [0,12], on a £ € [0, 12].

Par ailleurs, on a immédiatement u,1+7 — ¢ et /12 —u,, —— /12 — ¢ par
n—-+0o00 n—+00

continuité de la fonction racine carrée.

On a alors £ = /12 — ¢, donc £? =12 — ¢, soit > + ¢ — 12 = 0.

On voit que cette équation admet deux solutions, 3 et —4, mais comme ¢ € [0, 12], la

seule limite possible est £ = 3. [

. Soit n € N. On a

v

(V) - (/2 + 3)
N V12 —u, + 3
112 — u, — 9

V12 = u, + 3|

3_
\/1|275”’_'_3(:ar\/12—un+320
- WUn

|un+1 - 3|

_ [un — 3|
V12—, +3
1 1
OI' \/12 - Un+3 2 3, dOIlC m < g, ainsi
|y, — 3] 1

|ty — 3.

_3l=—1n o
[tn g1 = 3| VI2—u. +3 3
0

1
. Notons pour n € N, P(n) : < |u, — 3] < F lug — 3| >.

1
Pour n =0, on a d’un c6té |ug — 3| et de l'autre 30 |up — 3] = |up — 3| donc P(0) est
vraie.
Soit n € N quelconque fixé. Supposons P(n) vraie.

On a 1
[unt+1 — 3| < g‘un_3|-

. 1
Or d’apres P(n), |u, — 3| < I lug — 3.
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Ainsi,
11
5gn 1031

1
i =31 < 5 lun — 3] < oy w0 — 3]

R
Ainsi, P(n + 1) est vraie.

On a donc montré par récurrence que Vn € N, |u, — ¢| < n lug — ¢|. O

1
5. On a 3" ——— 400, car 3 > 1, donc—|u0—3]——>0
n—+oo n—+oo

Ainsi, par le théoreme des gendarmes, |u, — 3| — =0 0, autrement dit 1151_1 Up = 3.
n—-+00
O

Exercice 4. 1. f est le quotient de deux fonctions dérivables sur R, dont le dénominateur
ne s’annule pas. Ainsi, f est dérivable sur R4 et on a
2Bz +1)] -32(x+5)]  —24
9(x +1)2 C9(z+1)2

Ve eRy;  f(z) =

Ainsi, il est clair que Vo € Ry, f/(x) < 0. Ainsi, f est décroissante sur R.

Par ailleurs,

i) 2¢+10 2z1+32 2143 2
Xr) = = — —_ — —.

3z +3 3:c1+l 3141 a+o0 3

o L 10
Ainsi, f est décroissante de f(0) = 3 a g en l'infini. [J
i 2
2. On note, pour n € N, P(n) : < u,, existe et u, € 33 .> Comme ug € Ry, on peut
10
appliquer f et on a lexistence de uy et u3 = f(ug) = f(0) = 3 P(1) est vraie.
Soit n € N* quelconque fixé. On suppose P(n) vraie.
2 10
On a, d’apreés P(n), u, existe et u, € {3, 3} CR,.
Ainsi, peu appliquer f a u,, ce qui assure 'existence de u,41. De plus, la remarque
2 10
sur la décroissance de f permet d’assurer que comme 3 < Uy < 3 on a

521 (3) = =1 () =5

2 10

Ainsi = —.
ms1, Up4+1 € {3, 3 }
On a donc P(n + 1) qui est vraie.

On a donc démontré par récurrence que (u,)pen est bien définie et que Vn € N* u,, €
2 10
-, — . O
53]
0
3. Comme Vn € N*, u,, € 33 , 8’ existe une limite elle est forcément finie et, si on
2 10
1 te £, le |-, —|.
a note £, on a [3 3 }
OIl a Un+1 m} E, ainsi que Q(Un+5) m 2(6"‘5), puis B(Un+1) m 3(€+1)

Par quotient, comme 3(¢+ 1) # 0, on a
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2(up +5) 2(¢+5)
3(up +1) notoo 3(£+1)

Ainsi, ¢ vérifie
_2(0+5)

! =
3(0+1)

donc
302 4+0—10=0.

Cherchons le discriminant A = 12 —4 x 3 x (—10) = 121.

—1-11 —1+11 )
Il a donc deux racines ———— = —2 et T+ =3
2 10 5
Comme —2 ¢ {3, 3}, la seule possibilité est £ = 3" O
. Soit n € N. On a
w e — 5’ _ [2wnt5) 5
TR 3w, +1) 3
B 2un+10—5(un+1)‘
B 3(up +1)
| —Bun+5
| 3un +3
|—3up, + 5|
|3y, + 3|
un 3
7 Bu, + 3|
Or on sait que Vn € N* u,, > %, donc 3u, + 3 > 5.
1 1
Ainsi, = < -
|3un, +3]  Bup,+3 "5
On a donc,
5‘ un = § <3‘Un—§’ 3
Uu — =] = RS = -
"3 13, + 3 5 5

Ensuite, faisons une récurrence.

i} 5 3\ 5
Notons pour n € N*, P(n) : < Uun — 3 < B ur = g >
. 5 3\ 5
Pour n =1, on a d’un coté |u; — 3 et de l'autre v UL — 3
est vraie.
Soit n € N* quelconque fixé. Supposons P(n) vraie.
On a
n+1 3 X 5 n 3 .
5 3\" ! 5
dapre 20« (2 _2.
Or d’apres P(n), |un 3’ <5> up 3‘
Ainsi,
T 3(3)“ w-2l= (2
RIS BT 3] S\ T3 \s




Ainsi, P(n + 1) est vraie.

On a donc montré par récurrence que Vn € N*, Uy — =

5 3 n—1
I
o 3‘ S (5) 3
3 n—1
Ensuite, on remarque que comme —1 < = < 1, on a (> — 0.
5 5 n—+o0o

;

Donc d’apres le théoreme des gendarmes, u, — 3 — 0. Autrement dit, la suite
n—oo

(un)nen est convergente et on a

lm up = 2

O

5. On trace sur un méme graphe la fonction f, et la droite d’équation y = . On place
ug sur l'axe des abscisses, puis grace au graphe de f uy sur 'axe des ordonnées. On
remarque que la droite horizontale passant par (0, u;) coupe la droite d’équation y = x
en (u1,u1) ce qui permet de le reporter sur 'axe des abscisses... Et on recommence.

La suite se rapproche du point d’intersection entre f et la droite d’équation y = x,
c’est-a-dire la solution de f(¢) = ¢ que nous avons déterminé ci-dessus.

y=u

us

oS
S5
~—

A4
1
|
|
!
|
!
!
!
!
!
!
!
!
|
[
]
!
!
!
!
1

4o

1.5 7 (ug2,u2)

u9

0.5t

Uuo

R el ettt

L T T T
Q--mmmmm e

0.5 lus 15uz 2 2.5 3 u 35 4 45

O]

Exercice 5. Soit n € N, on a upy1 — up, = —u?2 < 0. Ainsi, la suite (uy)nen est
décroissante.
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Supposons (uy )en convergente et notons ¢ € R sa limite. On aurait alors liI_P Upy1 =4
n—-+0o0

et d’apres les regles usuelles, lim u, — u% ={— 0.
n—-+o00

Ainsi, on a forcément £ = — (2 <= (> =0 <= ( = 0.

La seule limite possible de la suite (uy)nen est 0.

Si ug < 0, la suite étant décroissante, Vn € N, u,, < ug < 0. Si (u,)nen était convergente
sa limite serait inférieure ou égale & ug < 0 ce qui est exclu. Ainsi, si ug < 0, (Up)neN
est décroissante et ne converge pas, donc d’aprées le théoréme de convergence des suites

monotones, lim wu, = —oo.

n—-+00
Siug > 1,o0nau; = ug —ug = up(l—up) < 0. Ainsi, le méme raisonnement que ci-dessus
mais appliqué a partir du rang n = 1 donne lim wu, = —oc.

n——+00
Pour finir, étudions le cas ot ug € [0, 1]. Notons P(n) : < u, € [0,1] >.

Il est évident que P(0) est vraie.
Soit n € N quelconque fixé. Supposons P(n) vraie. On a alors

Upt1 = Up — ui = up(1 — uy).
Or si uy, € [0,1], =1 < —u,, < 0 done 0 < 1 — uy, < 1 puis, comme u, > 0,
0 < up(l—up) < up.
Et comme u,, < 1, en reconnaissant u,1, on a
0 <uptr < 1.

Ainsi, P(n + 1) est vraie.

On a donc Vn € N, u,, € [0,1].

On a donc une suite (uy,)nen décroissante et minorée par 0 donc convergente vers la seule
limite possible, 0. [

Exercice 6. Soit n € N, on a uy 1 = uy +u2, donc uy, 11 — u, = u2 > 0. Ainsi, la suite
(un)nen est croissante.

Supposons (uy )nen convergente et notons ¢ € R sa limite. On aurait alors lirf Upt1 =L
n—-+0oo

et d’apres les régles usuelles, lim wu, + u% ={+ 02
n—-+0o0o

Ainsi, on a forcément £ = + (% <= (> =0 < ( = 0.

La seule limite possible de la suite (uy,)nen est 0.

Si ug > 0, la suite étant croissante, ¥n € N, u,, > ug > 0. Si (up)nen était convergente
sa limite serait supérieure ou égale a ug > 0 ce qui est exclu. Ainsi, si ug > 0, (un)nen
est croissante et ne converge pas, donc d’apres le théoreme de convergence des suites

monotones, lim wu, = +oc.
n——+00

Siug < —1, on a ug = up(l + ug) > 0. Ainsi, le méme raisonnement que ci-dessus mais
appliqué a partir du rang n = 1 donne liril Uy, = 400.
—r+00

n
Pour finir, étudions le cas ot uy € [—1,0]. Notons P(n) : < uy, € [—1,0] ».
I1 est évident que P(0) est vraie.
Soit n € N quelconque fixé. Supposons P(n) vraie. On a alors

Upt1 = Up + u% = up (1 4+ up).

Or si up, € [-1,0], 0 < 1+ up, < 1 donc uy < up(l+ up) <0 car u, < 0. Et comme
U, =2 —1, en reconnaissant u,4+1, on a

—1 < Un+1 <0.
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Ainsi, P(n + 1) est vraie.

On a donc Vn € N, u,, € [-1,0].

On a donc une suite (uy,)nen croissante et majorée par 0 donc convergente vers la seule
limite possible, 0. [

Exercice 7. 1. Soit n € N. On a

2Up + vy Up+ 20, Up — Up

Upt1 — Unt1 = 3 - 3 =3

La suite (u, — vp)nen est géométrique de raison 3

1
En particulier, on a Vn € N, u,, — v, = B—n(uo —0).

1
Comme -1 < =-<1,ona lim wu,—v,=0.0
3 n——4o0

2. Soit n € N. On a
2Uup, + Uy, Uy + 20, 3uy, + 3vy,

Up+1 + Unt1 = 3 3 = 3 = Un + Vn.

On remarque ainsi que la suite (u, + v,)pen est constante. On a donec, Vn € N,
Uy, + Uy, = Ug + Vg

Par ailleurs, d’apres la question précédente, on avait u,, — v, = 37(u0 — ).

1
Ainsi, en faisant la somme des deux, on récupere 2u,, = ug + vg + 3—n(u0 — ).
Autrement dit
ug + Vo 1 ug—vg

YneN, u,= 5 T
En faisant la différence, on récupére 2v,, = ug + vg — 3—n(u0 — vp). Autrement dit
uo + Vo 1 ug—vg
VneN, wv,= - —
o 2 3n 2
O
3. On n’a aucune difficulté a conclure, comme dans la premiére question, que comme
1
-1<-<1,
3
. . Up + Vo
lim u, = lim v,=———.
n——4o00 n——4o00 2
O
n 1

Exercice 8. 1. On a

P+l ndl4 L

1 _n . rn_1
OrlJrn%);MO1domcn3+1 i
1
De plus — — 0, ainsi, lim o 0.0
n2 n—+oco n—-+too n3 +1
5n? 5n? 1
2.0 — =1+ —].
naTs n3 < + 5n2>
1 5n2  5n? 5
Or1+——>1donci~i:—.
5n2 n—4oo n3 n3 n
5 5n2 + 1
De plus — —— 0, ainsi, lim ot =0.0

n n—+oo n—-+4oo n3
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A L
a———=——7" "
n®+n?—-12 nf14 L — 13

. On

7 3 7

1+ L +-L n'"+n°+1 n
OI' n14 ?’27 1 dOIlC % 1. -2 19 ~ 5 =N

I+-7—76 n—+too n+nc—12 n

7 3
1
De plus n —— +o0, ainsi, lim oAl = +4o00. [
n—-+00 n—+oo nb 4+ n2 — 12

nt+1 n? 1""7%4
a = — .
3nt+nd+12n —72n+1 3nil4 L+ 4 -2 L

n2

. On

14+ nt+1 nt 1
— 1 donc ~ = .
gt =T +50 notoo 3nt+n3+12n2 -72n+1  3n* 3

S nt+1 1
Ainsi, lim =—.
n—o+too 3nt +n3 +12n2 - T2n+1 3

—n —n
.Onaﬂ— i (1—1—6).

Or

n2  n2? n

- e"+n n 1
Or1+ﬁ’——_)1d0n(§72~72:*.
" n—+oo n n n
1 ... e "+n
De plus — ——— 0, ainsi, lim ——5— =0.[]
n n—+oco n—-+4oo n
e"+n e"1l+ne™
. Ona —I—l():i NOR
n+ In(n n In{n)
1+ =
_ . ) e"+n e”
Or Hﬁ‘f(n? ——— 1 par croissances comparées, donc ——— ~ —.
1+20 oo n+lIn(n) n
e” e"+n
De plus, par croissances comparées, — —— +00, ainsi, lim ————
n n—+oo n—+oo n + In(n)
O

Exercice 9. 1. On a u, = n? (1 — % + %) ~ n?. Ainsi,

Up n? 1

vn 2103 2n n—+oo
Ainsi, elles ne sont pas équivalentes. [

2 1
2. Onaun:n4<1—3—+)wn4,
n nd3 nt

1
Par ailleurs, v, = n* (1 + 3> ~ nt.
n

Ainsi,

Ainsi, elles sont équivalentes. [J

3. En accélérant un peu, on a u, ~ n? et v, =~ 2n?.

Ainsi,
Unp, n? 1
vy 2n2 2

Ainsi, elles ne sont pas équivalentes. [
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4. En accélérant toujours, on a u, ~ n® et v, =~ n*.

Ainsi,
Up, n?
—~ g =N ——— +00.
Un n n—-+00

Ainsi, elles ne sont pas équivalentes. [

Exercice 10 (Constante d’Euler, un classique). 1. Notons h la fonction définie et dérivable
sur | — 1; 400 par h(z) = x —In(1 + ), bien définie et dérivable car sur cet intervalle
14+ x > 0, donc on compose des fonctions dérivables puis on fait une combinaison de
fonctions dérivables.

1 Y

Onah/(z) =1- =

1+=x 1+x
Donc h est décroissante sur | — 1;0] et croissante sur [0, +o0o[. Ainsi h est minimale en
0. Or h(0) =0, donc Vz €] — 1 + oo, h(x) > 0, ce qui est équivalent &

. Ainsi, h/(x) est du signe de z puisque 1 + 2 > 0.

Vo €] —1;400[; In(l1+4+2z) <z
O

2. Soit n € N, n > 2.
On a

n

1 =1
Upt1 — Up = Z P In(n+1) — (Z T~ ln(n)>

k=1 k=1

= % —In(n+ 1) + In(n)

1
Or d’apres la question précédente, en appliquant l'inégalité a t = — > —1, on a
n

N 1
ln<1+) < -,
n n

1 1
autrement dit up41 —up, = — —In (1 + ) > 0.
n n

La suite (uy)n>2 est donc croissante.

Passons & 'autre suite. On a

n+11 n 1
it —vn = S 1 - (S 21
Uptl — U ,;k n(n+1) (,;k: n(n))

1
= I —In(n+1) +In(n)

1 (n—%l)
= —In
n+1 n
1+1<n)
= n
n+1 n+1
1 <n+1—1)
= +In
n+1 n+1
1+1<1 1)
g ni|{il— .
n+1 n—+1
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Or d’apres la question précédente, en appliquant I'inégalité a = — > —1,0na

< : ) :
In ,
1+n n+1

) <o

n—+1

autrement dit v,41 — v, = —— —H (

La suite (vy,)n>2 est donc decro1ssante.

Pour finir, on a

Up — Uy = nil 1 In(n) — (i 1 ln(n)>
! ! k=1 k k=1 k
1

Ainsi, il est clair que u,, — v, —— 0.
n—+o0o

Les suites (uy)n>2 et (vy)n>2 sont donc adjacentes. [J

. Les suites (up)n>2 et (vp)n>2 sont adjacentes donc elles convergent vers la méme
limite, que nous noterons -y selon les requétes. [J

. Remarquons que Z = v, + In(n).
k= 1

Ainsi, pour n > 2, Z < + ln1}(7;1)>

On a ngrfoo v, = v donc par quotient, ngrfw () =0.
Ainsi, lim <1 4 Un > _ 1

n——+o00 ln(n)
On a donc

w\H

n
O
. En montrant que Vn > 2, u, < v < v, écrire une fonction gamma(eps) qui renvoie la
valeur de v & eps pres.

On a (up)n>2 qui est croissante et converge vers v donc Vn > 2, u, < 7.

De la méme fagon, comme (vy,),>2 est décroissante et converge vers v donc Vn > 2,

~v < vp. Ainsi, on a bien 'encadrement proposé.

On a v, — uy, = % Lorsque — < € on aura donc u, et v, qui seront & moins de € de
n

~. Ainsi, on peut écrire

from math import log

def gamma (eps):
n=1
S=1
while 1/n>=eps:
n+=1
S+=1/n
return S-log(n)
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A noter que, si vous souhaitez tester cette fonction, il ne faut pas étre trop gourmand
dans le choix de eps, beaucoup d’erreurs d’arrondi apparaissent dans ce calcul. [

Exercice 11. 1. Soit n € N*. Considérons

= (S ) 2irer (% 77) )

p=1 \/ﬁ p=1 VP
= nl_H—Q\/n—i—Z—i-Z\/n%—l
o 1=2y/(n+1)(n+2)+2(n+1)
B vn—+1
o (2n+3)-2y/(n+1)(n+2)
B vn+1

[(2n+3) —2y/(n+1)(n+2)][(2n +3) +2¢/(n+ 1)(n + 2)]
Vn+1[(2n+3)+2y/(n+1)(n+ 2)]
(2n +3)2 —4(n+1)(n+2)
Vn+1[(2n+3) +2y/(n+1)(n + 2)|
1

Vit 1(2n+3)+ 2/ + D(n +2)

Ainsi, up4+1 — uy > 0. La suite (uy)nen+ est donce croissante.

Maintenant, considérons

e (1) i ((z)f)

1
- B NCES R
U1 2YmrlEa

1-2(n+1)+2y/n(n+1)
VT
2y/n(n+1)— (2n+1)
Vn+1
2ynn+1) = @2n+ D]2yn(n+1) + (2n+1)]
Vi +12y/n(n+1) + (2n+ 1))
dn(n+1) — (2n+1)?
Vi +12y/n(n+1) + (2n+1)]
-1
Vi +12y/n(n+1) + (2n+1)]

Ainsi, vy41 — v, < 0. La suite (vy,)nen+ est donce décroissante.
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Pour finir, considérons

p=1

Up — Up = <p2::1\;;5>—2f— ((zn:\;ﬁ)—Z\/m)

= 2Vn+1-2Vn

(VAT T = Vi)(VaF 1+ i)
Vn+1+4/n
(n+1)—n
vVn+1l+yn
2

= 2

vn+1+n

Ainsi, il est clair que lim v, —u, = 0.
n——+00

Les deux suites sont donc adjacentes et convergent vers leur limite commune notée

feR. O

. Remarquons que, puisque la (up)nen+ est croissante et la suite (vp)nen+ est donc
décroissante et que les deux tendent vers la méme limite ¢, on a forcément, Vn € N*,

Uy <L < vy

Autrement dit, en retranchant u,, & chaque terme, on obtient

0<l—up < vy — uUp.

Or £ —uy = |up — L) et vy, — uy ‘apres la question précédente.

2
S S
vVn+1++n
Comme vn+1 > y/n, on a v/n+ 14 y/n > 2y/n donc en prenant l'inverse,

1 1
< :
Vn+1+4+y/n = 2yn
2 1

Ainsi, on a v, — uy,

T VT itve SV

On a donc, en reprenant notre encadrement

= £ <
Up — ¥ < —.
NG
O
from math import sqrt
def limite():
n=1
S=1
while 1/sqrt(n) >=10x*(-2):
n+=1
S+=1/sqrt (n)
return S-2*xsqrt(n+1)
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On aurait aussi pu déterminer pour quel n on a < 1072 (soit n > 10%) et faire

Si-

une boucle for :

from math import sqrt

def limite():
S=0
for n in range (1,10001):
S+=1/sqrt (n)
return S-2*sqrt(1,10001)

O]

v
4. On a, pour n > 1, Sn:vn+2\/ﬁ:2\/ﬁ<1+2\;ﬁ>.

. v
On a v, —— ¢, donc lim n
n—-+

%) n4%¥m32\/ﬁ

Ainsi, lim 14+ -2
n

—+400 2¢ﬁ

Exercice 12. 1. Notons, pour n € N, P(n) : <a < u, < beta< v, <b >.

=1, donc S, o 2y/n. O

o0

Il est clair que P(0) est vraie.

Soit n € N quelconque fixé. Supposons P(n) vraie.

. . Up + U .
Cela implique que 2a < u, + v, < 2b, donc a < % < b, soit a < vp41 < b,

1 1

Par ailleurs, on a a < u, < b, donc comme a > 0, < — < —. De méme, on a
U, a

1 1 1

~ ~ .
b " v, " a
Ainsi, en ajoutant ces deux inégalités on a

(SR

2 1 1
-<—+— <
b " u, v,

SHEN)

Ce qui se traduit en
2 2
- < < -
b Un+1 a

[\)

2
En simplifiant par 2 et inversant (car e 0), on a

b > upy1 = a.

Ainsi, P(n + 1) est vraie.

On a donc démontré par récurrence que Vn € N, a < u, < bet a < v, <b. O

2. Soit n € N. On a

" 9 1 UnUn 2Up Uy,
1= = .
i L 5; UnUn Up + Up
n
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3. Soitn € N. On a

Up + Up 2Up Uy,
Unl Tt = 2  Up + Un
(tn + vp)? — dunv,
2(up + vp)

u% + 2un v, + v% — 4upvn,

2(tup + vp)
u2 — 2upvy, + v2

2(up + vp)

(vn — un)2

Ainsi, il est clair que Vn € N, v,41 — upy1 = 0 car u, + v, > 0 d’apres la question
précédente. On peut le réécrire en Vn € N*, v,, — u,, > 0. Par ailleurs, c¢’est vrai pour
n = 0 puisque a < b.

On a donc, pour tout n € N, u,, < v,.

Revenons-en au calcul précédent. On a

_ (Un — un)®
Un+4l — Upt1 = 2t + 0n)
n n
1( )vn Up,
= —(vp,—u
2 " " Uy + v,

Un — Un Un, + Up,
Or, comme u,, > 0, on a < =
Up + Un Up, + Un

1
Comme v, — u, > 0, on obtient v,11 — Up11 < i(vn — Uup). O
b—a
4. Notons, pour n € N, P(n) : < v, — up < o
. . . b—a
11 est clair que P(0) est vraie puisque v, — up = b —a = 50
Soit n € N quelconque fixé. Supposons P(n) vraie.
1
D’apres la question précédente, on a v, 11 — Upt1 < §(vn — uyp). Or d’aprés P(n), on
b—a
a v, — Uy < on
Ainsi,
1 l1b—a b—a
Upgl — Uptl < i(vn - Un) < 527 = W
Ainsi, P(n + 1) est vraie.
b—a
On a donc démontré par récurrence que Vn € N, v, — u, < o O
b—a —a
5.O0navneN, 0< v, —u, < . Comme —— 0, on a par encadrement
n 2N n—+4oo

lim v, —u, = 0.
n—-+00
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Par ailleurs, on a, pour n € N,

2UpVp,
Unp+1 — Up = = — Unp
Uy, + U
2 Uy — U (Up + Vy)
Uy, + U
Up Uy, — u,%
Uy, + U,
Un(vn - un)
Uy, + Up,

Or comme v, — up = 0, on a Up4+1 — uy, = 0. La suite (up)nen est donc croissante.
Ensuite, on a, pour n € N,

Uy, + Up

Un41 — Un = 5 — Un

Up — Un
5
Or comme u,, — v, < 0, on a v,+1 — v, < 0. La suite (v, )nen est donc décroissante.
La suite (un)nen est croissante, la suite (vy,)nen est décroissante et leur différence
tend vers 0, donc ces deux suites sont adjacentes. Elles convergent donc et tendent
vers la méme limite. [

Exercice 13. 1. Notons, pour n € N, P(n) : <a < up, <beta < v, <b. >.
I1 est clair que P(0) est vraie.

Soit n € N quelconque fixé. Supposons P(n) vraie.

Uy, + U

Cela implique que 2a < u, + v, < 2b, donc a < < b, soit a < vy < b

Par ailleurs, on a a < u, < b, donc comme a > 0, v, > 0 donc
av, < Upt, < buy,.

2

Comme v, > a, on a av, > a* (car a > 0) et comme v, < bet b >0, on a bu, < b2

Ainsi, on a

a’ < upvy < b2

On peut appliquer la racine, croissante sur R4 et on obtient

\/a>2 < VUV < Vb2,

Autrement dit, comme a et b sont positifs,

a < vpg1 <O

Ainsi, P(n + 1) est vraie.

On a donc démontré par récurrence que Vn € N, a < u, < bet a < v, <b. [
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2. Soit n € N. On a
Uy, + Up

Un+1 — Unt1 = T — 4/ UnUn
Up, + Uy, — 24/ Up+/Up,

2
(/lin = /)
5 .
Ainsi, il est clair que Vn € N, v,41 — uptr1 = 0. On peut le réécrire en Vn € N*|
v, — Uy = 0. Par ailleurs, c’est vrai pour n = 0 puisque a < b.

On a donc, pour tout n € N, uy, < v,.

Reprenons notre calcul :

(Vi — v/0n)* (/i + /Vn)*
2(V/un + ﬁﬁ
(un — vn)

2(“71 + 2\/un\/U7n + Un)

Un41 — Un+1 =

M car 2w o > 0
X 2(Un+vn) n n

1 Vp — Unp
< —

Q(Un u")un + vy,

Up — Un <vn+un

Or, comme u, > 0, on a =1
"= un+vn\un+vn
1
Comme v, — u, = 0, on obtient v,11 — Upy1 < Q(U" Up). O
b—a
3. Notons, pour n € N, P(n) : < vy, — up < TR
. . . b—a
Il est clair que P(0) est vraie puisque v, — up, = b—a = 50

Soit n € N quelconque fixé. Supposons P(n) vraie.

(vn, — up). Or d’apres P(n), on

N |

D’apres la question précédente, on a vp41 — Unt1 <
b—a

a Up — Up < Ton
Ainsi,

1 1b—a b-—a
Uptl — Up4+1 < §(Un - Un) X §2T = W
Ainsi, P(n + 1) est vraie.

b—a
On a donc démontré par récurrence que Vn € N, v,, — up,——.
2n

b—a b—a
4. OnaVn e N, 0< v, —up < . Comme ——— 0, on a par encadrement
n 2N n—+oo
lim v, —u, = 0.
n—-+o0o

Par ailleurs, on a, pour n € N,

Up4+1 — Un = = /UpUp — Up
= Vun(vV/on — V).
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Or comme v, > Uy, on a /v, = \/u, (la fonction racine est croissante) donc /v, —
VU = 0. Ainsi, up4+1 — up, > 0. La suite (uy)nen est donc croissante.

Ensuite, on a, pour n € N,

Uy, + Up

Un4+1 — Un = 5 — Un

Up — Up
72 .

Or comme u,, — v, < 0, on a vy41 — v, < 0. La suite (vy,)nen est donc décroissante.

La suite (un)nen est croissante, la suite (vy,)nen est décroissante et leur différence
tend vers 0, donc ces deux suites sont adjacentes. Elles convergent donc vers la méme
limite. [J

1
Exercice 14. On note (uy,)nen la suite obtenue en posant ug = 2 et up11 =2 — —
n
1. Notons donc, pour tout n € N P(n) : < u, existe et 1 < uy. >
11 est clair que P(0) est vraie au vu des données.
Soit n € N quelconque fixé. Supposons P(n) vraie.

On a 1 < uy, donc on peut prendre l'inverse (fonction décroissante sur R ), et on
obtient

1
— <1
Un,
En prenant 'opposé, on obtient
1
1< —
Un
En ajoutant 2, on récupeére
1
1<2——.
Unp,

On obtient bien I'existence de u,4+1 ainsi que le fait que 1 < up41.
Ainsi, P(n + 1) est vraie.

On a donc démontré que la suite (uy)nen est bien définie et que pour tout n € N,
1 < uy.

O]

2. On peut soit faire une récurrence (mais c’est lassant) ou considérer, pour n € N,

1

Un+1 — Un = 2— — —uy
Un

2

2up — 1 —ug

Or comme Vn € N, u, > 0, il est clair que w41 — un < 0.

La suite (up)nen est donc décroissante. [
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3. Il s’agit d’une suite décroissante, minorée donc c’est une suite convergente. De plus,
comme elle est minorée par 1, il est clair que sa limite que nous noterons £ est telle
que 1 <2< 2.

. 1 1
Ainsi,on a U1 ——> et 2 — — —— 2 — —.
n—-+00 Uy M0 l
1
Ainsi,ona f =2— 7 donc 2 = 20— 1, puis £2 —2(+1 = 0 autrement dit (£ —1)% = 0.

Ainsi, on a forcément £ = 1. O

. ) n—+2
4. En calculant les premiers termes, on peut conjecturer que Vn € N, u,, = T
n

n + 2

Notons donc Vn € N, P'(n) : < up, = ——
n+1

>.

On a ug =2 et ?):LLi = 2 donc P’(0) est vraie.

Soit n € N quelconque fixé. Supposons P(n) vraie.
1 n+1 n+3

Onaun+1:2—az2—n+2 = 2

Ainsi, P'(n + 1) est vraie.

n+2

n+1

Pour retrouver le sens de variation, on calcule, pour n € N,

Donc Vn € N, u,, =

n+3 n+2 (+3)(n+1)—(n+2)* -1

T n+2 n+l (n+1)(n+2) S mxDmty

Up+1 — Un

Ainsi, la suite (uy)nen est décroissante.
n+2 1+2
n-+1 1 + % n—+o00

1.

Pour finir u,, =

Je me permets de préciser que c’est parce que ug est bien choisi qu’on obtient facile-
ment 'expression explicite de u, et donc qu’on retrouve tres facilement les résultats
des questions précédentes. [

Exercice 15. 1. Notons donc, pour tout n € N P(n) : < u, existe et u, > 1. >
Il est clair que P(0) est vraie au vu des données.

Soit n € N quelconque fixé. Supposons P(n) vraie.

1 2
On a u, > 1, donc on peut prendre l'inverse qui reste tel que — > 0, donc — > 0.
Unp, Unp,

Par ailleurs, comme la fonction carrée est croissante sur Ry, on a u2 > 1.

2
Ainsi, u% + — > 1. On obtient bien I'existence de u,1 ainsi que le fait que u,+1 > 1.
n

Ainsi, P(n + 1) est vraie.

On a donc démontré que la suite (uy)nen est bien définie et que pour tout n € N,
Up = 1.

O]

2. On considere, pour n € N,
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2
2
Comme u, > 1, on a up(u, —1) > 0et — > 0.
Un

Ainsi, Vn € N, il est clair que u,4+1 — u, = 0.
La suite (up)nen est donc croissante. [

3. Supposons que la suite converge vers une limite £. Alors comme Vn € N, u,, > 1, on
a forcément ¢ > 1.

- . 2
Ainsi, on aurait u, 1 —— £ et u2 + — —— 2 + %,,
n——+oo Uy N—>+00

On a donc 'équation ¢ = (2 + %. Equation qui implique

G—0r+2

7 0.

On devrait donc avoir £3 — (242 = 0 ou encore ¢?(¢ — 1) +2 = 0 ce qui est impossible
car £2(¢ — 1) > 0 puisque £ > 1.

Remarquons qu’on aurait aussi pu factoriser la quantité, remarquer que —1 est racine
évidente et donc que £3 — 2 + 2 = (£ 4+ 1)(£?> — 2¢ + 2). Ce trinéme du second degré
n’ayant pas de racines réelles (son discriminant est strictement négatif), la seule limite
envisageable est —1 qui est impossible puisque £ > 1.
Ainsi, (u,)nen ne peut pas étre convergente. Comme elle est croissante, on a forcément
lim w, =+oc.

n—-400

Exercice 16. 1. Notons P(n) : < u, € [0,1]. »
Vu I’énoncé, on a P(0) et P(1) vraies.
Soit n € N quelconque fixé. Supposons P(n) et P(n + 1) vraies.

On a, comme la fonction cube est croissante sur R,
0<ud <1.

En ajoutant I'inégalité provenant de P(n + 1),
+

0 < Upt1 ui < 2.

1
En ajoutant 1 puis en multipliant par 3’ on a

0< - (1+up +ud) <1

W =

Soit upy2 € [0,1]. Ainsi, P(n + 2) est vraie.
On a donc montré par récurrence double que ¥n € N, u,, € [0,1]. O

1 1 1
2.0nawu =0, u = 3 et uo = 3(1+2+03> =3 Un dernier calcul ameéne ug =
1 1, 13\ _ 13
1i+1+9) =8

Il semblerait que la suite soit croissante.
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Notons P'(n) : < up < Upt1. >

Vu I’énoncé et le calcul précédent, on a P’(0) et P'(1) vraies (et méme P’(2), mais

c’est inutile).

Soit n € N quelconque fixé. Supposons P’(n) et P'(n + 1) vraies.

On a, comme la fonction cube est croissante sur R, u, < u,41 implique

3
U,

3
< Un+1

En ajoutant I'inégalité provenant de P(n + 1),

3 3
Up4+1 + Uy < Upt2 + Upyq-

1
En ajoutant 1 puis en multipliant par 3’ on a

1
5(1 + Ungr +u)) <

Soit upt2 < Upys. Ainsi,

(1 + 2 +up ).

W

P'(n + 2) est vraie.

On a donc montré par récurrence double que Vn € N, u,, < u,+1. Autrement dit la
suite (un)nen est croissante. [

3. La suite (up)nen est croissante et majorée par 1. Elle est donc convergente. Notons ¢

- 1 3 1 3
sa limite. OIl a Up+2 m ! et g(]. +Un+1 +Un) m} g(]. +£+€ )

On en déduit I'équation

1
£:§(1+£+£3).

— P -2+1=0.

On remarque que 1 est racine évidente de ¢3 — 2¢ + 1. Donc il existe trois réels a, b, ¢

tels que

soit

B —204+1=(0—1)(al?® +bl+c)

B —204+1=alP+ (b—a)l®+ (c—b)l —c.

On en déduit le systeme

On a donc

Ainsi, on a

a= 1
b—a= 0
c—b= -2
—c= 1
a= 1
b= 1
) —1-1= -2
c= -1

G2t 1=l +L-1).

(=12 4+20-1)=0.
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Cela revient & ¢ = 1 ou 2 4+ ¢ — 1. Le discriminant de cette derniére équation est

A =5,
“1-v5 —144V6
2 2
. . —1-5 . .
Or, on a démontré que Vn € N, u,, € [0, 1], donc — < 0 est impossible.

145
2

{1 < fy. D’apres la valeur approchée qui nous est donnée, on peut remarquer que
ug < b1, up < £1 et ug < £4.

On a donc trois possibilité pour £ : 1,

Il reste a trancher entre les deux, que nous noterons £; = et lo = 1 avec

Montrons alors que Vn € N, u,, < /5.

Notons P"(n) : < up < 41. >

Vu I’énoncé, on a P”(0) et P”(1) vraies.

Soit n € N quelconque fixé. Supposons P”(n) et P”(n + 1) vraies.

On a, comme la fonction cube est croissante sur R,
3 3
uy <A
En ajoutant I'inégalité provenant de P”(n + 1),

Oup+1 + ui <+ K‘i’.

1
En ajoutant 1 puis en multipliant par 3’ on a

(1+6 + 63).

W =

1
5(1 + Upg1 +up) <

1
Or §(1 + 01+ £3) = £1 (c’est comme ¢a qu’on a trouvé £1).
Ainsi, up42 < £1. Ainsi, P”(n + 2) est vraie.
On a donc montré par récurrence double que Vn € N, u,, < #1.

Comme Vn € N, u,, < ¢; < ¢y = 1, il est impossible que la suite (up)nen converge

—1++5

vers £5. Elle converge vers {1 = 5

On a donc

O]

Exercice 17 (Pour s’entrainer & manipuler la définition de limite). 1. Supposons ¢ ¢ N.

En prenant € = min(¢ — |¢], [£] + 1 — £), on remarque que, il existe un entier ng tel
que, Vn > 1o,
|up, — €] < e,

autrement dit
b —e<up,</l+e.

Cependant, puisque ¢ < £ — [£], { —e > [{], et comme e < [/|] +1—/, ona

4] <up < |€] 4+ 1.

Or il est rigoureusement impossible d’avoir un entier compris strictement entre deux
entiers successifs.

On a donc forcément ¢ € N. [
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1
2. On a désormais lim wu, = /¢ € N. D’apres la définition de limite appliquée a € = ok

p—r+00
on récupere qu’il existe un ng € N tel que, pour tout n > ny,
1
]un — E‘ < 5,

autrement dit
14 L < U, <L+ L
—=z<u —.
2 " 2

Or comme u,, € N, le seul entier possible est u,, = £. [

3. Nous venons de démontrer que toute suite d’entiers convergente est stationnaire a
partir d’un certain rang. [

12 Polynémes

1. Factorisation de polynémes

2

Exercice 1. 1. Cette équation est équivalente a x“ — 4z — 12 = 0. Le discriminant vaut

A=(-4)2—-4x1x(-12) = 64.
4-8 4+8

R L
@

Les deux racines sont

2. Cette équation est équivalente & 22 + (3 — v/3)z — 3v/3 = 0.

Le discriminant vaut

A=(3-V3)2—4x1x(-3V3)=9—-6V3+3+12V3.
Soyons astucieux, on a

A=9+6V3+3=(3+V3)%

-3+V3-(3+V3) t—3+x/§+(3+\/§):\/§_

Ainsi, les deux racines sont 5 =—-3e 5
O
— V2 V2
3. Comme précédemment... On trouve 6 - J et 6 +7 9. O

4. On peut étre plus malin. I’équation est équivalente a
20° + 7o — 9 = 0.

On remarque que 1 est racine évidente. Par ailleurs le produit des deux racines fait

9
—5 Ainsi, la deuxieme est forcément —5
. 9
Les deux racines sont —3 et 1. O

5. Le discriminant de ce trindme est A = [—(2 —m)]? — 4 = m? — 4m = m(m — 4).
Ainsi, il faut discuter selon la valeur de m.
e Sim €]0,4], il n’y a pas de solutions.
e Sim = 0, une seule solution 1 (c’est une identité remarquable).

o Si m =4, une seule solution —1 (c’est aussi une identité remarquable).
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e Sim < 0oum > 4 deux solutions,

2—m—m(m—4) et?—m—l—\/m(m—él).
2

2
O

6. On peut faire un changement de variable, poser X = z2... ou tout simplement remar-
quer que
gt =202 1= (22— 1) = (. — 1)z + 1)
Ainsi,
2t =202 41 =0 (z - 1)}z +1)2=0.

On a donc deux solutions, 1 et —1. [

Exercice 2. Comme souvent dans le cas d’exercices treés calculatoires, je ne détaillerai
que la rédaction de certains cas, pour les autres, je vous laisse la calquer sur ce que vous
avez vu précédemment. [J

1. On remarque que P(2) = 0. On ne trouve pas d’autres racines évidentes. On sait qu’il
existe donc a, b, ¢ trois réels tels que P = (X — 2)(aX? + bX +c).
Ainsi, on a P = aX? + (b —2a) X2 + (c — 2b) X — 2c.

Par identification, on a le systeme :

a= 1 a= 1
[Zi 22?) i 1_2 = i i (1) On maintiendra bien les 4 équations jusqu’a vérification
—2c= -2 1= 1

qu’elle soit vraie pour conserver 1’équivalence et s’éviter de vérifier les solutions obte-
nues.

Ainsi, on a P = (X — 2)(X%2 +1).

En fait, on aurait pu (dii?) remarquer que P = X?(X — 2) + (X — 2) et factoriser
directement...

Si on veut factoriser sur C, on remarque que

P=(X-2)(X?—-4%) = (X —2)(X —i)(X +1).
O

2. On remarque immédiatement que P(1) = 0. Par ailleurs, on a P’ = 4X3 — 3X2 — 1,
donc P'(1) = 0. Ainsi, 1 est racine double de P, donc on sait qu’il existe un polynome
Q de degré 2 tel que P = (X —1)2Q. Comme Q est de degré 2, on sait qu'il va s’écrire
aX? 4+ bX + cou a,b et c sont trois réels.

On a donc P = (X —1)2(aX? +bX +¢) = (X% —2X + 1)(aX? + bX +c).

En développant, on a

P=aX*+(b-2a)X3+ (c—2b4+a)X>+ (—2c+ )X +c.

a= 1 a= 1

b—2a= -1 b= 1

Par identification,ona ¢ a—2b+c= 0 <= c= 1
b—2c= -1 1= -1

c= 1 1= 1

Ainsi, P = (X — 1)}(X2+ X +1).
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Factorisons X2 + X + 1. Son discriminant est A = —3. Ainsi, il ne peut pas étre

-1-iv3 __2im
— =

factorisé sur R mais il a deux racines complexes conjuguées e 3 et
—1+14V3 2im
_—— = e 3

2

2im _ 2w

Ainsi,ona P= (X —1)}(X —e3 )(X —e 3 ).
Ou si on factorise sur R, P = (X — 1)}(X2 + X + 1).

D’autres solutions auraient pu étre trouvées. Par exemple, on remarque que P =
XB(X-1)-(X-1)=(X-1)(X3-1).

Et ensuite, on factorise X® — 1 en cherchant les racines complexes. [

. On trouve deux racines évidentes, —1 et 2.
Ainsi, il existe a, b tels que P = (X + 1)(X —2)(aX +b).

En calculant P(0), on trouve —20 = —2b et en calculant P(1), on trouve —2(a +b) =
—24, ce qui nous permet de récupérer b = 10 puis —2a = —4 soit a = 2.

Ainsi,ona P=(2X +10)(X +1)(X —2) =2(X +5)(X +1)(X —2). O

. Remarquons que 1 est racine évidente. Par ailleurs, P’ = 6X2 — 6X, donc P'(1) = 0.
Ainsi, 1 est racine multiple de P.

Comme P est de degré 3, il existe a,b deux réels tels que P = (X — 1)?(aX +b).

On peut développer puis identifier ou tenter quelques valeurs. Par exemple, P(0) = 1,
et P(0) =b, donc b= 1.

Enfin, le terme dominant de P est 2X? et, en développant sa forme factorisée, il s’agit
de aX?, donc a = 2.

Ainsi, P = (2X + 1)(X — 1)2. O
. Rappelons-nous que tous les coups sont permis. On trouve rapidement trois racines
évidentes : P(1) = P(—1) = P(2) = 0.

Cherchons si un de ces trois racines est double. On a P’ = 4X3 —3X2 —6X +1. Ainsi,
P(—1) = 0. Donc —1 est racine double. On a trouvé 4 racines (comptées avec leur
multiplicité) pour un polyndéme de degré 4. Ainsi, P = a(X — 1)(X + 1)?(X —2). Or
le coefficient dominant de P est 1 et a.

Ainsi, P= (X - 1)(X +1)}(X —2) O

. Remarquons que P(—1) =0 et que P’ = 12X3 + 3X?2 — 18X — 9 avec P'(-1) = 0.

Ainsi, —1 est racine multiple de P. Ainsi, il existe a, b, ¢ trois réels tels que

P=(X+1)*aX?+bX +¢).

En développant, on trouve

P=(X?42X+1)(aX*+bX +c¢) = aX* +(2a+b) X3+ (a+2b+¢) X? + (b+2¢) X +c.

Par identification, on a :

a= 3 a= 3
2a+b= 1 b= -5
a+2b+c= -9 <—=< 3-10-2= -9
b+2c= -9 —5—-4= -9
c= -2 c= -2
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Ainsi, P = (X +1)?(3X2 - 5X —2).
On peut remarquer que 2 est racine évidente de 3X2 —5X —2 et que comme le produit

1
des racine fait —3 lautre fait —3 (ou factoriser & l'aide du discriminant).

1
On a alors 3X? —5X —2 = 3(X — 2) (X + 3> sans oublier le coefficient dominant.
On encore 3X2 —5X —2 = (X —2)(3X +1).
Ainsi, P = (X +1)2(X —2)(3X +1). O

. On remarque que P(1) = P(—2) = 0. Ainsi, il existe a, b, ¢ trois réels tels que

P=(X+2)(X —1)(aX?+bX +c¢).

En développant, on trouve

P=(X?+X-2)(aX?+bX +¢) = aX*+(a+b) X3+ (—2a+b+c) X2 +(—2b+¢) X —2c.

Par identification, on a :

a= 2 a= 2
a+b= 21 b= 19
—2a+b+c= 50 <= c= 35
—2b+c= -3 -3= -3
—2c= -70 —70= =70

Ainsi, on a P = (X +2)(X — 1)(2X2% + 19X + 35).
Factorisons 2X24+19X +35. Son discriminant est A = 192—4x2x 35 = 361—280 = 81.
—-19-9 —19+9 5

Ainsi, il a d i — = —Tet —
insi, il a deux racines 1 e 1 5

Ainsi, il se factorise en 2X2 419X +35 = 20X+7) | X+ )

On a done P = 2(X +2)(X — )(X+7)< ) 0

. Remarquons que P(1) = 0, ainsi, il existe (a,b,c) € R? tel que P = (X —1)(aX? +
bX + c).

On a alors P =aX?+ (—a+b) X2+ (=b+c)X —c.

a= 6
—a+b= -5
Par unicité de ’écriture développée réduite, on a le systeme —b+c= -3 <=
—2b+c= -3
—c= 2
a= 6
b= 1
c= -2
—2= 2

Ainsi, P = (X — 1)(6X% 4+ X —2).
Le discriminant de 6 X2 + X —2 est A =12 — 4 x 6 x (—2) = 49.
-1-7 -8 2  —-1+7 1

5x6 12 3% 2x6 2

Ainsi, ce polynéme a deux racines

3 2
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10.

11.

2 1
Merci de ne pas oublier le coefficient dominant, donc P = 6(X —1) (X + 3) (X — 2) .

En arrangeant un peu les choses pour éviter toute fraction, on peut conclure que

P=(X—-1)(3X +2)(2X — 1).

O

On trouve deux racines évidentes, 1 et 2. Ainsi, il existe a,b, ¢ trois réels tels que
P=(X—-1)(X—2)(aX?+bX +c).

En développant, on a
P = (X?-3X+2)(aX?+bX +¢) = aX 4 (—3a+b) X3+ (2a—3b+¢) X2+ (2b—3¢) X +2¢.

Par identification, on a :

a= 1 a= 1
—3a+b= -4 b= -1
2a —3b+c= 4 <— c= -1

20— 3c= 1 1= 1
2c= -2 2= =2

Ainsi, on a P = (X — 1)(X —2)(X% — X — 1). Puis on factorise le polynéme d’ordre
2 dont le discriminant est 5. On trouve alors

P=(X—-1)(X-2) (X—1_2ﬁ> (X_H2\/5>.

O]

Remarquons déja que P =3(X* + X3 - X — 1) =3[(X + DX3 — (X +1)] = 3(X +
(X3 -1).

En utilisant une identité remarquable, on a P = 3(X +1)(X — 1)(X2 + X + 1). Puis
on factorise le polynéme d’ordre 2 dont le discriminant est —3. On trouve alors

2im

P=3X+DX-DX2+X+1)=3X - D)X +1)(X —e3)(X —e 7).
Notons que l’on aurait pu passer par les complexes pour factoriser X2 — 1, comme
vous le verrez dans la question 11. [J

Comme P(—2) = 0, il existe il existe a, b, c trois réels tels que P = (X + 2)(aX? +
bX +c).

En développant, on a
P=aX?+(2a+b)X*+ (2b+ )X + 2c.

Par identification, on a :

a= 2 a= 2
2a+b= 6 — b= 2
2b4+c= 3 c= -1

2c= -2 —2= =2

Ainsi, P = (X +2)(2X? 4+ 2X — 1). Puis on factorise le polynéme d’ordre 2 dont le
discriminant est 12. On trouve alors
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P=2(X+2) (X—

P=2(X+2) <X+1+\/§> <X+1_\/§>.

—1—\/§> (X_—1+\/§

5 5 ) . Ou encore

2 2

O]

12. On trouve que 1 et 2 sont racines évidentes. Comme P’ = 3X? — 8X + 5 et que
P’(1) = 0, 1 est racine d’ordre multiple. Comme deg(P) = 3 et que son coefficient
dominant est 1, on ne peut qu’avoir

P=(X-1)*X-2).
O

13. On trouve que —3, —1 et 2 sont racines évidentes. Puis que 2 est racine double. Comme
le coefficient dominant de P est 2, on a

P =2(X +3)(X +1)(X —2)%.
O
14. On peut soit voir que 2 est racine évidente, et factoriser pour trouver : P = (X —
NX2+2X +4) = (X —2)(X +1+iV3)(X +1—iV3).

Sinon, on cherche les racines sous forme trigonométrique pe”. On trouve rapidement
que p? = 23, donc p = 2 puisque p > 0.

Ensuite, on a 360 = 2kw, k € Z ce qui permet de trouver trois solutions

4im _ 2iw

2in
2,2¢73 ,2e3 =2e 3
ce qui donne la méme factorisation que ci-dessus. [J

1
15. Cest 3 la racine évidente qui permet de faire comme ci-dessus (factorisation via

discriminant ou complexes sous forme trigonométrique). On conclue par :

_1_6i\/§)<X__12N§)'

P=(3BX-1)9X?+3X+1)=(3X -1)(X -

O

16. Comme —1 est racine évidente, on trouve rapidement que P = (X +1)(mX?—mX+1).

Maintenant, il faut distinguer des cas :

¢« Sim=0,P=X+1.

e Sim # 0, on essaie de factoriser le polynéme mX? —mX 41 dont le discriminant
est A =m? —4m = m(m — 4).

a. Si m = 4, on a une seule racine et on trouve P = (X + 1)(2X — 1)%.
b. Sim ¢ [0,4], on prend le discriminant et on trouve

P—m(X+1) <X_m— m(m—4)> (X_m—i—\/m(m—ll))'
2m

2m
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c. Sim €]0,4], on a deux racines complexes conjuguées, on ne peut pas factoriser
outre mesure le polynéme. Vous verrez ’an prochain que

P—m(X+1) (X_m—i m(4—m)> (X_m—{—i m(4—m)>.

2m 2m

O]

Exercice 3. 1l suffit de faire le tableau de signe si on a la factorisation. Je vous les
donne, les méthodes sont a s’inspirer par les exercices précédents. [

1. Aucun piege, on obtient :

3
4X? +33X — 27 =4(X +9)(X — -

Un tableau de signe pour conclure (ou une jolie phrase). [

2. Le discriminant de ce trindme est
(4-V2)2+16V2=16-8V2+2+16V2 =16 +8V2+2 = (4 + v2)%.

Ainsi, on a

X2+ (4—V2)X —4V2 = (X +4)(X — V2).
Un tableau de signe pour conclure (ou une jolie phrase). [
3. On trouve que 1 est racine évidente d’ordre 2, puis que
X3 42X —7X +4= (X +4)(X - 1)
Ce polynéme est donc du signe de X + 4. Doit-on aller plus loin pour conclure ? [

Exercice 4. Pour toutes ces questions, on réfléchit a quel doit étre le degré du polynéme
recherché, on pose ses coefficients (a, b, c...), on éléve au carré et on identifie. Si on y
arrive, c’est bon. Sinon, c’est que ce n’était pas un carré. [

1. On cherche a, b, c tels que P = (aX? + bX + ¢)? = a?X* + 2abX? + (2ac + b*) X% +
2bcX + 2.

a?= 1
2ab= 4
Ainsi, on doit avoir { 2ac+b> = 12 .
2bc = 16
= 16
On doit avoir a = 1 ou a = —1. Si @ = 1, alors on trouve b = 2, donc ¢ = 4 et ainsi

les deux équations suivantes sont vérifiées donc toutes le sont. Ainsi, on a
P=(X?+2X +4)%
(Il est bien entendu qu’il y a deux solutions : n’oubliez pas l'opposé!). [

2. La méme technique ameéne & Q = (X2 + X +1)2. O

3. C’est encore plus long mais pas plus difficile de montrer que R = (X3 + X2+ X +1)2.
L]
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2. Exercices plus théoriques

Exercice 5. 1. On a P(a) = a, P(b) = b et P(c) = c et ainsi, on a Q(a) =

Q(c)=0.0

Q(b)

2. Remarquons que le degré de @ est inférieur ou égal a 2 puisqu’il s’agit de la somme
de 4 polynoémes de degré inférieur ou égal a 2.

Or @ a trois racines distinctes, donc @ est le polynome nul, soit P — X = Ogx]. Ainsi,

on a montré que P = X. [

(X =b)(X —¢)

(X -~

a)(X —c)

(X —a)(X =)

3. Il suffit de prendre R = « (@—b)(a

— TP

(b—a)(b—rc)

T e a)(e—b)

Imaginons qu’il existe un second polynéme S vérifiant les mémes conditions. On aurait

alors deg(R — S) < max(deg(R),deg(5)) < 2.

Par ailleurs, (R — S)(a) = (R — 95)(b) = (R — 5)(¢) = 0, donc le polynéme R — S
admettrait au moins trois racines alors que deg(R—.5) < 2. On a alors R— S = Og[x),

donc R=S.

Un seul polynoéme vérifie ces conditions. [

Exercice 6. 1. Ona P, = X + 1.

Ensuite, ona P =1+ X +

X(X+1

X(X +1)(X +2)

(X +1)(X +2)

) . Ainsi P, =

2

X(X 4+ 1)(X +2)

Pour finir, on a Py = Py + 3l

(X+1)(X+2)(X

+3).D

Ainsi, on a Py = 5

1 n

2. Notons P(n) : < P, = ] [[(X+k). >

T k=1

(X +1)(X+2) N

6

Il est clair que P(1) est vraie d’apres la question précédente.

Soit n € N* quelconque fixé. Supposons P(n) vraie.

n

: )
1=0

H(X+z’)
Comme P41 =P, + ’:&Tw.
D’apres P(n), on a
. H(X+z)
=0
P = g Tlexen+ ey
1 e :
= i ((n+ 1)k:1(X +k)+ (X +9)
- (nil)!H(XJrk)((nJrl)JrX)
i
RERCES] ,g(X*k)

Ainsi, P(n + 1) est vraie.

n

1
On a donc montré par récurrence que Vn € N*, P, = — H (X +k).O
n
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Exercice 7. 1. Notons P = >"}_, ap X* Vécriture développée réduite de P ou aq, . . . , an.
Ona P(—X) =31 gap(—X)* =37 o(—=1)*ap X*.
Ainsi, P(X) = P(—X) ameéne, par unicité de 'écriture développée réduite de P :
Vk € ﬂo,n >, (—1)kak = ag.
Ainsi, lorsque k est pair, I’équation est ap = aj mais si k est impair, c’est ap = —ay
donc ax = 0.

Ainsi, les polynémes sont ceux dont tous les coefficients correspondants a des puis-
sances impaires sont nuls. [

2. De la méme fagon, notons P = > }_japX k Técriture développée réduite de P ou
ag,...,0an.
Ona P(—X) =Yg ar(—=X)* = Xh_o(=1)*arX".
Ainsi, —P(X) = P(—X) ameéne, par unicité de I’écriture développée réduite de P :
Vk € [0,n >, (-DFa, = —ay.
Ainsi, lorsque k est impair, ’équation est a; = ar mais si k est pair, c’est ap = —ay
donc aj = 0.

Ainsi, les polynémes sont ceux dont tous les coefficients correspondants a des puis-
sances paires sont nuls. [J

3. Une récurrence immédiate montre que, Vn € N, P(n) = P(0).

Ainsi, le polynéme Q = P — P(0) a une infinité de racines (tous les entiers), donc il
est nul!

Ainsi, on a P = P(0), donc P est constant. [J

4. Remarquons que Vk € Z, P(2kw) = P(0) = 0. Donc P a une infinité de racines, et
ainsi seul le polynéme nul satisfait cette relation. [

Exercice 8. Supposons qu’il existe un tel réel T'. Dans ce cas, une récurrence immédiate
amene a, Yn € N, P(nT) = P(0).

On pose alors Q = P — P(0) et on remarque que ) admet une infinité de racines (tous
les nT', ou n € N). Ainsi, @ est le polynéme nul, puis P = P(0) donc P est constant. []

13 Probabilités

1. Avec du dénombrement

Exercice 1. 1. Si on tire deux boules simultanément, on modélise I’expérience en uti-
lisant des combinaisons. Ainsi {2 sera I’ensemble des combinaisons a deux éléments
de [1,9] que 'on munira de la probabilité uniforme. Formellement, on peut écrire
Q={C c[1,9]/Card(C) = 2}.

On a Card(92) = (g) = 36.

Ensuite, on note A I’événement « obtenir deux boules de méme parité >.
Ainsi, A = {C c{1,3,5,7,9}/ Card(C) =2} U{C C {2,4,6,8}/ Card(C) = 2}.

On aurait pu dire que A est 'union disjointe des tirages ot on pioche deux boules
impaires et ceux ou on pioche deux boules paires, soit I’ensemble des combinaisons a
deux éléments prises dans {1, 3,5, 7,9} réuni avec I'ensemble des combinaisons & deux
éléments prises dans {2,4,6,8}.
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Comme l'union est disjointe, on a Card(A4) = Card({C C {1,3,5,7,9}/ Card(C) =
2}) + Card({C C {2,4,6,8}/ Card(C) = 2}).

4
Et donc Card(A) = (2) + <2> =10+ 6 = 16.

16 4
Ainsi, P(A) = —=—-.01
(4) 36 9
. Si on tire deux boules I'une apres ’autre sans remise, on modélise I’expérience en listes
sans répétition. Ainsi ) sera 'ensemble des listes sans répétition a deux éléments

de [1,9] que 'on munira de la probabilité uniforme. Formellement, on peut écrire

Q= {(a,b) €[1,9]?/a # b}.
On a Card(92) = (3) =9x8="72.

Ensuite, on note A I’événement < obtenir deux boules de méme parité >.
Ainsi, A = {(a,b) € {1,3,5,7,9}2/a # b} U {(a,b) € {2,4,6,8}2/a # b}.

On aurait pu dire que A est 'union disjointe des tirages ot on pioche deux boules
impaires et ceux ou on pioche deux boules paires, soit I'ensemble des listes sans
répétition a deux éléments prises dans {1,3,5,7,9} réuni avec ’ensemble des listes
sans répétition a deux éléments prises dans {2,4,6, 8}.
Comme l'union est disjointe, on a Card(A) = Card({(a,b) € {1,3,5,7,9}2/a # b}) +
Card({(a,b) € {2,4,6,8}2/a # b}).

5 4!

Et donc Card(A) = —3; to = 20 + 12 = 32.
32 4
Ainsi, P(A) = 22 = 2 O
insi, P(A) ==

. Si on tire deux boules I'une apres 'autre avec remise, on modélise 1'expérience en
utilisant des listes. Ainsi € sera I'ensemble des listes a deux éléments de [1,9] que
l’on munira de la probabilité uniforme. Formellement, on peut écrire @ = [1, 9]]2

On a Card(Q) = 9 = 81.

Ensuite, on note A I’événement < obtenir deux boules de méme parité >.

Ainsi, A = {1,3,5,7,9}2 U {2,4,6,8}°.

On aurait pu dire que A est 'union disjointe des tirages ot on pioche deux boules
impaires et ceux ou on pioche deux boules paires, soit ’ensemble des listes a deux
éléments prises dans {1,3,5,7,9} réuni avec I'ensemble des listes & deux éléments
prises dans {2,4, 6, 8}.
Comme 'union est disjointe, on a Card(A) = Card({1, 3, 5,7,9}%)+Card({2,4, 6,8}2).
Et donc Card(A) = 52 + 42 = 41.

41
Ainsi, P(A) = —.
. Le tirage simultané ou sans remise ne change rien au niveau des probabilités.
Le tirage avec remise donne une probabilité légérement supérieure, ce qui était prévisible
puisque la boule qu’on a obtenu au premier tirage peut-étre a nouveau obtenue au
second.

Par ailleurs, les questions 2 et 3 auraient pu étre traitées en utilisant une modélisation
par événements élémentaires du type Aj : < obtenir une boule paire au premier ti-
rage » et Ay : < obtenir une boule paire au second tirage >.
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Ainsi, on cherchait & calculer P((41; N Ag) U (A3 N Ag)) = P(A1 N Ay) + P(A1 N Ay)

car les événements sont disjoints.
Ensuite, selon le cas, soit on utilise des probabilités conditionnelles (question 2), soit

on invoque I'indépendance des événements (question 3). O

Exercice 2. 1. On note dans tout l'exercice 2 = [1,6]? que nous munirons de la pro-
babilité uniforme. On a Card(Q) = 6% = 36.

1
Ona A= {246} x [1,6], donc P(A) = 3;6 -
6x3 1
On a B = [1,6] x {1,3,5}, donc P(B) = g; ==
Enfin, C = {1,3,5}2U{2,4,6}2, ainsi P(C) = P({1,3,5}2U{2,4,6}?). Par incompa-

tibilité, on a

P(C) = P{13,51) + P2 A,61) = 5+ 2 =L 1]
o ST T T4 2
On a donc ANBNC =0, donc P(ANBNC)=0. De plus, P(A)P(B)P(C) = % ]
3 1
2. On AnB={2,4,6} x{1,3,5}, donc P(ANB) = 2= 1
De plus, P(A)P(B) = i. 0
9 32 1
3.0na ANC ={2,4,6}, donc P(AQC):@:I
De plus, P(A)P(C) = i
3?1

Encore une fois, BN C = {1,3,5}2, donc P(BNC) = 2=

De plus, P(B)P(C) = % O

4. Les événements A, B et C sont deux & deux indépendants mais pas mutuellement
indépendants. [

Exercice 3. 1. Tant que nous faisons des tirages sans remises, nous prendrons ) ’en-
semble des 4-listes sans répétition de [1,n] que nous munirons de la probabilité uni-

n!
T Notons A I'événement < le plus petit

(n—1)

forme. Notons déja que Card(2) =

numéro tiré est k >.

Ainsi, A; est I'ensemble des 4-listes sans répétition de [1,n] qui contiennent le numéro

n—1
3

facons de déterminer ces 3 éléments. Une fois le contenu du tirage fixé, il reste 4! facons

1. Elles sont constituées par 1 et trois éléments de I’ensemble [2,n]. Il y a

—1 —1)! —1)!
d’organiser ces éléments. Ainsi, Card(A;) = <n 3 )4! = 3('7(2 — i)' I = 422 — 4;!.
Ainsi (1)
4% 4
P(Ay) =2 =2
-1 "
O



2. Remarquons que si n < 4, c’est impossible. Si n > 5, on a de la méme fagon Ag
est ’ensemble des 4-listes sans répétition de [2,n] qui contiennent le numéro 2. Elles

n—2
sont constituées par 2 et trois éléments de 'ensemble [3,n]. Il y a 3 fagons

de déterminer ces 3 éléments. Une fois le contenu du tirage fixé, il reste 4! fagons

— — 2! — 921
d’organiser ces éléments. Ainsi, Card(A4sz) = <n 3 2) 4! = 3('?” _22')!4! = 4EZ — 3'
Ainsi (n2)!
An=5i  4(n—14
P(Ay) = (n!5)! _ ( 1)'
ey =)

Notons avec satisfaction que la probabilité est nulle si n = 4. [J

3. On commence a comprendre, cette fois-ci, on remarque que si k > n — 2, c’est impos-
sible. Sinon, on a de la méme fagon A est 'ensemble des 4-listes sans répétition de
[k,n] qui contiennent le numéro k. Elles sont constituées par k et trois éléments de

—k
Pensemble [k+1,n]. lly a " 3 fagons de déterminer ces 3 éléments. Une fois le

contenu du tirage fixé, il reste 4! fagcons d’organiser ces éléments. Ainsi,

Card(Ay) = (” R k>4! = N4! _, (=)

3 n—k—3)! (n—Fk—=3)"
Ainsi -
4053 Aln—k)l(n— 4)!
PAr) = ——r— = = k — 3)!
=] nl(n —k —3)!

On remarque qu’on peut écrire :

dn—k)(n—k—1)(n—k—2)
nn—1)Mn-2)(n-3)

P(Ay) =
On peut a cette occasion remarquer que si k > n — 2, cette expression fait 0 donc
reste valable. [J

4. Notons By 'événement « le plus grand numéro tiré est k >.
On doit avoir k > 4, sinon c¢’est impossible (donc la probabilité est nulle).

Dans le cas ot k > 4, on a By, est I’ensemble des 4-listes sans répétition de [1, k] qui
contiennent le numéro k. Elles sont constituées par k et trois éléments de I’ensemble

k—1
[L,k—1].lya 3 fagons de déterminer ces 3 éléments. Une fois le contenu du

tirage fixé, il reste 4! fagons d’organiser ces éléments. Ainsi,

Card(By) = <(k ; 1)>4! _ (k=D kD)

3l(k —4)! (k —4)
Ainsi,
4G Ak —1))(n — 4)!
e (I
Cela se simplifie en
P(Bk):4k_ )(k —2)(k—3)



On peut a cette occasion remarquer que le résultat reste valable si k > 3 : cette
4(k — 1)l(n —4)!
nl(k—4)!

expression fait 0.

5. Dans ce cas, on prend 2 = [1,n]* que I’on munit de la probabilité uniforme. Une vraie
difficulté apparait : le nombre de fois que le plus petit ou le plus grand des numéros
apparait. Cela complique énormément les considérations précédentes et nous allons
devoir trouver une fagon de voir les choses bien plus efficace.

On introduit Cj 1’événement < tous les numéros sont plus grands que k >. Ainsi,
Ci, = [k,n]*

—k+1)*
Ainsi, pour tout k € [1,n], P(Cy) = %
n

() et P(Cpt1) = 0 ce qui est compatible avec la formule précédente.

. Par convention, on prendra C), 11 =

On remarque alors que Ay = Cj \ Ck11, on a donc, comme Cy1 C Cy,

(n—k+1D*—(n—k)*

P(Ag) = P(Ck) — P(Ci41) = 1

n

On introduit Dy I’événement < tous les numéros sont plus petit que k >. Ainsi, Dy =
I, k]
k4
Ainsi, pour tout k € [1,n], P(Dy) = —;. Par convention, on prendra Dy = ) et
n
P(Dgy) = 0 ce qui est compatible avec la formule précédente.

On remarque alors que By = Dy \ Di_1, on a donc, comme Dy_1 C Dy,

E*— (k—1)4

P(By) = P(Dy) — P(Di—1) = 1

n
Remarquons que cette technique est effectivement plus efficace que la précédente
puisqu’elle marche aussi bien dans le cas précédent que dans celui-ci.

k! k
G4 (;i), donc

o)

pgy = @ -G _ 05D

Par exemple, sans remise, on aurait eu P(Dy) =

la derniere égalité d’apres la formule de Pascal. Si on ne fait pas apparaitre les coeffi-
cients binomiaux, il suffit de faire une réduction au méme dénominateur pour obtenir
le résultat. [J

Exercice 4. 1. On modélisera I'urne par I’ensemble [1, n] et on supposera que les entiers
de 1 a 10 représentent les boules rouges, les autres les blances.

Ainsi, on prend 2 ’ensemble des combinaisons a 10 éléments pris parmi [1,n]. On le
munit de la probabilité uniforme.

Notons A I’événement < quatre boules exactement sont rouges >. A est ’ensemble des
combinaisons qui s’écrivent C'U D ot C' est une combinaison a 4 éléments de [1, 10]

1 -1
et D une combinaison & 6 éléments de [11,n]. Ainsi, Card(A4) = ( 0) <n 0). On

4 6
VL)

(10)

peut donc dire que p, = P(A) =
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Autrement dit,
~(10Y(n — 10)!)?
Pn = 0162(n — 16)In!”

O

. On peut programmer en Python la simulation du probleme, puis essayer d’évaluer la
probabilité de récupérer 4 boules en rouges en faisant un grand nombre de tirages et en
regardant la fréquence ou on obtient exactement 4 boules rouges. Enfin en tadtonnant,
on peut essayer de trouver lorsqu’elle est maximale ou encore le faire proprement
en lisant toutes les probabilités en partant de n = 16... et on regarde quand c’est
maximum.

Par exemple :

from random import random

def nbboulesblanchespiochees (n):
X=0
nbb=10
for k in range (10):
if random () <=nbb/(n-k):
X+=1
nbb-=1
return X

def freq4(n,N):
£=0
for k in range(N):
if nbboulesblanchespiochees (n)==4:
f+=1
return f/N

def listeprobas (maximum,N):
liste=[0]*(maximum-15)
for k in range (16,maximum+1):
liste[k-16]=freq4(k,N)
return liste

def maxiproba(maximum, N):
liste=listeprobas (maximum,N)
maxi=liste [0]
pos=0
for k in range(l,len(liste)):

if listel[k]>maxi:
maxi=liste [k]
pos=k

return pos+16

Mathématiquement, on va étudier le sens de variation de la suite (pp)nen. Comme il
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. . . e sz Pn+1
s’agit d’une suite strictement positive on va considérer le rapport Ll
n

(10!(n—9)H?2
Pn+1 416!2(n—15)!(n+1)!
- (10!(n—10)")2
Pr 41612 (n—16)In!

(10!(n — 9)!)2416!2(n — 16)!n!
41612(n — 15)!(n + 1)!(10!(n — 10)!)2
(n—9)?
(n—15)(n+1)
n? — 18n + 81
n2 — 14n — 15
(n? — 14n — 15) + (—4n + 96)
n? —14n — 15
—n+24
n2 — 14n — 15
—n+24
(n—15)(n—+1)

= 1+4

= 144

Pril o o 494> 0= n <24

Ainsi,
Pn
La suite est donc croissante jusqu’en n = 24, pour n = 24 et n = 25 elle vaut la méme

chose, puis elle est décroissante.

Ainsi, elle est maximale pour n = 24 ou 25 (c’est la méme valeur).
4

10
Remarquons alors que pour n = 25, — = TR autrement dit, la probabilité est

maximale lorsque la proportion de boules blanches dans I'urne est la méme que la
proportion de boules blanches dans les boules piochées. [

Exercice 5. 1. Notons €2 I'ensemble des répartitions. = [1, 3]® puisque le i¢éme terme
de la liste d’un élément de 2 indique dans quelle urne on place la boule numéro 3.

Ainsi, Card(Q2) = 35. O

2. Munissons €2 de la probabilité uniforme.

o 3 1
Ainsi P(A) = ¥ =5 O
3. On garde le méme univers et la méme probabilité. Notons B cet événement.
On a B = B; U By U B3 ou B; est ’événement < 'urne ¢ > est la seule urne vide.
Ainsi, By = [2,3]°\ {(2,2,2,2,2),(3,3,3,3,3)}. On a ainsi, Card(B;) = 2° — 2. De la
méme fagon, on a Card(Bz) = Card(B3) = 2° — 2.
Par incompatibilité des événements, on a Card(B) = Card(B;)+Card(Bz)+Card(Bs) =
3(2° - 2).
3(2°-2) 25-2

Ainsi, P(B) = P =3
O

4. Notons C' cet événement. On a C = AU B.
Ainsi, P(C) = P(AU B). Or comme AN B = (), on a

1 -2 251
P(C):P(A)+P(B):§4+ T
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O
5. On a C =U; UUy; UU;s ou U; est I'événement < 'urne 7 est vide.
Ainsi,
P(C) = P(U1)+P(U2)—|—P(U3)—P(UlﬂUQ)—P(UlﬂUg)—P(UQQUg)—i—P(UlﬂUQﬂUg).
Or, par symétrie, on peut simplifier cette quantité en

P(C) =3P(Uy) —3P(U1 NUs) + P(U1 N Uz N Us).

25

Or U; = [2,3]?, donc P(U;) = 3
1
De plus Uy NUz ={(3,3,3,3,3)}, donc P(U1 NUs) = —¢

35
Pour finir Uy N Us NU;3 = (Z), donc P(U1 NUsN Ug) =0.

On peut donc en conclure que

25 1

25 1
s H0="73—

O]

Exercice 6 (Les allumettes de Banach). 1. Considérons 'expérience aléatoire piocher
dans la poche gauche ou la poche droite qui est répétée 2N —k fois (il a 2N allumettes
et il en reste k). On se place donc dans = {g,d}*N =% avec la probabilité uniforme.
On a Card(Q) = 22Nk,

Considérons I'événement G : < il finit le paquet gauche et il reste k allumettes dans
le paquet droit >.

Les éléments de G sont les listes contenant N éléments g et N — k éléments d dont
le dernier élément est g. Ainsi, il y en a autant que de facons de choisir les N — 1
positions des éléments g dans les 2N — k — 1 premieres positions.

(2N—k—1)
o _ U N1
Ainsi, P(G) = "Nk
événements sont incompatibles et leur réunion forme I’événement que ’on cherche,
(2N7k71) (2N7k71)
N-1 /) _\ N-1
92N—k — 92N—k—1"

. On trouve la méme chose pour la poche droite. Les deux

O]

donc la probabilité recherchée vaut 2

2. Cette fois-ci il a en réalité pioché N + 1 allumettes (donc une de trop lorsqu’il se
rend compte que le paquet est vide) ainsi, cela revient au méme que la question
précédente sauf qu’il faut considérer qu’'une des poches contient N + 1 allumettes.

2N—k

)

92N—k *

Ainsi, la probabilité recherchée vaut O

Exercice 7. 1. Par indépendance des manches, si I'ordre des n victoires et n défaites
2n

est fixé, alors la probabilité que cela se réalise est p™q™. De plus, il y a fagons
n

de fixer la position des n victoires parmi les 2n manches. Ainsi, la probabilité de faire

2
une partie nulle est ( n) p"q™. O
n
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2. Notons A I'événement <« A gagne exactement k manches >.

De la méme fagon, par indépendance des manches, si I'ordre des k victoires et 2n — k
défaites est fixé, alors la probabilité que cela se réalise est p*¢®>*~*. De plus, il y a

2
( ]:L ) fagons de fixer la position des n victoires parmi les 2n manches. Ainsi, P(Ag) =

20N\ poon_k

2n
Enfin, sinon note G I’événement A gagne, alors G = U Ay donc
k=n+1
2n
PG =P |J 4]-
k=n+1

Par incompatibilité des événements, on a

2n

2n n—

P(G) = Z (k >pkq2 k.
k=n+1

t

3. En inversant p et ¢, on trouve immédiatement que la probabilité que B gagne (notons
cet événement H) est P(H) = S5 1 (3")p?"Fgk.

Ainsi,
& (2 k 2n—k & (2 2n—k k
P(G)—PH)= Y <k>p =y <k>p"‘ q
k=n-+1 k=n+1
&, (2n k_2n—k on—k k
= Y <k>(pq”_ —p*" k)
k=n-+1
(20 g o o2k 2k—2
= > <k>pq"_ (1—p*n kg —2m)
k=n-+1
2n 2(k—n)
2n _ q
@)
k=n+1 p
1 1 q q 2(k—n)
Or, sip > 3 alors ¢ < 3 < p, donc = <1 donc 1— <> > 0 Ainsi, on n’ajoute
p p
que des termes strictement positifs, donc P(G) — P(H) > 0.
1 1 q q 2(k—n)
Mais si p < 3 alors ¢ < 3 < p,donc = >1doncl— (= < 0 Ainsi, on n’ajoute
p

que des termes négatifs, donc P(G) — P(H) < 0.

1
On a donc p > = si et seulement si la probabilité que A gagne est strictement

supérieure a celle que B gagne. [J

Exercice 8. 1. a. Supposons que les poissons sont animaux de 1 a N et que les animaux
marqués sont numérotés de 1 & a. Ainsi, ’ensemble des échantillons possibles est

N
I’ensemble des combinaisons a n éléments pris dans [1, N]. Il y en a ( > O
n

b. I s’agit des combinaisons qui s’écrivent A N B ou A est une combinaison de k
éléments de [1,a] et B est une combinaison d’éléments de n — k éléments de

N —
[a+ 1, N]. Ainsi, il y en a <Z> (n—lj) O
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c. Si on munit € de la probabilité uniforme, on a

On peut écrire

al (N —a)! n!(N —n)!

PN = e - N+ k—a—m)l N

O]

2. a. Il suffit de poser le calcul,

al (N —a)! n!(N —n)!
N = RPN+ h—a—m) N
Ella—k)!(n—kK(N+k—a—-n—-1)! (N-1)!
al (N—-1-a)! n!(N —n—1)!
(N —a)(N —n)
(N+k—a—n)N’
O
b. On a
d(N) — 1= (N—a)(N—n)—(N+k—a—n)N

(N+k—a—n)N
N2 —(a+n)N +an— (N%? + (k—a—n)N)
(N+k—a—n)N
(n+a—k—a—n)N+an
(N+k—a—n)N
—kN +an
(N+k—a—n)N’

. s . ’ . . . an
Cette quantité est strictement négative si et seulement si N > 5 O

c. ¢(N)—1<0<«<= p(N)< P(N-1), donc la suite (p(N))N>a+n €st croissante puis

an
strictement décroissante a partir du moment ou N > 5 Ainsi, on peut prendre
an an
Ny = || pour avoir son maximum. Attention, si par hasard T est un entier,
il y a Ng et Ng + 1 qui fonctionnent. [J
200 x 150
15

Exercice 9. 1. Toute la difficulté est de bien modéliser le probléme.

3. Dans ce cas, Ny = | | =2000. O

On va dire que le placard est un ensemble E = {g;,d;/i € [1,10] ou g; représente la
chaussure gauche numéro i et d; la droite.

Ensuite, on va noter {2 I'ensemble des combinaisons & 4 éléments de E. Ainsi Card(Q2) =
(20) 20 % 19 x 18 x 17

4 4x3x2

On munit 2 de la probabilité uniforme.

=5 x19 x 3 x 17 = 4845.

Notons A I’événement < obtenir deux paires de chaussures >.

Ainsi, A = {{gi,d;, gj,d;}/ ou {i,j} est une combinaison a deux éléments de [1,10]}.
1
Ainsi, Card(A) = <20> =5x9=45.

5x9 3 3
On a done P(A) = o — o= — o= 4= = 1917 — 323
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2. Notons B cet événement. Il est plus facile de remarquer que B est I’événement
10
< n’avoir que des chaussures isolées. >. Il y a 4 facons de choisir les 4 paires

de chaussures différentes et il y a deux possibilités par chaussures. On aurait pu écrire
formellement

B = {{a;,bj,cr,de}/(a,b,c,d) € {g,d}? {i,j,k, ¢} combinaison & 4 éléments de [1,10]}.
Ainsi,

=10x3x7x 2%

10 10x9x8x7x2%
Card(B):<4>24: Ax3x2

On aurait pu écrire formellement
B = {{ai,bj, cx,de}/(a,b, ¢, d) € {g,d}? {4, j, k,£} combinaison & 4 éléments de [1,10]}.

Enfin,
_10x3x7x2t 32x7 224

P(B) = = =—.
5x19 x3x 17 323 323
— 99
0] d P(B)=1—-P(B)=—.0
n a donc P(B) (B) 393
3. Notons C' cet événement. On remarque que C' est exactement B\ A avec A C B, donc

P(C) = P(B\ 4) = P(B) ~ P(A) = oo~ oo = o0,

O

2. Sans dénombrement

Exercice 10. Notons A I’événement < A atteint la cible > et B I’événement <« B atteint
la cible >. 5

OnaP(AUB):§.

Par ailleurs,
P(AUB)=P(A)+ P(B)— P(ANB).
De plus, on sait que A et B sont indépendants, donc
P(AUB)=P(A)+ P(B)— P(A)P(B).
1
Enfin, on sait que P(B) = §P(A). Donc

1 1

P(AUB) = P(A) + 5 P(4) - 5(P(A))Q.
Autrement dit, on a I’équation
5 3 1
S ="P(A) - ~(P(A))?
= = SP(A) - 5(P(4))
C’est équivalent a
1 3 5
—(P(A)? —ZP(A) + = =
S(P(A))? = SP(A) + 2 =0
Son discriminant est A = % — 4% =1.
Ainsi, il y a deux solutions
3 1 3 5
1
Seule la premiére est acceptable. Ainsi, on peut affirmer que P(A) = 3 O
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Exercice 11. 1. Nous avons besoin de noter certains événements :

e N : < le test est négatif > ;
e S : «la personne est en état d’ébriété >.

On cherche donc a déterminer P(S|N). Ainsi, on a d’apres la formule de probabilité

des causes, o
P(S|N) = P(]\TPJESK[])D(S)

Or, d’apres la formule des probabilités totales appliquées au systéme complet d’événements

(S,9),

P(N) = P(N|S)P(S) + P(N|S)P(S) = P(N|S)P(S) + (1 — P(N|S))(1 — P(S)).

Ainsi,
90 2 95 2
b DL (Y (2
100 100 100 100
Done 180 490 670
P(N) = + = :
10000 10000 _ 10000
Ainsi,

10000 670 67
On trouve a peu pres 0,27. O
T _ P(N|S)P(S)
2. Cette fois-ci, c’est P(S|N) = POV)

Or on a P(N|$)P(S) = (1 N P(W’S)) P(S8) = 1020000 et P(N)=1-P(N) = 190303000'
1020000 2

Ainsi, P(S|N) = = .
1903035)0 933

On trouve a peu pres 0,001. O

3. Cette fois-ci, on cherche P((N N S)U (N NS)). Par incompatibilité des événements,
on a

P(NNS)U(NNS))=P(NNS)+P(NNS).

Ainsi,
P(NNS)U(NNS))=P(NIS)P(S) + P(N|S)P(S).

Soit encore,

P((NNS)U(NNS)) = (1= P(NIS)P(S) + (1 = P(N[S))P(S).

- 920 \ 2 95\ 98
P((N N =(1- =)= 1 22 ) 2=
(NNS)UNVNS)) ( 100) 100 * ( 100) 100

Et donc

On a donc

. 20 490 o1
PANTS)UINOS)) = 35000 * 10000 ~ 1000°

La probabilité que le résultat soit faux est donc autour 0,05. [
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Exercice 12. 1. On a, d’apres la formule du crible,

P(A1UA2UA3UA4): P(A1)+P(A2)+P(A3)+P(A4)
—P(AlﬂAg)—P(AlﬂAg) —P(AlﬂA4)
—P(AgﬁAg)—P(Agﬂle) —P(A3QA4)
—|—P(A1ﬂAzﬂA3)—|-P(AlﬂA2ﬂA4)
+P(A1ﬂA3ﬂA4)+P(AgﬂA3ﬂA4)
—P(AlﬂAgﬂAgﬂA4).

En éliminant le terme nul et en regroupant les termes égaux par symétrie du probléme,
on a

P(AlUAQUA3UA4) :4P(A1) —6P(A1ﬂA2)+4P(A10A2ﬂA3).

Le plus rapide est de calculer ces probabilités avec du dénombrement (méme si on peut
tout a fait le faire autrement). On note = [1,4]™ que 'on munit de la probabilité
uniforme.

On a A; = [2,4]™, donc P(A;) = <i) .
2 n
De méme, on a Ay N Ag = [3,4]", donc P(A; N Ay) = (4) .

1 n
Enfin, Ay N Ay N As = {(4,...,4)}, done P(A; N Ay N Ag) = (4) .

3\" \" 1\"
Ainsi, on a P(A; U Ay U A3 U Ay) = 4(4) — 6(2> +4<4> . O
2. Ona AjUAUA3U Ay est 'événement < au moins une boule n’a jamais été piochée >,
donc on a p, = P(A; U Ay U A3 U Ay) ce qui donne immédiatement le résultat de-
mandé. [

1 3
3. Comme —, — et — sont entre —1 et 1, on trouve immédiatement que lim p, = 1.
4°2 4 n—-+00

Il parait prévisible qu’en piochant beaucoup de fois, on finisse par récupérer tous les
numéros. [

Exercice 13. 1. Notons I’événement T : < on utilise la piéce truquée > et F; : < on
fait face au lancer 7 >. En utilisant la formule des probabilités totales appliquée au
systéme complet d’événements (7, T), on a P(Fy) = P(F1|T)P(T) + P(F1|T)P(T).

Ainsi, on a

1 14 3
P(F)=1=+4-=="2,
(F1) 572575

O
2. Il s’agit d’appliquer la formule de probabilité des causes, ainsi on a

1
P(T!Fl)—JW—lg_ 1
5

w |

O]

3. En utilisant la formule des probabilités totales appliquée au systeme complet d’événements
(T, T), on a

P(ﬂFk> —P(ﬂFk
k=1 k=1
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orP<ﬂ Fk|T> =1et

k=1
n
P (ﬂ Fy
k=1

par indépendance des lancers sachant T' (une fois la piéce fixée).

T) [ PEIT) = o
k=1

Ainsi, on a
1 14

n
P(NF)=-+=—=
(05) =5+

On va désormais utiliser la formule de probabilité des causes, et on a

X P(Ni_y Fx|T) P(T
pn=P|(T| () F:| = (ﬂk_ln ) _( )
k=1 P (ﬂk:l Fk) -
Ainsi,
n 1
_ 5
pn—P<T ka> T 1,11
k=1 5T 2n5
Onad 1
n a donc p, = —.
=1y E
4. On a bien évidemment, lim p, = 1, autrement dit plus on a lancé la piece en

n——+oo
obtenant que des faces, plus on peut penser que la piece est truquée. [J

5. On cherche a résoudre

95 1 95

27
Pr = 700

Or lfn(éﬁ)) ~ 6,25, donc on prend n = 7.

Au bout de 7 face consécutifs, on a une probabilité supérieure a 0,95 d’utiliser la piece
truquée. [

Exercice 14. 1. Notons, pour tout l'exercice, ’événement A; : < on joue avec la piece
A au iéme lancer > et F; : < on obtient face au rang i >.

Ainsi, pour tout n € N*, on a p, = P(A,). En utilisant la formule des probabilités
totales appliqué au systéme complet d’événements (4, A,)

P(Apt1) = P(An41]|An) P(Ay) +P(An+1|A7n)P(A7n)'
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1 — .
Or P(An41]An) = P(F,|Ay) = 3 et P(Ant1|An) = P(FL|Ap) =1 —

Ainsi,
1 1 —
P(Ap41) = §P<An) + gP(An)-

On remarque que cette formule reste vraie si le systeme complet d’événements avait
des événements négligeables.

Ainsi, on a
1 1
P(Apy1) = §P(An) + 5(1 — P(Ap)).

Ainsi, on a

1 1
Pn+1 = épn + g
1 1 2
Cherchons ¢ € R, tel que ¢ = 68 + 3 soit £ = £
2
On pose alors, pour tout n € N*, u,, = p,, — 5
Ainsi, pour n € N, on a
B 2 1 N 1 2
Un+1 = Pn+1 5 Gpn 3 5

2
Or p, = u, + —, donc

5
U —1(u —|—2>+5—6—1u
T\ T5) T 15 60

On constate donc que (u,)pen est une suite géométrique de raison 5

Ainsi, pour tout n € N*, on a u, = Gn—l_lul.
Orulzpl—gzé—z:%.
Ainsi, u, = 671—1% = 6%120 et donc

Vn € N, pn—§+§6in.
O

. Soit n € N*. Il s’agit encore une fois d’appliquer la formule des probabilités totales
au systéme complet d’événements (A, 4,).On a alors

P(F) = P(Fal Au)P(An) + P(FW[A2) P(A) = 5pn+ (1= ).

En utilisant le résultat que ’on vient de faire, on a
1/2 31 273 31
PF)==|-4+=-— - l-===.
(En) 2<5+56”>+3<5 56")

O

3 11
En conclusion, on a P(F),) = 5T 105
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Exercice 15. 1. Notons F; 'événement < faire face au ieme lancer. >
Ainsi, p; = P(F}) = a.

De méme, on a po = P(Fy U (Fy N Fy)). Comme les événements sont incompatibles,
on a
p2 = P(Fl) + P(F1 N FQ)

Or comme les lancers sont indépendants, on a
ps = P(F\) + P(F7)P(FY).
Ainsi, pp =1 —a +a?. O
2. Notons, pour n > 1, T,, I'événement < avoir exactement n points >. Appliquons la
formule des probabilités totales au systéme complet d’événements (Fy, F1),
Ainsi, on a Pn+2 = P(Tn+2) = P(Tn+2’F1)P(F1) + P(TTH-?‘E)P(E)
Or P(Tn+2’F1> = P(Tn) = pn €t P(Tn+2‘ﬁ1) = P<Tn+1) = Pn+1-
Ainsi, on a, pour tout n € N*, p,10 = (1 — a)p, + appy1. O
3. Il s’agit d’une suite vérifiant une relation de récurrence linéaire d’ordre 2. On remarque
méme qu’on peut étendre la définition de cette suite : si on pose pg = 1, on a bien
pp=1—a+a?et (1 —a)py+ap; =1—a+a’

Résolvons I’équation caractéristique associée :
X?=aX+(1—-a)= X*—aX+(a—1)=0.

Remarquons que 1 est racine évidente, et donc, comme le produit des racines vaut
a — 1, Pautre vaut a — 1.

Ainsi, il existe A et p deux réels tels que Vn € N,
pn=A+(a—1)"p.

En faisant n = 0, on récupere A+ = 1 et en faisant n =1, on a A + p(a — 1) = a.
On a donc le systéme : Atp=1
At (a=1pu= a

— Atp=1
(a—2)up= a—1 Ly« Ly— 1L,

A= L

o—
Commea;ﬁ(),ona<:>{,u_ 12a
 2-a

On a donc, pour tout n € N,

O

Exercice 16. 1. a. On a évidemment ug =1 et uy = 0. [

b. Pour k € [1, N — 1], on a On utilise la formule des probabilités totales associée au
systéme complet d’événements (G, G) ou G est < A gagne la premiere partie. > On

a alors P(Ak,O) = Pg(Ak,O)P(G) + P@(Ak}o)P(G)
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Or Pg(Ago) = P(Ags1,1) et P5(Ago) = P(Ag—1,1), donc I'égalité devient
P(Ako) = P(Aps1,0)p + P(Ak-1,1)g-

Soit, avec la supposition de 1’énoncé,
Vk € [[1,]\7 — 1], Uk = Ug+1DP + Uk—14.

O

. On peut réécrire 1’égalité précédente en
Vk € [0,N —2], pugio— uks1 + qug =0.
Résolvons I’équation caractéristique associée :
pX?2—X+4q=0.

Remarquons que 1 est racine évidente, et donc, comme le produit des racines vaut

g, Iautre vaut g.
p

1
Sip=q= =, alors il n’y a quune racine double et on a l'existence de A et p deux
réels tels que, Vk € [0, N, ux = (M\k 4+ u)1™ = Xk + p.
En faisant k£ = 0, on récupere p = 1. En faisant £ = N, on récupere AN + 1 = 0,

done A = ——.
onc N
N—k

Ainsi, pour tout k € [0, N], on a uy = —%k +1 =5

Si p # ¢, on a deux racines distinctes, donc il existe A et p deux réels tels que
Vk € [0, N], on a

k
uk:)\—FM(Z) .

N
En faisant k£ = 0, on récupere A+p =1 et en faisant k = N,ona A+ p (%) = 0.

A Ad+p= 1
insi, on a le systéme : N
’ () =0
Adp= 1
<~ N
<(g> —1>;L: -1 LQ(—LQ—Ll
(2)"
Comme a # 0, on a <= (%) )
p=

N
(3" -1
. Inutile de tout refaire, il faut simplement échanger p et q et k avec N — k.
k
Ainsi, sip=g¢q = 2,onaka N
N (B)ka
Et sip # ¢, on a v, = —2 Nq
@) -1

Calculons, pour k € [0, N], ug + vg.
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Sip= —}u—i-v = 7k+£—1
S s N VA
Sip#gq,ona
N k N N—k
R At A e
= N N
CAETENCIE

En multipliant le numérateur et le dénominateur de la premiére fraction par p™v
et la seconde par ¢, on a

G — gfpN—k  pN _ pN-kgk N _ N

U + v = = =1.

On trouve que dans tous les cas, Vk € [0, N], ug +vr = 1. Autrement dit, il y aura
presque surement un gagnant et un perdant ce qu’on peut reformuler en affirmant
que le jeu se termine presque surement. []

2. 1l s’agit de calculer lim wy.
N—+oc0

1
Slp:quonaukziz -
1

3

1 sip <

q k
<) sip>
p

Dans un jeu équitable ou défavorable, il est presque certain qu’un joueur finisse ruiné
fasse & un joueur beaucoup plus riche que lui. Avec un jeu favorable, le jeu peu durer
indéfiniment avec une probabilité qui dépend de la fortune de départ en plus des
probabilités de gain. [

Ainsi, la probabilité que le joueur A se ruine est bien :

N — DN =

Exercice 17 (Un peu de réflexion). 1. Notons V I’événement : <« le candidat a choisi
une boite vide >.

On supposera que la répartition des boites est équiprobable donc P(V') = —.

Notons C' I’événement : < le candidat gagne en changeant de boite >.

On a alors, d’apres la formule des probabilités totales appliquée au systéme complet
d’événements (V, V),

P(C) = P(C|V)P(V) + P(C|V)P(V).
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Ainsi,
2 1 2
PC)=1x240x==2.
(C)=1x3+0x3=3

2
Ainsi, la stratégie de changer de boite ameéne & une victoire de probabilité 3"

En notant D I’événement : < le candidat gagne sans changer de boite >, on a de la
méme fagon :

P(D) = P(D|V)P(V) + P(D|[V)P(V) = 0 x

1
Ainsi, la stratégie de ne pas changer de boite ameéne & une victoire de probabilité —.
O

2. En fait, c’est & peu pres la méme chose. Essayons une autre formalisation. Notons A
I’événement < Alice est graciée >, et de la méme facon les événements B et C.
Et notons G le gardien désigne Bob.

On a, d’apres la formule de Bayes appliquées au systéme complet d’événements

(A7 Ba C)7

P(CIG) P(GIC)P(C)
~ P(GJA)P(A) + P(G|B)P(B) + P(G|C)P(C)’
Ce qu’on remplace en
1x 2
PG = T il 5
23 3 3
Alors que
P(AIG) = P(G|A)P(A)
~ P(GJA)P(A) + P(G|B)P(B) + P(G|C)P(C)’
et donc L
5 X 3 1
P(A|G) = 23 ==
(416) 53 F0x3+1x1 3

Ainsi, dans ce cas, Alice n’a obtenu aucune information la concernant (normal, le
gardien aurait toujours pu désigner I'un des deux autres prisonnier), mais Claire peut
étre un peu soulagée. [

14 Limites et continuité

Exercice 1. 1. Soit ¢ > 0. On cherchen > 0 tel quesiz €]—1—n, —1+n[, [(z® +z +1) — 1| <
€.

Considérons cette derniere inéquation. On a

‘(x2+x+1)—1‘<5<:> ‘x2+x‘<£

= |z|lz+1l<e
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€
Remarquons que si on prend n = min (1,2>, ona—1—-—n<zxz < —1+4mn, donc
€
—2 <z <0 puis |z| < 2. De plus, on a |z + 1| < 3 donc
|||z +1] <&
ce que nous voulions.
Ainsi, lim (z°4+z+1)=1.0
r——1

2. Soit € > 0.

+1

20 -1 2(x+1)—3
r+1 41 ]

Remarquons que I'on a . Ainsi, I'inégalité

- 2‘ <
€ est équivalente a

3
]3|x+1<€<:>|:c+1]>g.

3
En prenant A = max <0, - — 1>, on a pour tout = > A, |z + 1| > % ce qui démontre
€

I'inégalité souhaitée.

Ainsi, xEIJIrlOO 2;_;11 =2.0
3. Soit M € R.
Remarquons que si M < 0, I'inégalité @11)2 > M est toujours vérifiée, donc on
prendre n’importe quoi pour 7.
SiM >0,o0na
(37_11)2>M<:>(w—1)2<]\14<:>$—1\<\/1ﬂ

car la fonction racine carrée est strictement croissante sur R, . Cette derniére inégalité
est équivalente a

1 1
l-—=<zz<1l+—.

VM VM

Ainsi t ! tout = €1 11+1\{1}( 1)2<1
insi, en prenant n = ———, on a pour tout x ——— 1+ —= , (x— —
prentn = A P VM VM M
donc 'inégalité recherchée.
1
Ainsi, on a bien, lim ——— = 4o00. O
r—1 (:L’ — 1)2
—1 1
Exercice 2. 1. On a, pout tout x # —1, f(z) = (x)_fclﬂ = x — 1. Ainsi, il est
x
clair que lim f(x) = —2.
Tz——1
La méme forme permet de démontrer que lim f(z) = +oo. O
T—+00
(z4+1)(z* -z +1) 22—z +1
2. O t tout —1 = - = .
na, pout tout 7 —1, f(z) (x+D(@*—a3+22—2+1 2t —a23422—2+1)
3
Ainsi, il est clair que lim f(z) = —.
z——1 5

En +o00, on écrit
Bl+L 11+

RS N R
B1+ L 2214+ %
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1
1
— 1 et comme — — 0, donc par produit, on

+ —5 Tr—+0c0 aj Tr—+0c0
x

Ainsi, il est clair que

a lim f(z)=0.0

T—+00

3. On a, pour x >0 et z # 3, f(x) = G L(\_F‘i‘ V3) =/ + V3. Ainsi, ili% flz) =
2v/3.

La méme forme donne la limite en +oo. Mais sinon, on aurait pu écrire f(z) =

x 1-3 1-32

T1_ V3 _ V3

VT 1 v 13
_3

———— 1 et comme vz T oo, donc par produit,
1 _ \/§ Tr——+00
xX

ona lim f(z)=4o00.O

Tr——+00

Ainsi, il est clair que

r+1-—4 _ 1
(z—3)(Vz+1+2) Vr+1+2

4. Pourz > —letx#3,ona f(z)=

. 1
Ainsi, ili% f(z) = T
La méme forme donne évidemment lim f(z)=0.0

T—r+00

5. Pour x > 1 et x # 4, on a

o) = EEAE LTI (4 (o= T4vB)

Ainsi, lim f(z) = 8 2v/3 = 16V/3.
De plus Er}ra f(x) = 400 par produit de limites. [J

6. Le domaine de définition est pénible a chercher, mais on est clairement bien défini sur
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un intervalle ouvert autour de 1, mais pas en 1. Sur cet intervalle, on a

/()

(% 1) (1+m (VI—3z+1)
3(1—x)(1+ 2 — 31230)( s +1) (3—20)
(1—3—22)) (14 2—\/4—390)(\/4—3904-1)
3(1—m)<1+ 2 — 31230)( s +1) (3 22)
2(1— ) 1+\/2—\/T3m)(\/4—3x+1)
3(1+ 2—F)( 1) (3 20)

3—2x
1+ 2—\/4—333> (V4 —3z+1)

31—1/2—+4—-3x 3 .

\)
/N

On a alors lim —— = ——.

z—1

1 2

L—y/2 - 3—2x

. La fonction est définie sur | — oo, —1[U]0, +-00[. Pour z > 0, on a

f(x) =zn(z) — xIn(x +1).

Par croissance comparée, on a lin% xIn(xz) = 0 et par produit, on a lir% xIn(z+1) =0.
T— T—

Ainsi, lim xIn (

x—0

. Pourz >0,ona f(z) =z (1 — ln(x)) . Or

Ainsi, (1 —

X

Par conséquent,

In(z

x
) — 0.0
z+1
In(z) . .
= 0 par croissances comparées.
X r—r+00
)) Y
T—+00
par produit de limites, on trouve lim z —In(z) = 4o00. O
r—r+00

. On trouve pour x € R,

et 1 —gle ™
fo) = a1

. , 1
Or 1 — 22~ ——— 1 par croissances comparées et 1 + — —— L
T—+00 Tr* r—+o0

De plus, par croissances comparées, —

T

+1

ona lim
Tr—+00 x4

T

1 ———— +oo, ainsi, par produits de limites,
xX r—r—+00
2

= +o00.
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10. On a, pour z > 0, % = ¢~ *n(),

Tout d’abord, comme, par croissances comparées lir% —zln(z) = 0, par composition
Tr—r

de limite et continuité de la fonction exponentielle, on a liH(l) eon(@) = 1. Ainsi,
Tr—r
limz7% = 1.
z—0
Ensuite comme lim —zln(z) = —oo, par composition de limite, ona lim eeIn(@) —
T——+00 T—+00
0. Autrement dit lim z~* =0. O
T—>+00

11. On a, pour z > =2, (z +2)7% = e—zIn(z+2)
Or —zln(x + 2) —>_> n —oo par produit, donc par composition avec exponentielle
xX (o]

qui est une fonction continue, on a lim (x+2)"* =0. 0
T—+00

12. On a, pour x € R, 9—2?+2 _ o(—2?+2)In(2)
Or (—z%+2)1n(2) m —oo par produit, donc par composition avec exponentielle

. . . . —_ 2
qui est une fonction continue, on a lim 27 2 = (. O

T—+00
Exercice 3. Pour x ¢ {—1,1}, on a

a b a  bz-1)

2—-1 z+1  22—-1 (z+1)(z-1)
B a—bx+b
 (z+)(z-1)
b +1)+a+2b
N (x+1)(x—1)

b a+ 20

o1 @ D=1

On peut alors calculer les limites en utilisant les regles habituelles.

b b
Sia+2b:0,alorsonazliml(zza_l—$+1>:2,
b b
Sia+2b> 0, alors on a lim _2 % Vo et lim [ — =
zo—1\x2—1 r+1 zo—1\x22—1 r+1
z>—1 r<—1
+00
b b
Sia—|—2b<0,alorsonalim< ¢ >=+ooet lim< a >:
s——1\z2 -1 x+1 t——1\z2 -1 z4+1
z>—1 r<—1
—oo [

Exercice 4. 1. Sur R*, f est une fonction de référence continue. Sur R , f est le produit
de deux fonctions de références donc continue. La fonction f est donc continue sur
R*.

En 0, on a f(0) = 0, lim f(z) = lim 22 = 0 et enfin lim f(x) = lim ze® = 0. Ainsi,
z—0 z—0 z—0 z—0
<0 <0 >0 >0

lim f(z) = £(0).

z—0

f est donc continue en 0.

On peut en conclure que f est continue sur R. [J

2. Sur R* | g est une fonction constante donc continue. Sur R* , x — —x est continue et
exp est continue sur R, donc x — e~ " est continue et par suite x — 1 — e~ % aussi. La
fonction g est donc continue sur R*.
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En 0, on a ¢g(0) =0, lim g(z) = lim 0 = 0 et enfin lim g(x) = lim 1 — e~ = 0. Ainsi,
z—0 z—0 z—0 z—0
) <0 <0 >0 x>0
lim g(z) = g(0).
g est donc continue en 0.

On peut en conclure que g est continue sur R. [J

3. Sur R* | h est une fonction constante donc continue. Sur ]0, e[, h est le produit de deux
fonctions continues donc continue. Enfin, sur |e, +o0o[, h est une fonction de référence
continue. La fonction h est donc continue sur R\ {0, e}.

En 0, on a h(0) = 0, lim A(x) = lim 0 = 0 et enfin lim A(z) = lim zIn(x) = 0 par
z—0 z—0

x—0 r—0
<0 z<0 x>0 >0

croissances comparées. Ainsi, lir% h(z) = h(0).
d
h est donc continue en 0.

Enfin, en e, on a h(e) = e et lim h(x) = lim zIn(x) = e et enfin lim A(z) = lim = = e.
Tr—e Tr—e T—e Tr—e
r<e r<e r>e r>e
Ainsi, lim h(z) = h(e).
r—e
h est donc continue en e.

On peut en conclure que A est continue sur R. [

Exercice 5. 1. Sur |—o0, 1], f est constante donc continue. Sur |1, 4+o00[, f est la combi-
naison linéaire d’une fonction constante et d’une fonction de référence continue. Ainsi,
f est continue sur R\ {1}.
1
En 1 li =1l = li = lim 1 — — = 0. Ainsi, li = 0.
n 1, on a lim f(x) xﬂo 0 et limy f(z) = lim 5 = 0. Ainsi, limy f(z) =0

r—1 xT
r<l <1 x>1 r>1

On peut donc prolonger f par continuité en posant f(1) = 0. Ainsi, f est désormais
une fonction continue sur R. [J

2. Sur | — 00, 0[, g est constante donc continue. Sur |0, 1], g est une fonction de référence
continue. Sur |1, 400, g est constante donc continue. Ainsi, g est continue sur R\

(0,1}

En 0, on a lim g(z) = im0 = 0 et lim g(z) = lim z = 0. Ainsi, lim g(z) = 0. On
z—0 z—0 z—0 z—0 z—0
z<0 <0 >0 x>0

peut donc prolonger g par continuité en posant f(0) =

e

En 1, on a lim g(z) = limx = 1 et lim g(z) = lim 1 = 1. Ainsi, lim g(z) = 1. On
rz—1 r—1 rz—1 r—1 r—1
<1 r<l1 z>1 z>1
peut donc prolonger g par continuité en posant g(1) = 1.
Ainsi, une fois prolongée par continuité en 0 et en 1, g est désormais une fonction
continue sur R. [J

Exercice 6. Notons 7" > 0 une période de f. Soit z € R.
On a déja démontré par récurrence que, Vn € N, f(x+nT) = f(z). (On peut se rapporter
aux exercices du chapitre sur les éléments d’analyse.)
Ainsi, il est clair que lim f(x 4+ nT) = f(x).
n—-+00
Par ailleurs, on sait qu’il existe £ € R tel que lim f(x) =/¢. Or comme lim z+nT =
T——+00 n—+oo

+00, ainsi, par composition, lim f(z+nT)="/.
n——+0o0

On a donc, Vz € R, f(x) = £. Autrement dit, f est constante. (]

Exercice 7. 1. C’est un polynoéme, donc f est définie et continue sur R. [J
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. C’est un quotient de polynoémes, donc f est définie et continue sur ’ensemble des réels
tels que 22 + 2 + 1 # 0. Or le discriminant de ce polynome est strictement négatif (il
vaut —3), donc 22 + z + 1 ne s’annule pas.

f est donc définie et continue sur R. [J

. Sur ] — oo, —1]U[1, +o0[,  — 22 — 1 est définie, continue et positive. On peut donc
la composer avec la fonction racine carrée qui est continue sur R,.

Ainsi, f est définie et continue sur | — oo, —1] U [1, 4+o00[. O

. C’est un quotient de polynémes, donc f est définie et continue sur ’ensemble des réels

tels que 22 + 2z — 3 # 0. Or le le dénominateur s’annule uniquement en —3 et en 1
(racines évidentes, ou discriminant, comme vous le souhaitez).

f est donc définie et continue sur R\ {—3,1}. O

. Sur [1,400], z — = — 1 est définie, continue et positive. On peut donc la composer
avec la fonction racine carrée qui est continue sur R,.

Ainsi, f est définie et continue sur [1,4oo|[. [

. Sur | —1,4+00[, x —> x + 1 est définie, continue et strictement positive. On peut donc
la composer avec la fonction logarithme népérien qui est continue sur RY .

Ainsi, f est définie et continue sur | — 1, +oo[. [J

Exercice 8. 1. Plus le trait est discontinu, plus l'indice est élevé. En bleu la courbe

représentative de f1, en rouge de fo, en orange de f3 et en jaune de f;. Les couleurs
ne sont pas tres visibles.

O]

2. f est constante donc continue sur [0,1 — L[ et est affine donc continue sur J1 — 1, 1].
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Par ailleurs,

. . _ 1
Jm ) = i, 20 =52 (1-3).

1 1
ac<1—5 ac>1—;

donc elle est continue en 1 — %

Ainsi, elle est continue sur [0, 1]. [J

3. Soit = € [0,1[. Comme 1 — % -_>—+—+ 1 donc il existe ng € N tel que VYn > ny,
n o0

1
0<r<l——.
n
Ainsi, Vn = ng, fo(z) = 1.
Par ailleurs Vn € N*, f,(1) = 0.

o ] 1 size|0,1
Ainsi, Vx € [0,1], nllgloofn(x) = { 0 siw:[l |

Autrement dit Vz € [0, 1], f(x) = { (1) :i 9; S [10, 1]

f(1)=0et pour x <1, f(z) =1. 0

4. Elle est évidemment continue sur [0, 1] (constante) mais elle n’est pas continue en 1
car limlf(x) =1#0=f(1). 0
T—

<l

Exercice 9. 1. Commencgons par chercher quand le dénominateur s’annule. Or en re-
marquant qu’on a certaines racines évidentes, on trouve que 2% + x? — 2z = x(2? +
r—2)=z(x—1)(z+2).

Ainsi, f est un quotient de polynémes donc est définie et continue partout ou son
dénominateur ne s’annule pas, donc sur R\ {—2,0,1}.

Par ailleurs, remarquons que z2 4+ 2 — 3 = (x — 1)(z + 3) (toujours grace aux ra-

-1
cines évidentes). Ainsi, on a pour tout x € R\ {-2,0,1}, f(z) = g:((xx — 1))((3;132)) =
T+ 3

z(x+2)

4
On remarque alors que lim1 flx) = 3 On peut donc prolonger f par continuité en 1
r—r

4
en posant f(1) = 3
Par ailleurs, les limites en 0 et —2 sont des quotients de valeurs finies sur 0 donc valent
+00 ou —oo a gauche et a droite selon les signes des quantités. Aucun prolongement
n’est possible en 0 ou —2. [

2. Plagons-nous sur D =] — oo, —2[U] — 2,0]U]2, +-o0[, ainsi, Vo € D, 22 — 4 # 0 et
x2 =2z > 0.

Sur D, le numérateur est la somme d’un polynéme (donc défini et continu) et de la
composition de x +— 2% — 22 (qui est définie, continue et positive) avec la fonction
racine carrée qui est bien définie et continue sur R,.. Donc le numérateur définit bien
une fonction continue sur D. Par ailleurs, le dénominateur est un polynéme qui ne
s’annule pas sur D. Ainsi f est bien définie et continue sur D.

Il est clair que f n’admet pas de limite en —2 : le dénominateur tend vers 0 et le
numérateur vers —4 + 21/2.
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Pour tout z > 2, on a

x—2+\/x2—2x_ Vo —2+/x
(z-2)(x+2)  Vz—2xz+2)

Ainsi le numérateur tend vers v/2 en 2 et le dénominateur vers 0. Il n’y a donc pas de
limite finie en 2.

fz) =

f ne se prolonge par continuité nulle part. [

. Pour avoir #? — 2z > 0, on se place sur | — oo, 0] U [2, +00.

De plus, cherchons quand z — 2 + Va2 — 22 = 0, ce qui implique x — 2 = —V22 — 22
ce qui implique (z — 2)? = 22 — 2z donc 22 — 42 + 4 = 22 — 2z, soit x = 2. Ainsi, le
dénominateur ne s’annule qu’en 2.

Notons donc D =| — o0, 0]U]2, +o0[. Par ailleurs, sur D,

Sur D, le dénominateur est la somme d’un polynéme (donc défini et continu) et de
la composition de z + 22 — 2z (qui est définie, continue et positive) avec la fonction
racine carrée qui est bien définie et continue sur R;. Donc le dénominateur définit
bien une fonction continue sur D qui ne s’annule pas. Par ailleurs, le numérateur est
un polynéme. Ainsi f est bien définie et continue sur D.

Le seul prolongement par continuité envisageable est en 2. On a, pour x > 2,
(r—=2)(x+2)  Vr—2x+2)
x—2+ V12 -2z Vi —2+x

Ainsi, lir% f(x) = 0 donc on peut prolonger f par continuité en posant f(2) = 0. [
z—
z>2

fz) =

. Sur R*, f est le quotient de deux fonctions continues dont le dénominateur ne s’annule
pas. Ainsi, f est définie et continue sur R*.

22 242
Remarquons que si x > 0, f(z) = A b _ 92 Etsiz< 0, f(x) = e
x x
z+ 2.
Ainsi, lim f(x) = —2 et lim f(x) = 2. f n’admet donc pas de limite en 0 et ne peut
z—0 z—0

>0 <0
donc pas étre prolongée par continuité. [
. Remarquons que 22 +x—6 = (x—2)(x+3) (factorisation en cherchant les deux racines
qui s’averent étre évidentes). Ainsi, sur R \ {—3,2}, f est un quotient de polynémes
dont le dénominateur ne s’annule pas. f est donc définie et continue sur R\ {—3,2}.

Remarquons que le numérateur admet 2 comme racine évidente, donc on peut le
factoriser par x — 2.

On a donc 23 4+ 22 — 8z + 4 = (z — 2)(2® + 3z — 2) (ce qui se trouve en identifiant les
coefficients ou en devinant la factorisation et en la vérifiant).

On a donc, pour tout z € R\ {-3, 2},
(x—2)(2*+3x—-2) a*+43z-2

&) = yats w3

8
On a donc lir% flx) = 5 On peut donc prolonger f par continuité en 2 en posant
r—r

Par contre, f n’admet pas de limite en —3 (le numérateur tend vers -2 et le dénominateur
vers 0), donc elle ne se prolonge pas par continuité en —3. [
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Exercice 10. 1. Soit z € I.

Remarquons que, si f(z) > g(z) (soit max(f(x),g(x)) = f(x) et min(f(x),g(z)) =
g(x)), alors on a

f@) +g(x) +f(x) —g@)] _ fl2)+9(@)+ fz) —g(z)

. — 5 = f(z) = sup(f, 9)(x)

et

f(x) +g(x) = |f(x) —g@)| _ flz)+g(x) - fz) +9(x)
2 2

Et si f(x) < g(z) (soit max(f(z),g(z)) = g(x) et min(f(z),g(x)) = f(x)), alors on a

T g @) 9@l S+ 90 TR ) = s, 6)(a)

et

Fle)tota) “ 17w —9@l _ 1) 9@+ T@ 29 _ piay — ing(£,g)(a).

_fHg+lf—yl

5 et inf(f,g) =

.. . +9—1\5—
Ainsi, on a bien sup(f,g) ngM O
2. Si f et g sont bien continues en z( alors |f — g| aussi par composition. Par com-

binaison linéaire, il en est de méme pour sup(f,g) et inf(f,g) puisque sup(f,g) =

— + — —
fro+lf—gl inf(f,g) = frg—1f—gl 4
2 2
Exercice 11. Si on a (f(z))? — 3f(z) + 2 = 0 alors, comme les racines évidentes de
X2 -3X +2sont 1et2 ona f(xr)=1ou f(z)=2.
S’il existe a et b tels que f(a) = 1 et f(b) = 2, en appliquant le théoréme des valeurs
3
intermédiaires entre a et b, on aurait l’existence d’un réel ¢ tel que f(c) = 3 ce qui est
impossible.
Ainsi, il n’y a que deux fonctions continues qui satisfont cette condition, ce sont les
fonctions constantes égales a 1 et a 2. [J
2?1+ 1+

Exercice 12. 1. On a, pour z > 0, f(x) = — =z .
p f(z) xl—i—% 1_}_%

Ainsi, il est clair que lim f(z) = 400, donc f n’est pas bornée. [J
T——+00

2. On a, par les opération usuelles, Em f(x) = 0. Donc il existe un réel A < —1 tel
x —00
que Vz €] — o0, A[, —1 < f(x) < 1 (c’est la définition de limite nulle pour € = 1.)

Par ailleurs, sur [A, —1], f est une fonction continue (quotient de fonctions continues
dont le dénominateur ne s’annuel pas). Ainsi, il existe deux réels m et M tels que,
Vo e [A,—1], m < f(x) < M.
Ainsi, Vz €] — oo, —1], min(—1,m) < f(r) < max(1l,M). Ainsi, f est bornée sur
| —o0,—1]. O

Exercice 13. 1. f est une fonction continue et dérivable sur R (c’est un polynéme) et
onaVrcR, fl(x) =322 +1 > 0.

Par ailleurs, Iggloof(m) = —00 et xgrfwf(x) = +00.

Ainsi, f est continue, strictement croissante de R dans R tout entier, donc établit une
bijection de R dans R. [
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2. f est un quotient de polynéme, donc dérivable sur son ensemble de définition qui est

R\ {1}.

2 —1)— 2z +1) 3
. . / _ _
Ainsi, on a Vo € R\ {1}, f'(z) = @_1) R
Ainsi, f est strictement décroissante sur |1,+oo], continue et on a lir}ra flz) =2
T—>+00
1
(car, pour z # 0, on a f(z) = T) et lim f(x) = +o0.
1—= z—1

T z>1
Ainsi, f établit une bijection de |1, +oo[ dans ]2, +oo.
Pour le deuxiéme cas, c’est plus compliqué. On remarque que sur | — oo, 1] f est
continue, strictement décroissante Em f(z)=2et lim1 f(z) = —o0. Ainsi, f établit

x —0o0 T—r

<1
une bijection de | — 0o, 1[ dans | — 00, 2[.
On peut donc conclure que Vy € R\ {2}, y admet un unique antécédent par f dans
R\ {1}. Si y > 2, on se sert de la premiére partie de la question, et si y < 2 de la
suite. Ainsi, f établit une bijection de R\ {1} dans R\ {2}.

Il aurait été presque aussi simple de chercher directement un antécédent et de montrer
son unicité sans utiliser le théoreme de la bijection. [J

3. Ona f(—2) = —1 = f(0) donc elle n’est pas injective donc certainement pas bijective.
O

Exercice 14. Remarquons que f est la somme de fonction dérivables sur ]a, b[ (inverses
de polynémes dont le dénominateur ne s’annule pas). Ainsi, on a
1 1
/
x) = — -
T == @y

La fonction f est strictement décroissante et continue sur Ja, b[. De plus, on a lim f(z) =

x>a

< 0.

+o0 et lin}) f(z) = —oo. f établit donc une bijection de |a, b] dans R.
T—

x<b
Ensuite, pour déterminer sa réciproque. On prend y € R. Cherchons z €|a, b[ tel que

f(z) =y. Cest équivalent a

1 n 1
r—a x-—0b

— (-0 +(r—a)=ylz—a)(r—b)carz—a#0etx—b#0
— yr?—(a+byr—22+aby+a+b
— yz? — (ay + by + 2)x + (bay + a +b) = 0.

a+b
Siy=0,onax= L, donc un unique antécédent et il est bien dans U'intervalle |a, b].

Si y # 0, on a un trinéme du second degré et il vaut
A= (ay+by+2)*—4y(bay + a +b)
= a®y? 4+ V%Y + 4+ 2aby® + day + 4by — daby® — 4ay — 4by
= (a®+b* - 2ab)y* + 4

= (a—0)2%y* +4.
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Ainsi, A > 0, donc on a deux racines. On a donc

ay + by + 2 — (a_b)2y2+4et:r ay+by+2++/(a—0)2y?+4
pry 2: .
2y 2y

On les réécrit en

_ V242 V242
at+b 2 (a —b)?%y +4etx2:a+b+2+\/(a b)?%y +4'
2 2y 2 2y

xr1 =

+0b L,
Remarquons que f <a2 = 0 (c’est la remarque précédente).

Ainsi, si y > 0, comme f est décroissante, 'antécédent de y est forcément strictement

e . a+t . . L ,
inférieur a . Il s’agit donc de x1. Mais si y < 0, 'antécédent de y est forcément

strictement supérieur a . Il s’agit donc encore une fois de x;.

Ainsi, f~! est la fonction définie sur R par

a+b 2+4++/(a—0b)%y* +4

siy#0
Mlyy=9 2 2y
a+b siv—0
2 v=

Il aurait été possible de s’épargner 'utilisation du théoreme de la bijection a condition
de montrer que x; €la,b| et x2 ¢]a,b] pour n'importe quel y € R*. Ca se fait, mais il
faut le faire proprement. Ce n’est pas forcément plus économique. [J

Exercice 15. Considérons f : R — R Il est clair que f est conti-
r — P - 2
nue sur R (polynéme) et les techniques classiques assurent que ll}m f(z) = —o0 et
X —00

1121 f(x) = +oo. Ainsi, d’apres le théoréme des valeurs intermédiaires, il existe ¢ € R
T—r+00

tel que f(c) =0, ce qui revient a l’existence d’une solution & 1’équation demandée.
A noter qu’on peut généraliser cette démonstration pour montrer que tout polynéme de
degré impair s’annule au moins une fois sur R. [J

Exercice 16. Posons ¢ la fonction définie sur [a,b] par Vz € [a,b], g(x) = f(x) —
x. Il s’agit d’une fonction continue sur [a,b] comme combinaison linéaire de fonctions
continues sur [a, b].

Par ailleurs, on a g(a) = f(a) —a > 0 car f(a) € [a,b] et g(b) = f(b) —b < 0 car
f(b) € [a,b].

Ainsi, d’apres le théoréeme des valeurs intermédiaires, il existe ¢ € [a, b] tel que g(c) = 0,
c’est-a-dire f(c) = c.

Pour 'autre cas, notons z1 un élément de [a, b] tel que f(z1) = a et x2 un autre élément

de [a,b] tel que f(x2) = b (ils existent car [a,b] C f([a,b])).

On a alors g(z1) = a— 21 < 0 car 1 € [a,b] et g(x2) =b— x93 > 0 car x5 € [a,b].

Ainsi, on applique le théoréme des valeurs intermédiaires sur l'intervalle [min(z1, z2); max(z1, 22)]
(g est bien continue puisque cet intervalle est inclus dans [a, b]) pour obtenir 'existence

d’un ¢ tel que g(c) = 0. On termine comme précédemment. []

Exercice 17. Posons h = f — g. h est continue sur R comme combinaison linéaire de
fonctions continues sur R.

Par ailleurs, si g est bornée sur R, cela signifie qu’il existe deux réels m et M tels que
Vr e R, m < g(x) < M.

Ainsi, Vo € R, f(z) — M < f(z) — g(x) < f(x) —m, soit f(z) — M < h(z) < f(z) —m.
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On a donc lim f(z) — M =400, donc lim h(x) = +oco. De plus, lim f(z)—m =
T—+00 T—+00 T——00

—o0, donc xli}riaoo h(x) = —oo. Ainsi, comme h est continue, d’apres le théoréme des

valeurs intermédiaires, il existe ¢ € R tel que h(c) = 0, soit f(c) = g(c). O

Exercice 18. f est bornée sur R signifie qu’il existe deux réels m et M tels que Va € R,

m < f(x) < M.

Ainsi, Vo € R, m < f(g(z)) < M. Donc f o g est bornée.

Comme ¢ est continue sur R, il existe m’ et M’ deux réels tels que, Vo € [m, M],

m' < g(z) < M.

On a alors, Vo € R, comme f(x) € [m, M], m’ < g(f(x)) < M’. Ainsi, g o f est bornée

sur R. (J

Exercice 19. 1. Notons 7 > 0 une période de f. f est continue sur [0,7] donc bornée
sur [0, T]. Ainsi, il existe deux réels m et M tels que Vz € [0,T], m < f(x) < M.

Siz ¢ [0,T], remarquons que x — L%JT €0,T] et f(z)=f <:c - L;JT)
Donc, Vx € R, m < f(x) < M. f est bornée sur R. [J

2. Si xEIme(x) = /; alors il existe un réel a < 0 tel que Vz €] — o0, al, |f(z) — 41| < 1
soit /1 —1 < f(z) <1+ 1.
De méme, si ZEIEOO f(z) = £y alors il existe un réel b > 0 tel que Vx €]b, +o0],
|f(z) —la] < 1soit b —1< f(x) <ly+1.

Et enfin, sur [a,b], f est continue donc bornée, ainsi, il existe deux réels m et M tels
que Yz € [a,b], m < f(z) < M.

On a donc, pour tout z € R,

min(¢; — 1,4, —1,m) < f(z) < max(¢; + 1,02+ 1, M).
f est donc bornée sur R. [

3. Comme lim f(x)= +o0, il existe un réel a < 0 tel que Yz < a f(z) > f(0) + 1.

T—r—00
De méme, comme lir+n (x) = 400, il existe un réel b > 0 tel que Vo > b f(z) >
T—r+00
f(0) + 1.
Sur [a,b], sur [a,b], f est continue donc est bornée et atteint ses bornes, donc en
particulier sa borne inférieure. Ainsi, il existe v € [a, b] tel que f(v) = inlf] f(zx).
a,
Comme 0 € [a,b], f(0) = f(7).

Ainsi, Vo € R, f(x) > f(v) (carsiz < a, f(x) > f(0)+ 1, de méme si z > b, et sinon
c’est ce qu’on vient de dire).

Autrement dit, f atteint sa borne inférieure en . [J

4. Notons £ = limy_, o f(z) = lim,—, o f().
Si f est constante égale a £ alors elle remplit les conditions.

Si f n’est pas constante, alors il existe ¢ € R telle que f(c) # £. On supposera f(c) < £
pour la suite.

Comme EEn f(z) = ¢, il existe un réel a < 0 tel que Vo < a |f(x) —¥] < 6—2]"(0)7
donc W < f(x) < ?)g%f(c)
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De méme, comme lim f(z) = ¢, il existe un réel b > 0 tel que Vo > b |f(x) — | <

T—+00
¢ _;(C), donc f(c)2—|—€ < f(z) < 3=l —2f(c).
Ainsi, Va € R\ [a, 8], f(z) > f(c)2+ 3

Par ailleurs, sur [a,b], f est continue donc est bornée et atteint ses bornes, donc
en particulier sa borne inférieure. Ainsi, il existe v € [a,b] tel que f(y) = [inlf] f(z).
a7

f(c)2+€’ ¢ € [a,b], donc f(v) < f(e) < f(e) +£.

2
Ainsi, Vz € R, f(x) > f(7).

Remarquons que si f(c) > ¢, on aurait pu appliquer le méme raisonnement & —f et
on aurait trouvé que —f avait une borne inférieure et 'atteignait, donc f avait une
borne supérieure et 'atteignait. [

Comme f(c) <

Exercice 20. Commencons par démontrer ce qui est suggéré. On va montrer la contra-
posée, autrement que si pour tous a,b, c trois éléments de I avec a < b < c tels que
f(b) < max(f(a), f(c)) et f(b) > min(f(a), f(c)), alors f est strictement monotone,
autrement dit que f(b) est strictement compris entre f(a) et f(c).

Prenons a,b € I avec a < b. On suppose que f(a) < f(b). On veut montrer que f est
strictement croissante.

Prenons, z,y € I avec z < y. On a plusieurs cas.

e Siz <y < a<b Alors, on a f(z) < f(a) < f(b) car f(a) < f(b) et donc
f(@) < fly) < f(b) car f(z) < f(b).

e Siz <a <y <b Onaalors f(a) < f(y) < f(b) car f(a) < f(b) et donc
) < f(b) car f(y) < f(b).

<
e Siz <a<b<y Onaalos f(r) < fla) < f(b) car f(a) < f(b) et donc
< f(a)
<
<

~
<
N
~
—~~

fla) < f(y) car f(x) < f(b).

x <y < b Onaalors f(a) < f(x) < f(b) car f(a) < f(b) et donc
f(x) < f(y) car f(a) < f(y).

e Sia <z <b<y Onaalos f(a) < f(z) < f(b) car f(a) < f(b) et donc
f(x) < fy) < f(b) car f(z) < f(b).

e Sia<b< z <y Onaalors f(a) < f(b) < f(y) car f(a) < f(b) et donc
fla) < f(z) < fly) car f(a) < f(y)-

Ainsi, dans tous les cas, on a f(x) < f(y), donc f est strictement croissante.

Sion avait f(a) > f(b) alors en considérant g = — f, on aurait eu g strictement croissante,
donc f strictement décroissante.

Le cas f(a) = f(b) n’est pas pertinent. Il suffit de prendre un troisieme élément et la
propriété n’est pas vérifiée.

Ainsi, on a montré que si pour tous a, b, ¢ trois éléments de I avec a < b < ¢ tels que
f(b) <max(f(a), f(b)) et f(b) > min(f(a), f(c), alors f est strictement monotone. C’est
équivalent a, si f n’est pas strictement monotone, il existe a, b, ¢ trois éléments de I avec
a <b<ctels que f(b) = max(f(a), f(c)) ou f(b) < min(f(a), f(c)).

Prenons désormais une fonction continue et injective. Nous la supposons non strictement
monotone. Ainsi, il existe a,b, ¢ trois éléments de I avec a < b < c tels que f(b) >

max(f(a), f(¢)) ou f(b) < min(f(a), f(c)).
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Si on a f(b) > max(f(a), f(c)), on note k = f(b) +max2(f(a),f(c))

min(f(a), f(c)), on note k = f(b) + min(f(a), f(c)).

Ainsi, k est compris strictement entre fz(a) et f(b) et entre f(b) et f(c). Ainsi, on peut
appliquer le théoréme des valeurs intermédiaires qui assure l’existence de 7y €]a, b[ tel
que f(y1) =k et de v €]b, ¢ tel que f(y2) = k.

On a donc f(v1) = f(7y2) avec 1 # 2, ce qui est exclu puisque f est injective.

Ainsi, f ne peut pas étre non strictement monotone.

Les seules fonctions continues et injectives sont donc strictement monotones. [J

,siona f(b) <

15 Espaces vectoriels

Exercice 1. 1. Nous allons détailler les deux méthodes vues en cours pour ce premier
exercice. Il faut savoir faire les deux, toutes ne s’appliquant pas partout.

Premiére méthode : Trois points a vérifier.

(i) Remarquons que A C R? et R? est un espace vectoriel.
(ii) Comme 0 +2 x 0 —3x 0= 0, on a (0,0,0) € A.
iii) Prenons (z,y, z) et (2,9, 2') deux éléments de A et )\, u deux réels. Montrons
i
que A(z,y,2) + p(@',y',2") € A.
On a
AN,y 2) + p(a’ Y 2) = Ao+ pa’, hy + py's Az + p2’).
Puis on a
Az + pa’) +2(Ay + py') — 3Nz 4+ p2') = A+ px’ + 20y + 2uy’ — 3 z — 3uz’
= Ma+2y—3z2)+ p(2' + 2y —32).
Or (z,y,2) € A,donc z+2y —3z=0¢et (2/,y,2') € A, donc 2’ +2y' — 32" = 0.
Ainsi,
Az +px’) + 20y +py') =3z +p2) =Ax 0+ pux0=0.
On a donc \(z,y, z) + p(2/,y, ') € A.

Ces trois points permettent d’assurer que A est un sous-espace vectoriel de R3.

Deuxiéme méthode : La encore, on commence par remarquer que A C R? qui est
un espace vectoriel.

Ensuite, on réécrit A d’une différente maniere. On remarque que
(r,y,2) € A<=z +2y—32=0.

Soit encore
(x,y,2) € A<=z = -2y + 3z.
Ainsi,
A= {(-2y+3z,y,2)/(y,2) € R?}
= {y(-2,1,0) + 2(3,0,1)/(y, z) € R?}
= Vect((-2,1,0),(3,0,1)).

Ainsi, A est le sous-espace vectoriel engendré par une famille de deux vecteurs. C’est
donc un sous-espace vectoriel...

La deuxiéme méthode a comme avantage d’exhiber une famille génératrice de A.
Cependant, on ne peut pas toujours I'appliquer, ce qui explique qu’il faille connaitre
les deux. [J
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2. Remarquons que B C R? qui est un espace vectoriel.

Une toute petite réécriture montre que
B = {2(1,1,0) + y(1,-1,2)/(z,y) € R*} = Vect((1,1,0), (1,—1,2)).
Ainsi, B est bien un sous-espace vectoriel. [J

3.0na0+2x0—0+#2donc (0,0,0) ¢ C. Ainsi C n’est pas un (sous-)espace vectoriel.
O

4. Cherchons si (0,0,0) € D donc s'il existe un couple (z,y) tel que (2z — 3y, x +
20 —3y= 0 Jy= 2
1,—z + 3y) = (0,0,0). C’est équivalent a r+1= 0 < = —-1 <
—x+3y= 0 3y= -1
3y= 2
r= -1 Ce systeéme n’admet pas de solution donc (0,0,0) ¢ D,
0= -3 L3<—L3—L1
ainsi D n’est pas un espace vectoriel. []

5. Premiére méthode : Trois points a vérifier.

(i) Remarquons que £ C R3 et R3 est un espace vectoriel.

(ii) Comme 2 x 0 =0 et 0 =3 x 0, donc on a (0,0,0) € E.

(iii) Prenons (z,y, 2) et (2/,y, 2') deux éléments de E et A\, u deux réels. Montrons
que Nz,y,2) + u(2',y,2') € A.
On a

AN,y 2) + @'y 2) = A+ pa', Ny + py's Nz + p2').
Puis on a 2(Az + pa’) — (Ay + py') = A2z — y) + p(22" — ).
Or (z,y,2) et (2,1, 2') deux éléments de E donc 2z —y = 0 et 22/ — 3 = 0.
Ensuite, (Ay + py’) — 3(Az 4+ p2’) = My — 32) + u(y’ — 327).
Or (z,y,2) et (2/,y,2') deux éléments de F donc y — 3z =0et 3 — 32" = 0.
On a donc A(z,y, 2) + pu(2’,y/,2') € E.
Ces trois points permettent d’assurer que F est un sous-espace vectoriel de R3.

Deuxiéme méthode : La encore, on commence par remarquer que F C R? qui est
un espace vectoriel.

Ensuite, on réécrit £ d’une différente maniere. On remarque que
(x,y,2) € A<= 2x=yety=3z.

Soit encore
1 1
(r,y,2) E A<= = JY et z = 3V

E= {(éy,y,§y) /yeRQ}

-l e
= et ((21,2))

= Vect((3,6,2)).

Ainsi,

—_

Ainsi, F est le sous-espace vectoriel engendré par une famille d’'un seul vecteur. C’est
donc un sous-espace vectoriel... []
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6. Ona0—-3x0+9x0# 2donc (0,0,0,0) ¢ F. Ainsi F' n’est pas un (sous-)espace
vectoriel. [J

7. Prenons (1,1,0) € Get (1,—1,0) € G. Ona (1,1,0)+(1,—1,0) = (2,0,0) ¢ G. Ainsi,
G n’est pas un espace vectoriel. [

8. Oui. Attention c’est un piege!
On a bien H C R3 qui est un espace vectoriel.

Il faut réaliser que 22 + y? = 0 est équivalent & z = y = 0 lorsque = et y sont réels.
Donc en réalité, H = {(0,0, z)/z € R} = Vect ((0,0,1)).

Ainsi H est bien un sous-espace vectoriel de R3. [

9. Non! C’est la suite du piege!

Prenez par exemple (1,i,0) € H’, ainsi que (—1,4,0), mais (1,4,0) + (—1,4,0) =
(0,2i,0) ¢ H'.

Il faut réaliser que 2 4+ y? = 0 est équivalent & 2 — iy = 0 ou = + iy = 0, autrement
dit

H' = {(z,y,2) € C3/z —iy = 0 oux + iy = 0}
soit
H' = {(z,y,2) € C*Jx —iy = 0} U{(z,y,2) € C°/x +1iy = 0}.

Or on peut deviner qu’il s’agit d’une union de sous-espaces vectoriels, ce qui n’est
presque jamais un espace vectoriel (sauf si éventuellement I'un est inclus dans l'autre).
O

Exercice 2. A chaque fois, on nomme ’espace dont on parle, on écrit (z,y, z) € E si et
seulement ci. .., on résout le systéme et on arrive a mettre E sous forme de sous-espace
vectoriel engendré, comme dans la version alternative de résoudre I'exercice 1. On vérifie
ensuite que la famille est bien libre, comme dans ’exercice 2. [

1. On pose par exemple E = {(z,y, 2) € R3/x + 2y = 0}, donc

(r,y,2) EE<=2+2y =0z = —2y.
Ainsi, E = {(~2y,y,2)/(y, 2) € R?}, puis
B ={y(-2,1,0) + 2(0,0,1)/(y, 2) € R*}.
On a donc E = Vect((-2,1,0),(0,0,1)). Or (—=2,1,0) et (0,0,1) ne sont pas co-
linéaires, donc forment une famille libre, donc une base de E. [
2. Notons E = {(z,y,2) € R3/22 — 2 =0 ety + 2z = 0}.

20—z = 0

Onadonc(z,y,z)EEc}{ ytz = 0

1
—{ T 9
y= -z
Ainsi, E = {(32,—2,2)/z € R}, puis E = {2(3,-1,1)/z € R}.

On a donc E = Vect((1,—1,1)) = Vect((1,—2,2)). Or (1,—2,2) est un vecteur non
nul donc forme une famille libre, donc une base de E. [
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3. On pose par exemple E = {(z,y,2) € R3/x+5y—32=0et —x—4y+2z =0}, donc

rz+59—32z = 0

(x,y,z)€E<:>{ e—dy+2r — 0

r+5y—3z= 0
‘:’{ y—2= 0 Ly« Lo+1L,

e T %
z2= Lo+ Lo+ L4

Ainsi, E = {(-2y,v,y)/y € R},
puis £ = {y(-2,1,1)/y € R}.

On a donc E = Vect((—2,1,1)). Or (—=2,1,1) est un vecteur non nul donc forme une
famille libre, donc une base de E. [

4. Notons E = {(z,y,2) € R3/2z + y — 32 = 0 etdx + 2y — 52 = 0}.

2r+y—32z = 0

On a donc ($7yaz)€E<:>{ dr+2y—5z = 0

— 20 4+y—3z= 0
z= 0 LQ(-LQ—Ll
e y= 2
z 0 Ly <+ Ly — L,
Ainsi, E = {(—2y,y,0)/y € R}, puis E = {y(—2,1,0)/y € R}.

On a donc E = Vect((—2,1,0)). Or (—2,1,0) est un vecteur non nul donc forme une
famille libre, donc une base de E. [

5. Notons E = {(z,y,2) € R3/4x — 2y + 62 =0 et — 22 +y — 32 = 0}.

4 —2y+62z = 0
OnadonC(CE,y,Z)EE‘:’{_2x+y—3z =0
<:>{ —2rty—3z= 0 Ly ly— Iy

= y=2zr+32
Ainsi, E = {(x,2x + 32, 2)/(x,z) € R?}, puis E = {z(1,2,0) + 2(0,3,1)/(x, z) € R?}.
On a donc E = Vect((1,2,0),(0,3,1)). Or ((1,2,0),(0,3,1)) est une famille de deux

vecteurs non colinéaires donc c¢’est une famille libre donc une base de E. [

6. Remarquons que (0,0,0) ne satisfait pas le systéme donc il ne définit pas un espace
vectoriel. La question n’a pas de sens. []

7. Notons E = {(x,y,2) € R¥/x —3y — 2z =0 et2z — 5y + 22 = 0 et 3z — Ty + 52 = 0}.

z—3y—z = 0
On a donc (x,y,2) € E<=< 2x—5y+2z = 0
3z —T7y+5z = 0

r—3y—z= 0
<~ y+4z= 0 Lo< Ly—2I4
2y—|—82': 0 L3+« Ls—3L,
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r—3y—z= 0

—= y+4z= 0
0= 0 L3<—L3—2L2
— r= -—1lz
Yy = —4z L2<—L2—L1

Ainsi, E = {(—11z,—4z,2)/z € R}, puis £ = {2(—11,—4,1)/z € R}.
On a donc E = Vect((—11,—4,1)). Or (=11, —4,1) est un vecteur non nul donc forme
une famille libre, donc une base de E. [

8. Notons E = {(z,9,2) € R3/z — 3y — 2 = 0 et2x — 5y + 22 = 0 et 3x — Ty + 62 = 0}.

z—3y—z = 0
On a donc (x,y,2) e E<= < 2x—5y+2z = 0
dr—Ty+62 = 0

r—3y—z= 0
<~ y+4z= 0 Lo< Ly —2I4
2y+92’: 0 L3+« L3—3L,
r—3y—z= 0
— y+4z= 0
z= 0 L3« L3—2Ly
z= 0
— < y= 0
z= 0

Ainsi, E = {(0,0,0)}. Il s’agit du sous espace vectoriel réduit au vecteur nul, il n’a
pas de base. [J

Exercice 3. 1. La famille est forcément liée puisqu’elle contient 3 vecteurs dans un
espace vectoriel de dimension 2 et 2 < 3.

Si on prend par exemple les deux premiers vecteurs, on remarque que, si A, u sont
deux réels tels que

A =0
A(L,0) + p(1,1) = (0,0) = { +Z_ 0

_— { : - 8 Donc la famille est libre.

Ainsi, on a extrait une famille libre de deux éléments dans un espace vectoriel de
dimension 2, donc elle est engendre R? tout entier, comme Fy. [

2. La famille est forcément liée puisqu’elle contient 4 vecteurs dans un espace vectoriel
de dimension 3 et 3 < 4.

Si on enleve par exemple le vecteur le plus compliqué, on remarque que, si A, , v sont
trois réels tels que

A4+3p+v= 0
M1,2,3) + (3,4, 6) + v(1,1,1) = (0,0,0) = ¢ 2\ +4p+v =
3N+6p+v= 0

jam)

A+3u+v= 0
— A—F/L: 0 Lo+ Ly—1,
22+3u= 0 L3y Ls— 1y

205 / [359)



A4+3u+v= 0
— Ad4pu= 0
n = 0 L3(—L3—2L2

= A = pu =v =0 donc la famille est libre.

Ainsi, on a extrait une famille libre de trois éléments dans un espace vectoriel de
dimension 3, donc elle est engendre R? tout entier, comme Fo. [J

. Soient A, u, v trois complexes tels que

A= 0
A(1,4,0) + u(0,4,1) + v(0,4,0) = (0,0,0) = { iA+ip+iv= 0
w= 0
= A = p =v = 0 donc la famille F3 est libre. [J
. Soient A, u, v trois complexes tels que
0= 0
A0,1,4,0) + u(0,1,0,1) +1(0,4,0,0) = (0,0,0,0) = ¢ *F#FL =0
w= 0
= A = pu =v = 0 donc la famille Fj est libre. [J
. Soient A1, Ao, A3, A4 quatre réels tels que
AL+ A3 =
A1(1,0,1,0)422(0,1,0,1)+A3(1, 1, 1,0)+Aa(0, 1,1,2) = (0,0,0,0) = if i iz j: ii

A2 + 2y
AM+A3= 0
AM+A3+M= 0
— M= 0 Ly Ly— Ly
A +20= 0
AM+A3= 0
. A+A3= 0 Lo+ Ly— L3
M= 0
)\2: 0 L4<—L4—2L3
AM+A3= 0
)\3— 0 LQ(—LQ—L4
— M= 0
A= 0
)\1: 0 L1<—L1—L2
. A3= 0
M= 0
A= 0

= A = Ay = A3 = A4 = 0 donc la famille F5 est libre. [J

. On remarque immédiatement que (2,1,1) = (1,0,1) + (1,1,0) donc Vect(F;) =
Vect ((1,0,1), (1,1,0)).

Or ces deux derniers vecteurs ne sont pas colinéaires donc forment une famille libre.

Ainsi, la famille ((1,0,1),(1,1,0)) est libre et engendre le méme sous-espace vectoriel
que Fg. Non, on peut enlever le premier (ou 'un des autres). [J
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7. La famille contient 4 vecteurs dans un espace de dimension 3 donc elle est liée.

On pourrait faire comme précédemment, enlever un vecteur et voir si ¢a vient. Mais
imaginons que nous n’ayons aucune idée de comment démarrer.

Soient A1, Ao, Az, Ay quatre réels tels que
)\1 (27 _37 _1) + )\2(17 07 1) + )\3(_8a 6a _2) + )\4(_17 1> O) = (0’ 07 0)

20+ X =83 — XM= 0
<~ —3M +6A3+A4= 0
“AM+A—2X3= 0

“M+X—2 3= 0 L1+ L1+ Lo

=1 Bt h= 0
A1 +X—2X3= 0
A +X—2X3= 0
= -3\ +6A3+A4= 0

0= 0 L3(*L3*L1

Ay = Ap+ 2\
‘:’{ A= 3\ —6)s

Ainsi, on remarque que si on enléve le premier et le troisiéeme vecteur, on a une
famille libre. Par ailleurs, on peut exprimer le ler vecteur en fonction du second et
du quatrieme (il suffit de faire \y = 1 et A3 = 0) et le troisieme en fonction du second
et du quatrieme (il suffit de faire Ay =0 et A3 = 1).

Ainsi, la famille ((1,0,1),(—1,1,0)) est libre et engendre le méme espace vectoriel que
Fr. O

Exercice 4. 1. On a vu dans ’exercice précédent que la sous-famille (( O), (1,1)) était
libre et engendrait R? tout entier. Ainsi, F; est génératrice et ((1,0),(1,1)) en est
une base extraite. [

2. On remarque que les vecteurs (1,1) et (2,1) sont libres (ils ne sont pas colinéaires) et
sont dans R? de dimension 2. Ainsi, ((1,1),(2,1)) est une base de R? et donc JF était
bien génératrice. Oui. On enléve celui qu’on veut. [J

3. Vu qu’il y a deux vecteurs dans cette famille, que nous sommes dans un espace vectoriel
de dimension 2, elle sera génératrice si et seulement si c’est une base donc si et
seulement si elle est libre (toujours parce qu’elle a deux vecteurs dans un espace
vectoriel de dimension 2).

Soient A, u deux complexes tels que A(1,7) 4+ u(i,1) = (0,0).

. A+ip= 0
tAp= 0

Aip= 0
:>{ U= 0 Ly Ly—ily
Et donc A = pu = 0.
La famille F3 est libre, est de cardinal 2 dans un espace vectoriel de dimension 2, donc

elle est génératrice et c’est une base. [

4. Vu qu’il y a trois vecteurs dans cette famille, que nous sommes dans un espace vectoriel
de dimension 3, elle sera génératrice si et seulement si c’est une base donc si et
seulement si elle est libre (toujours parce qu’elle a trois vecteurs dans un espace
vectoriel de dimension 3).
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Soient A, i, v trois réels tels que A(1,2,—3) + u(2,2,0) + v(1,0,—3) = (0,0,0).
A+2u+v= 0

= 20+2pu= 0
—3A-3vr= 0
A+2u+v= 0

1

1
A+v= 0 L3<——§L3

n+v= 0 L1+ Li—Ls
= Ad+u= 0
—utv= 0 Lg< L3— Lo

p+rv= 0
=< A+pu= 0
2v= 0 L3+ L3+ 1,

Et donc A=p=v=0.

La famille F; est libre, est de cardinal 3 dans un espace vectoriel de dimension 3, donc
elle est génératrice et c’est une base. [

. Elle n’a que trois vecteurs dans un espace vectoriel de dimension 4, donc elle ne peut
pas étre génératrice. [J

. Vu qu’il y a quatre vecteurs dans cette famille et que nous sommes dans un espace
vectoriel de dimension 4, elle sera génératrice si et seulement si c’est une base donc si
et seulement si elle est libre (parce qu’elle a quatre vecteurs dans un espace vectoriel
de dimension 4).

Soient A1, Ag, A3, Ay quatres réels tels que A1(1,0,1,0) + A2(0,1,0,1) + A3(1,1,1,0) +
A1(0,0,1,2) = (0,0,0,0).

M+A3= 0
N A+A3= 0
AM+N+X= 0
A +2M= 0
AM+A3= 0
. XM+A3= 0
)\4: 0 L3<—L3—L1
A+24= 0
A= 0
A3= 0 v NN
- A= 0 L3%L3—L1 EtdOHC)\l—)\Q—Ag—Az;—O.
A= 0

La famille Fg est libre, est de cardinal 4 dans un espace vectoriel de dimension 4, donc
elle est génératrice et c’est une base. [

. Vu qu’il y a trois vecteurs dans cette famille, que nous sommes dans un espace vectoriel
de dimension 3, elle sera génératrice si et seulement si c’est une base donc si et
seulement si elle est libre (toujours parce qu’elle a trois vecteurs dans un espace
vectoriel de dimension 3).

Soient A, i, v trois réels tels que A(0,1,1) + u(1,0,1) +»(1,1,0) = (0,0,0).
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0
0
0
pw+v= 0
- AN—v= 0 Lo+ Ly— 1L
0
0
0
0

Adv=
ptv=
== A—v=
2\ = L3(—L3+L2
v= 0
A= 0L3<—L3+L1

Et donc A=p=v=0.

La famille F7 est libre, est de cardinal 3 dans un espace vectoriel de dimension 3, donc
elle est génératrice et c’est une base. [J

8. Ona (2,1,1) = (1,0,1) + (1,1,0), ainsi, Vect(Fg) = Vect((1,0,1),(1,1,0)).

Or cette derniere famille n’est pas génératrice (seulement deux vecteurs), donc Fg non
plus. O

9. En imaginant que nous n’avons pas déja vu cette famille dans I’exercice précédent (ou
nous avions trouvé une famille qui engendrait le méme espace vectoriel et qui n’était
pas génératrice puisqu’elle n’avait que deux vecteurs).

Soient (a,b,c) € R3, et A1, Ao, A3, A4 quatre réels tels que
A1(2,-3,—1) + A2(1,0,1) + A3(—8,6,—2) + A\y(—1,1,0) = (a,b,c)
2AM+ X —8X3— M= a
= —3M +6A3+A4= b
—AMt+X—2\3= ¢
—M+X—2 3= a+b L1+ L1+ Lo
- -3 +6A3+X4= b
—M+XN—2X3= b
—AM+X—2X3= a+b
= —3A +6A3+XM= b
0= —a—-b+c L3%L3—L1
Ainsi, si —a — b+ ¢ # 0, on ne peut pas I'exprimer comme combinaison linéaire des

vecteurs de Fg, comme par exemple le vecteur (1,0, 0).

Donc Fy n’est pas génératrice. [

Exercice 5. 1. Il suffit de remarquer qu’il s’agit d’une famille de deux vecteurs qui
forment une famille libre car ils ne sont pas colinéaires. Comme il s’agit d’une famille
libre de deux vecteurs de R? qui est un espace vectoriel de dimension 2, cette famille
est une base de R2. [J

2. On cherche (1, 22) € R? tel que = = z1u + 22v. Cest équivalent &

3r1+x2= 5
—x1+2x9 = -2

3r1+x20= 5
—7561 = —12 Lg — LQ — 2L1
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36 1

To= H——=—=
— 12 7 7
xr1 = 7

12 1 2 1
Ainsi, on a x = 7u — ?v, ainsi ses coordonnées sont ( w —7>. ]

Exercice 6. 1. Le plus simple est de remarquer que les deux derniers vecteurs forment

une famille libre (ils sont non colinéaires), donc Vect(F) est de dimension au moins
2. Comme on est dans R?, dim(Vect(F)) < 2.

Ainsi F est de rang 2 donc génératrice puisque c’est une famille de R? qui est de
dimension 2. [J

2. Oui, on vient d’expliquer ci-dessus que cette famille est justement une base de R2. O
3. Oui, on vient de le dire... [J
Exercice 7. 1. Non, les bases de R? n’ont que deux vecteurs. [J

2. 1I suffit d’en prendre deux non colinéaires pour avoir ce que 'on désire, puisque une
famille libre de R? en formera une base car dim(R?) = 2. O

3. Ca dépend de la base choisie. Si par exemple on a pris (u,w), on cherche z; et x9
deux réels tels que © = z1u + xow. C’est équivalent au systéme :
2014+ 3x20= 5
51+ 10 = —2

{ 2014+ 3x2= 5

—131’3 = =29 L2 < 2L2 — 5L1
1 29 65 — 87
N B 2(5_313>: 213 =T
29
To= —
S E
11
Ainsi, on a x = —3 + 3V Les coordonnées de x dans la base (u,w) sont donc

11 29
——,— ). 0O
( 13’ 13)
Exercice 8. 1. Non, elle n’a que deux vecteurs alors que nous sommes dans R? qui est
de dimension 3. [J

2. Remarquons que (u,v) est une famille libre puisque u et v ne sont pas colinéaires.
Elle est donc une base de I'espace vectoriel qu’elle engendre et est de rang 2. [J

3. On cherche z; et x9 deux réels tels que z = z1u + xov. C’est équivalent au systéme :

T1+ 3= 1
201+ 2x90 = 4
3x1+1lzo= 7

1 + 32 1
<~ —4xo = 2 Lo+ Lo —2I,4
—8xo= 4 L3+ L3—3L,

41 = 10 L1 <+ 4L+ 3L
= —4x9 = 2 Lo+ Lo —2L4
0= 0 L3 <+ L3 —2Lo
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Tr1 =

Tro9o = —=

1
Ainsi, on a x = ChamicLE Ainsi, z € Vect(F) et les coordonnées de z dans la base

5 1
(u,v) de F sont donc (2, —2>. O
4. On cherche y; et yy deux réels tels que x = y1u + yov. C’est équivalent au systéeme :
y1+3y2 = —1
2y1 + 2y =
3yi +1y2= 9

(=}

y1+3y2= —1
<~ —4ys = 8 Lo <+ Lo —21,
—8y2 = 12 L3 — Lg — 3L,

dyy = 10 Ly < 4L, +3Ls
<~ —4ys = 2 Lo+ Ly —2I,4
0= -8 L3 <— L3 - 2L2

Le systéme n’admet pas de solutions. Ainsi, y n’est pas dans Vect(u,v). O

Exercice 9. 1. Nous sommes dans un espace vectoriel de dimension 2 et que la famille
contient 3 vecteurs, elle ne peut donc pas étre libre. [J

2. Oui, elle est constituée d’un seul vecteur non nul. [J

3. Oui, peu importe le vecteur choisi, puisque qu’aucun de ces vecteurs n’est colinéaire
a (13,1), donc a eux deux, cela formera une famille libre. []

4. On a une famille libre de deux vecteurs, donc elle engendre un sous-espace vectoriel
de dimension 2, ainsi rg(G1) = 2. O

5. Oui car il s’agit d’une famille libre de deux vecteurs et on est dans un espace vectoriel
de dimension 2. [J

Exercice 10. 1. Montrons que cette famille est libre. Soient A, u, v trois complexes tels
que

A(1,d,—1) + pu(1,0,—i) + v(0,i,4) = (0,0,0).

A4 pu= 0
— ANF+iv= 0
“A—iu+iv= 0
A4upu= 0
— tAt+iv= 0
(—1+i—l) = 0 Ly« Ly+1iLi— Lo
p= 0
<= v= 0
A= 0

Ainsi, A = p = v = 0. La famille est donc libre. Comme elle est constituée par 3
vecteurs dans un espace vectoriel C? de dimension 3, il s’agit d’une base. [J
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2. Soient A, u, v trois complexes tels que

A(1,i,—1) + (1,0, =) + (0,4, 1) = (0,0, —1).

Adp= 0
= iNt+iv= 0
“A—ip+iv= -1
A+pu= 0
= tA+iv= 0
(—1+i—i))\: —1 L3+ L3+ilq— Lo
p= -1
<= v= —1
A= 1

Ainsi, (0,0,—1) = (1,i,—1)— (1,0, —i) — (0, ,7). Les coordonnées de x dans cette base
sont (1,—1,-1). O

Exercice 11. 1. Notons F' = Vect((1,1,1), (,0,0), (1 +,1,1), (i,4,1)).
On a

F= Vect((1,1,1),(4,0,0), (1 +1,1,1), (i, ,4))
= Vect((1,1,1),(4,0,0), (1 +4,1,1) — (i,0,0), (i, 4,d) — (1, 1,1))
— Vect((1,1,1), (4,0,0), (1,1,1), (0,0,0))
— Vect((1,1,1),i(1,0,0))
= Vect((1,1,1),(1,0,0))
= Vect((1,1,1) — (1,0,0),(1,0,0))
= Vect((0,1,1),(1,0,0))

Ainsi, il est clair que F' est engendré par deux vecteurs non colinéaires qui forment
donc une famille libre. On a donc dim(F') = 2, autrement dit la famille considérée est
de rang 2. [J

2. C’est déja fait si vous avez répondu a la question précédente efficacement. [

Exercice 12. 1. a. Remarquons que K3[X| C K[X] qui est un sous-espace vectoriel.

De plus Og(x] € Ka[X].
Enfin, prenons A\, p € K et P, Q € Ko[X].
On a deg(AP + @) < max(deg(P),deg(Q)) < 22, donc AP + u@ € Kqo[X].
Ainsi, K5[X] est un sous-espace vectoriel de K[X] donc un K-espace vectoriel. []

b. Tous ces vecteurs sont des vecteurs de Ko X].
Si P € Ko[X], il existe a, b, ¢ € K tels que P = a+bX +cX?2. Ainsi, Vect(1, X, X?) =
Ko[X]. O

c. Soient a, b, c € K tels que a+bX +cX? = Ok[x]- Par unicité de I'écriture développée
réduite, on a @ = b = ¢ = 0, donc la famille (1, X, X?) est libre. [J

d. La famille (1, X, X?) est libre et génératrice de Ky[X], donc une base de Ko[X].
Ainsi, on a dim(Ky[X]) = 3. O
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e. Montrons que cette famille est libre. On note a, b, ¢ trois éléments de K tels que

3a+b(1—2X) 4¢(—24 X — X?) = Og[y]
— (Ba+b—2c)+ (=2b+¢)X — cX? = Ogy]
3a. +b —-2¢ =0

<= -2b 4c¢ =0
—c =0
a =0
—<¢b =0
c =0

Ainsi, il s’agit d’une famille libre, et comme elle contient 3 vecteurs de Kq[X] et
que dim (K[ X]) = 3, il s’agit d’une base de Ka[X]. O

f. Il s’agit clairement d’une famille libre puisque elle est constituée de deux vecteurs
non colinéaires. Ainsi, rg(3, X) = dim(Vect(3, X)) = 2. O

1

g. On a tres clairement Vect(3,X) = Vect (33,X> = Vect(1, X). Ainsi, une base
légerement plus simple de Vect(G) est (1, X), ainsi Vect(G) = Ky [X]. O

h. Remarquons tout de suite que Vect(3,X) = K;[X]. Ensuite, remarquons que
Vect(2, X2, 14+X2) = Vect(1, X2, 1+X?2) = Vect(1, X?). Considérons P € Vect(2, X2, 1+
X?)NVect(3, X) = Vect(1, X?)NK;[X]. Comme P € Vect(1, X?), il existe o, 3 € K
tels que P = o + BX?2. De plus, comme P € K;[X], il existe a,b € K tels que
P=a+0X.
On a donc P € Vect(2, X2, 1+ X?) N Vect(3, X) si et seulement si

a+pX?=a+bX +—= (@ —a) —bX + BX? = Ogy)
a—a =0
— -b =0
I5} =0
a =«
< ¢ b =0
I3 0

Ainsi, P=a ou a € K.
On a donc Vect(2, X2, 1+ X2)NVect(3, X) = Ko[X], (1) (la famille constituée par
le polynéme constant 1) en est une base. [J

2. a. Remarquons que K,[X] C K[X] qui est un sous-espace vectoriel.
De plus OJK[X] e K, [X]
Enfin, prenons A\, u € K et P,Q € K, [X].
On a deg(AP + p@) < max(deg(P),deg(Q)) < n, donc AP + u@ € K,[X].
Ainsi, K,[X] est un sous-espace vectoriel de K[X] donc un K-espace vectoriel.
[
b. Essayons de faire un peu plus rapide.
n
Soit P € K,[X]. Il existe (ao,...,a,) € K'H! tels que P = Z o X*.
k=0
Par ailleurs, grace a 'unicité de I’écriture développée réduite, ce n + 1-uplet est
unique.

Ainsi, (1, X, X2,..., X™) est une base de K, [X]. O
c. Comme (1, X, X2 ..., X") est une base de K,[X], on a dim(K,[X]) =n+ 1. O
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Exercice 13. 1. a. Tous ces vecteurs sont des vecteurs de My (K).
Si M € My(K), il existe a,b,c,d € K tels que

a b 10 01 0 0 0 0
v d) oo a) = 0) o 6o )
. 10 0 1 0 0 0 0
Ainsi, Vect((o 0) ) (0 0) , (1 O) ) (0 1)) = M3(K).

O]

. 10 0 1 00 0 0y (0 O
b. Smenta,b,c,deKtelsquea(o O>+b<0 0)—1—0(0 1>+d<0 1>_<0 0),

Par l'unicité de ’écriture matricielle, on a ¢ = b = ¢ = d = 0 donc B est une
famille libre de M3 (K).

U

c. La famille B est une famille libre et génératrice de M3(K), c’est donc une base de
M (K).
On a alors dim(M3y(K)) = 4. O

2. a. Essayons de faire un peu plus rapide.
Soit M € M,, ,(K). Il existe (a;j)1<i<n tels que

NS
ai1 ai2 ... Qip
a1 G22 ... Q2 n P
M = . = Z E amEi,j.
. =1 j=1
an,1 412 -.. Gnp

Gréace a 'unicité de ’écriture matricielle, ces coefficients sont uniques.
Ainsi, (Ej¢)1<k<n est une base de M, ,(K) O

1<l<p
b. Comme (Ej¢)1<k<n est une base de M,, ,(K), on a dim(M,, ,(K)) = np.
1<l<p
O

Exercice 14. Soient A, u,v trois réels tels que A(1,k,2) + u(—1,8,k) + v(1,2,1) =
(0,0,0). C’est équivalent a
A—p+v= 0
KX+ 8u+2v= 0
2A+ku+v= 0
A—p+v= 0
= (k—2))\+10,u: 0 Lo+ Ly—21,4
)\+(k+1)/L: 0 L3« Ls—1y

A—p+v= 0
e (10— (k—2)(k+1)u= 0 Lo+ Ly— (k—2)Ls
A (k+1Dp= 0
v+A—p= 0
— /\—i—(k-l-l)u: 0 Lo+ Ls

(-k*+k+12)u= 0
Le systéme est échelonné. Si —k? +k+ 12 # 0, il implique A = 4 = v = 0 donc la famille
est libre.
Si —k?> + k+ 12 =0, il a une infinité de solution donc la famille n’est pas libre.
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Résolvons —k? + k + 12 = 0. Le discriminant est A = 12 — 4 x (—1) x 12 = 49.

-1-7 —-14+7
=4 et + = —-3.

La famille n’est pas libre si et seulement si k est égal & 4 ou a —3. O

Ainsi, on a deux racines

Exercice 15. On note U € Vect(P, Q) N Vect(R, S).

Or U € Vect(P,Q) <= 3(a, B) € K2 tel que U = aP + BQ.

De méme U € Vect(R, S) <= 3(v,5) € K2 tel que U = yR + 48S.

On adonc U € Vect(P,Q)NVect(R, S) <= I(a, B,7,9) € K* tel que aP+BQ = yR+4S.
Gréace a 'unicité de I’écriture développée réduire des polynémes, cela est équivalent au
systéme suivant :

a+38= v+2 a+38= v+2 a+38—v= 2§
20— = 3y—20 — —7B= 7-6/6 —= —78—v= —66
—a+28= —y+35 BRI 5= +50 =3¢
a—y= —0 a= =20 a= =20
Lﬂ—ﬁ3L3 =0 Lﬁj?l—Lg =9 L1<jL:>1—L2 7= -9
Lo« Lo+7L3 B= 0 = 6 B= ¢

Ainsi, U € Vect(P,Q) N Vect(R, S) <= 30 tel que U = —20P + 6Q = 6(—2P 4+ Q) et
U=-6R+0S=06(—R+59).

Remarquons en effet que —2P +Q = —R+ S =1—-5X +4X?2.

Ainsi, Vect(P, Q) N Vect(R, S) = Vect(1 — 5X +4X?).

O

Exercice 16. 1. E est un sous-espace vectoriel engendré par deux matrices de Mo (K),
donc c’est bien un sous-espace vectoriel. []

2. E est engendré par une famille de deux vecteurs non colinéaires, c’est-a-dire une
famille libre. Ainsi, elle forme une base de E et dim(E) = 2.

Ty 5 T y\ 1 -2 -1 1
Prenons(z t)EEc}H(A,u)EK telque(z t>_)\<—1 O)+M<1 e

Cette égalité est équivalente au systeme :

rT= A—pu rT+t= A r4+z= 0

y= —2A4+u y—t= —2X y—2z+t= 0

z= —A+u £1<—£1+£4 z—t= =\ LLl<—LLl+LL3 z—t= =X
- -2

t= p Lacla L) t= p BT t= p

. (zoy r+z= 0
Ainsi, (2’ t>€E<:>{y—22+t: 0

OnadoncEz{(i g) EMg(K)/m+ZzOety—22+t:0}.D

3. On a (”ZC 3;) € Fe=y=—2z+t Donc F = {(ﬁ _Qi“) /(@ 2,t) 6K3}.

Ou encore F' = {:U <(1) 8) +z <(1] _02> +t (8 i) [(z,2,t) € K3}.
10 0 -2 0 1
OnanVect((O O)’(l 0>,<0 1))

Ainsi, F' est bien un sous-espace vectoriel de My (K).

Cette famille qui engendre F' est-elle libre ?
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. o 10 0 —2 0 1) _
Soient A, p, v trois réels tels que A (0 0) + (1 0 ) +v (0 1) = (0,0,0,0).

e ters . (A 2p+v)y (00
L’égalité est équivalente a <M iy ) = (0 O)

ce qui implique A= pu=v =0.
La famille est libre, elle engendre F', donc c’est une base de F' et dim(F') = 3.
U
r+z= 0

4. Soit <QZU g; € M (K). D’apres ce qui précede, on a <i g;) EFENF << y—2z2+t= 0
y+2z—t= 0

r+z= 0 r= —z

<= y—2z4+t= 0 <= t= 2z
L3« L3+Lo

y= 0 y= 0

Ainsi, G = {(;’z 2Oz> [z € K} = Vect <<_11 g))

G est engendré par une famille d’un seul vecteur non nul, donc elle forme une base
de G et dim(G) = 1.

O

Exercice 17. Remarquons que Vect(u, v) et Vect(s, ) sont deux sous-espaces vectoriels
engendrés par des familles de deux vecteurs non colinéaires (donc des familles de deux
vecteurs libres). Ainsi, on a dim(Vect(u,v)) = dim(Vect(s, t)).

Pour montrer leur égalité, il ne reste plus qu’a montrer que I'un est inclus dans 'autre.
Pour ce faire, nous allons montrer qu’'une famille génératrice de I'un est constituée de
vecteurs de l'autre.

Montrons qu’il existe A, 4 deux réels tels que s + ut = u.

C’est équivalent au systeme

—“A—p= —4
2 +6u= 4
2A+Tu= 3
“A—p= —4
<~ dp= —4 Lo<+ La+21,
Su= —5 L3+ L3420,
“A—pu= -4
— dp= —4

0= 0 L3%4L3*5L2
Le systeme est échelonné et admet des solutions, ainsi, u € Vect(s, t). Remarquons qu’on
n’a méme pas besoin de récupérer les valeurs de A\ et p pour assurer 'appartenance de
u a Vect(s, t).
De la méme fagon, montrons qu’il existe A, i deux réels tels que As + ut = v.
C’est équivalent au systéeme

“A—pu= =3
2 +6p= 2
2A+Tu= 1
“A—p= -3
<~ dp= —4 Lo+ La+21,
ou= —5 Lz L3+21,
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“A—u= -3
— dp= —4
0= 0 L3%4L3—5L2
Le systéme est échelonné et admet des solutions, ainsi, v € Vect(s, t).
Comme u et v sont des vecteurs de Vect(s,t), on a Vect(u,v) C Vect(s,t).
Puisque ces deux espaces vectoriels ont la méme dimension, ils sont égaux. On a bien

Vect(u, v) = Vect(s, t).

On aurait pu faire la méme chose pour montrer 'inclusion réciproque si on avait pas pensé
a regarder les dimensions. Ou encore, en finissant les calculs on montre que u = 5s — t
et v = 4s — t ce qui peut permettre tres rapidement d’exprimer s et ¢ en fonction de u
et v, mais c’est les dimensions le plus rapide. [J

Exercice 18. Il y a beaucoup de fagons de voir les choses. On pourrait commencer
par déterminer des équations qui caractérisent chacun des deux puis résoudre un grand
systeme. Au lieu de ¢a, on va y aller directement.
On note e € Vect(u,v) N Vect(s, ).
Or e € Vect(u,v) <= I(a, B) € R? tel que e = au + Bv.
De méme e € Vect(s, t) <= 3(v,68) € R? tel que e = vs + dt.
On a donc e € Vect(u,v) N Vect(s, t) <= I(a, B,7,5) € R* tel que
a+38= v+2
20— = 3y—20

—a+28= —v+34§
a+38= v+26
<~ —752 ’}/—6(5 Lo+ Lo —214

5ﬁ: +56 L3+ L3+ L4
a+38—~v= 25

— —78—v= —66
= 06

oa—77= —0 L1<—L1—3L3

— -y = 0 Lo < Lo+ TLs
B= 0

a= —20 L1<—L1—L2
=< —y= 4

= 06

a= =20 L1<—L1—L2
< vy= =9

B= 6
Ainsi, e € Vect(u,v) N Vect(s,t) <= 36 tel que e = —20u + dv = 6(—2u + v) et

e=—0s+dt=09(—s+1).

Remarquons que —2u +v = (1, —5,4) = —s + ¢.

Ainsi, Vect(u, v) N Vect(s,t) = Vect((1,—5,4)).

Le vecteur (1,—5,4) étant non nul, il forme une famille libre & lui tout seul qui engendre
Vect(u,v) N Vect(s, t).

((1,-5,4)) est donc une base de Vect(u,v) N Vect(s,t). O

Exercice 19. 1. Pour E, c’est évident, il est engendré par deux vecteurs de R%.

Pour F', révisons un peu.

(i) Remarquons que F' C R* et R* est un espace vectoriel.
(ii) Comme 0 = —2 x 04 0 donc on a (0,0,0,0) € F.
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(iii) Prenons (z,y, z,t) et (2/,y,2',t') deux éléments de F et \, pu deux réels. Mon-
trons que \(z,y, z,t) + p(a',y', 2/, ') € F.
On a

Az, y, 2,t) + p(a’, ', 25 t) = Ao 4 pa, Ny 4 py’, Az + p2!, M+ t').

Puis on a Ay 4+ py') +2(Az 4+ p2’) — (At + ut’) = My + 22 —t) + pu(y' + 22" — ).
Or (z,y,2,t) et (2,9, 2/, t') deux éléments de F donc y+2z—t = 0 et iy +22'—t' =
0.

Donc (A\y + py') +2(Az + pz’) — (Mt + pt’) = 0, ou encore (A\y + py') = —=2(Az +
wuz') + (At + pt).

On a donc \(z,y, 2, t) + p(2/,y, 2/, t') € F.

Ces trois points permettent d’assurer que I est un sous-espace vectoriel de R*. [J

. E/ est engendré par une famille de deux vecteurs non colinéaires, donc une famille
libre. Ainsi, elle forme une base de F et E est de dimension 2.

On a (z,y, z,t) € E <= 3(\, u) € R? tel que

)‘(_L 2a ]-7 0) + #(_17 2a Oa ]-) = ('I’ Y, Z’t)‘

Cette égalité est équivalente au systeme

“A—pu= =z
22+ 2u= vy
A=z
p=t
—“A—pu= =z
— 0= 2x+4+y Lo+ La+214
A= =z
p=t
0= x4+2+t L1+ L1+ Ls+ Ly
0= 224y
<~
A=z
p=t
A=z
p=t
— 0= xz+2+t
0= 224y
Ainsi, A et p existent si et seulement si x 4+ z 4+t =0 et 22 + y = 0. Les éléments de

2z 4y =0

E sont ceux qui vérifient : { vtz t =0

On peut donc écrire E = {(z,y,2,t) ERY/ 2z +y=0et x + 2+t =0} O

.Ona (r,y,2,t) € F <= y=—2z+t. Donc F = {(x, -2z +t,2,t)/(z,2,t) € R3}.
Ou encore F = {x(1,0,0,0) + 2(0,—2,1,0) + ¢(0,1,0,1)/(z, 2,t) € R3}.
On a F = Vect((1,0,0,0), (0,—2,1,0),(0,1,0,1)).

Cette famille qui engendre F' est-elle libre ? Soient A, u, v trois réels tels que

A(1,0,0,0) + ©(0,-2,1,0) +v(0,1,0,1) = (0,0,0,0).

218 /[359)



— (\,—2u+v,pu,v) =(0,0,0,0)
ce qui implique A =y =v = 0.

La famille est libre, elle engendre F', donc c¢’est une base de F' qui est ainsi de dimension
3.0

22+y= 0
4. On a léquivalence (z,y,z,t) € ENF < r+z+t= 0
y+2z—t= 0

2r4+y= 0
= z+z+t= 0
20 —2z24+t= 0 L3+ Li—Ls
22+y= 0
<~ r—32= 0 Lo< L3— Lo
2v —2z+t= 0
y= -2
— 1
z = 33;
= _§:E
. 1 4
Ainsi, on G = {m (1, -2, —, —) Jx € R}.
3" 3
1 4
A1ns1,G—Vect<<1, 2,3, 3))

Soit G = Vect((3,—6,1,—4)).

Ainsi, G est engendré par un unique vecteur non nul, donc ((3,—6,1,—4)) est une
base de G et dim(G) =1. O

Exercice 20. 1. On a
E= Vect(( -1,3,-3) — (1,-1,1,-1),(2,-2,4,—-4) — 2(1,-1,1,-1),
-1

(3,-3,7, 7) 3(1,-1,1,-1),(1,—1,1,—1))
E = Vect((O 0,2,—-2),(0,0,2,-2),(0,0,4, —4), (1, 1,1, 1))
—  Vect((0,0,1,-1),(0,0,1,-1),(0,0,1,-1), (1,—1,1,—1))
1,- 1,1, ) — (0, 0,1,—1))

2),(

(( ), ( ,

E = Vect((0,0,1,-1),( -1
E= Vect((0,0,1,-1),(1,-1,0,0))
E = Vect((1,— ,0,0),(0 0,1,-1))

On a E = Vect((1,-1,0,0),(0,0,1, —1)). Comme les vecteurs ne sont pas colinéaires,
((1,-1,0,0),(0,0,1,—1)) est libre donc est une base de E. On a donc dim(E) = 2. [

2. On a (z,y,2,t) € E <= 3(\, 1) € R? tel que
A(1,-1,0,0) + p(0,0,1,—1) = (x,y, 2, t).

Cette égalité est équivalente au systéme

= T
p= =z

x
= 2+y Lo« Lo+ 14
z
2

+t Ly<+ Ly+ L3

219 /[359



Ainsi, X et i existent si et seulement si z+y = 0 et 2+t = 0. Les éléments de E sont
z+y =0

ceux qui vérifient : s+t —0

On peut écrire £ = {(x,y,2,t) e R /z +y=0et 2+t =0}. O

3. Plusieurs facons de faire. On peut chercher a trouver un systeme d’équation décrivant
F puis vérifier que les vecteurs qui engendrent E sont dans F. On peut aussi di-
rectement essayer d’exprimer les vecteurs qui engendrent E en fonction de ceux qui
engendrent F'.

Mais commencons par simplifier I’écriture de F. On a
F= VeCt((L O> 17 _1) - (17 07 07 0) + (07 07 _17 1)7 (Oa 11 27 _2) + 2(07 07 _17 1)) (11 Oa 07 0)7 (07 Oa _17 1))

= Vect((0,1,0,0),(1,0,0,0), (0,0, —1,1))
Vect((0,1,0,0), (1,0,0,0), (0,0,1,—1)).

Or E = Vect((1,-1,0,0),(0,0,1,—1)). Onabien (1,—1,0,0) = —(0,1,0,0)+(1,0,0,0)+
0(0,0,1,~1) et (0,0,1,—1) = 0(0,1,0,0) + 0(1,0,0,0) + (0,0, 1, —1).

Ainsi, les vecteurs qui engendrent E sont des vecteurs de F', donc £ C F. [

0010 00 01
00 01 0000
. 2 _ 3 _ 4 _
Exercice 21. 1. On a N° = 000 0 , N2 = 000 0 et N* = Oy k). U
00 00 00 00

2. Ona E = {aly +bN + cN? + dN3/(a,b,c,d) € K*} . Autrement dit, E = Vect(Iy, N, N2, N3).

De plus, la famille (I, N, N2, N3) est libre. En effet, considérons (a, b, c,d) € K* tels
que aly +bN + cN? + dN3 = Orq,(x) donne directement a =b=c=d =0.

Ainsi, (I, N, N2, N3) est une base de E et on a dim(E) = 4. [J
3.Onaly=I;+0N+0N?+0N3, My = I[,+2N +3N?+4N3 My = 21, — N+ N?4+0N?

et enfin Mz = 0I5 + N + 4N? + 4N3.

Ainsi, la matrice représentative de la famille (I, My, Mo, M33) dans la base (I3, N, N2, N3)

11 2 0
0 2 -1 1
est A= 03 1 4
0 4 0 4
11 2 0 11 2 0
0 2 -1 1 0 2 -1 1
1 A = =
Onaaors rg( )Lg(—L3+L2 e 0 5 0 5 Ly<5L4—4L3 '8 0 5 0 5
04 0 4 00 0 O
1 2 10
I1 suffit d’une derniére opération pour obtenir rg(A) = r 0 -1 21 =3.0
P P 8 o ®lo 0 5 5|77
0 0 00

4. Prenons A € E, donc il existe (a,b,c,d) € K* tel que A = aly +bN + cN? 4 dN3 et
B € E, donc il existe (a,b, c,d) € K* tel que B =a'I4 + YN+ N? +d N3,

On a AB = (aly + bN + c¢N? + dN3)(a'Iy + U'N + ¢/ N? + d'N3) = ad'I + (ab/ +
a'b)N + (ac +bb' 4 a’c)N? + (ad' +bc’ +b'c+a'd)N? car les autres produits sont nuls
puisque N4 = 04 (K)-

On a donc bien AB € E.
O
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5. Avec les mémes notations que la question précédente, on a déja vu que AB = ably +
(ab/ +a'b)N + (ac’ +bb' + a’¢)N? + (ad’ + bc’ + b'c + a’d)N3.
De la méme fagon, il suffit de calculer BA = (a/Iy + ¥ N + ¢ N? + d'N3)(aly + bN +
cN2+dN3) = d'aly+(a’b+ab )N+ (d' c+bb+ac ) N2+ (a/d+b c+bc +ad )N? = AB.
On a donc AB = BA. Ainsi, toute matrice B € F est une matrice de F qui est un
sous-ensemble de F, donc F = F.

O]

Exercice 22. 1. Remarquons que S,,(K) € M,,(K), puis que 0, (K) € S,,(K). Ensuite,
prenons (\, u) € K2 et M, N deux éléments de S,(K). Ona (AM + uN)T =AM T +
pNT. Comme M € S,(K), on a M" = M et pour la méme raison N' = N. Ainsi,
(AM + uN)T = AM + pN. On a donc AM + uN € S,(K). O

2. Remarquons que E,;r’é = Ey ). Ainsi, S,IZ = E,;r’g + EZk = Sk, donc S ¢ € Sy (K).

Enfin, remarquons que M = (m; j)1<i<n € Sn(K), si et seulement si on a, pour tout
1<j<n
n n

(k,€) € [1,n]?, mye = myk. Ainsi, on peut remarquer que M = Z Z M, 0Sko +

k=1/=k+1
n
m
Z k’kSkk ou Sip =2F.
2 k) I El
k=1
La famille (Sk ¢)1<k<e<n est donc génératrice de Sy, (K).
n n
De plus, elle est libre car si on a (Ag¢)i<k<i<n tels que ZZ)\k’gSkyg, il vient
k=1/¢=k

immédiatement A, , = 0 pour tout (k,¢) € [1,n,] avec k < £.
Ainsi, la famille (Sk ¢)1<k<¢<n est une base de S, (K). O
3. Il ne reste qu’a dénombrer les éléments de (Sk ¢)1<k<e<n, donc le nombre de couples

(k,£) de [1,n]? tels que k& < £. Il 'y a n? couples de [1,n]?, il y a n? — n couples de
[1,7n]? tels que k # £.

2 _
Il y a donc n couples de [1,n]? tels que k < £. Il ne reste qu’a ajouter les n
2 _
couples de la forme (k, k) ou k € [1,n] et on en déduit que dim(S,,(K)) = r 5 D n=
1
n<n2+>_ 0

Exercice 23. 1. La famille (L;);c[o,n) est une famille de n + 1 vecteurs de K,[X] et
dim (K, [X]) = n + 1. Ainsi, (L) e[o,n] Si et seulement si (L;) efo,n) est libre.

Considérons (Ao, A1, ..., An) € K" tel que Z AjLj = Og[x). Considérons i € [0,n],
=0

n
on a en particulier, Z AjLj(a;) =0.
§=0
n

1 n
Notons, pour j € [1,n], A; = H (aj—ay) et ainsi, on a L; = " H (X —ay). Ainsi, on

k=0 J k=0
k#j k#j
1 n
a L; Remarquons que,si i # j, Lj(a;) = x H (a; — ax) = 0 (puisque dans le produit
J k=0
k#j
, . . 1 £ A;j
du numérateur, k prend une fois la valeur i), et L;(a;) = H (aj—ap)=-—=1
J k=0 J
k5
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n
Gréce a cette considération, on a Z AjLj(a;) = A, donc A; = 0.
§=0
Ainsi, la famille (L;);e[o,n] est libre, par suite c’est une base de K, [X]. [

2. Considérons P € K,[X]. Comme (L;);c[o,,] est une base de K, [X], il existe un unique
n

(p07p17 s 7pn) S KnJrl tel que P = Zp]LJ
7=0

n
Considérons ¢ € [0,n] et calculons P(a;) = ijLj(ai). En utilisant la méme re-
7=0

marque que ci-dessus, on a P(a;) = p;.
Ainsi, les coordonnées de P dans la base (L;)c[o,n] sont (P(ao), P(a1), ..., P(an)).
O]

3. Soit k € [1,p]. On a Py qui a pour coordonnées (Py(ao), Px(a1),. .., Pg(ay)).

Ainsi, la matrice représentative de la famille (P, ..., P,) est la matrice
Pi(ag) Pa(ag) ... Pylao)
Pl(al) Pg(a1> Pp(al)

. . . = (Pj(ai-15))1<i<n+1-
: : . : 1<j<p
Pi(an) Pa(ap) ... Pplan)
OJ

Exercice 24. 1. On a E = {(by + cz,y,2)/(y, 2) € R*} = Vect((b,1,0), (¢,0,1)). Ainsi,
E C R3 est un sous-espace vectoriel de R3 engendré par deux vecteurs non-colinéaires
donc formant une famille libre. Ainsi, dim(F) = 2. O

2. De la méme facon, F et G sont des sous-espaces vectoriels de R? de dimension 2.

Ainsi, F'N G est un sous-espace vectoriel de dimension inférieure ou égale a 2 (il est
inclus dans F' de dimension 2).

Si E C FNG, alors, on a dim(£) < dim(FNG). Comme dim(E) = 2, et dim(FNG) <
2, on a forcément dim(E) = dim(F N G) et donc E = FNG.

Par ailleurs, F NG C F et dim(FNG) = dim F, donc FNG = F. De la méme fagon
FNG=aG.

Ainsi, on a bien E =F =G. O
x—by—cz= 0

3.0na(r,y,2)) EENFNG <= ar—y+cz=
ar+by—z= 0

o

r—by—cz= 0
<< (ab—1)y+(ac+c)z= 0 Lo+ Ly —al,
(ab+b)y+ (ac—1)z= 0 L3+« L3 —aly
x—by—cz= 0
<< (ab—1)y+cla+1)z= 0
(b+1)y—(c+1)z: 0 L3%L3—L2
Si b # —1, le systeme est équivalent a

rx—by—cz= 0
(cla+1)(b+1)+(ab—1)(c+1)z= 0 Lo+ (b+1)Ly— (ab—1)L3
b+1)y—(c+1)z= 0
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r—by—cz= 0
<~ (b+1)y—(c+1)z: 0 Lo <+ L3
(abc+ac+bc+c+abc+ab—c—1)z= 0
r—by—cz= 0
= b+1)y—(c+1)z= 0
(2abc +ac+bc+ab—1)z= 0
Si 2abc+ ab+be+ ca # 1, le systéme a une unique solution (0,0,0) donc ENFNG =

{(0,0,0)}.

r+y—cz
Si b= —1, alors le systeme était ¢ (—a — 1)y +c(a+1)z
—(c+1)z =

0
0
0 L3 — L3 — L2

Mais la condition devient

—2ac—a—c+ca # 1 <= —a(c+1)—c—1 # 0 <= —a(c+1)—(c+1) # 0 <= —(a+1)(c+1) # 0.
Ainsi, dans ce cas, la condition se transforme en a # —1 et ¢ # —1. Elle nous donne un
systéme échelonné et 1a encore, une solution unique. Et ainsi, ENF NG = {(0,0,0)}.

Dans tous les cas, on a 2abc +ab+bc+ca#1 = ENFNG={(0,0,0)}.

Il y avait plus élégant (et possibilité d’éviter la discussion) a laide d’une remarque
que nous ne verrons que plus tard. [

16 Dérivation
Exercice 1. 1. Remarquons que f est la composition de In qui est C*°(R%) et de = —
x4+ 1 qui est C*°(] — 1, +00]) et strictement positive. Ainsi, f est C>(] — 1, 4o00[).

Apreés quelques tentatives, on suppose que, pour n € N*, Vo €] — 1 + oo, £ (x) =
(=) L(n—1)
(1+z)»

_1)n—1 —1)!
Notons donc, pour n € N*, P(n) : <« Vz €] — 1+ oo, f™ () = ( 1)(1 +(n)n 1)'. >.
x

1
En dérivant f, on trouve Vo €] — 1, +oo[, f'(z) = 1 donc P(1) est vraie.
x

Soit n € N* quelconque fixé. Supposons P(n) vraie.

—1)"1(n - 1)
( 21 +(n)n ) , donc en dérivant,
T

On a Vz €] — 1+ oo, f™(x) =

(1 + I)n-i—l - (1 + x)n—H'

Go el - 14 sof, [ ) — D= D) (1))

Ainsi, P(n + 1) est vraie.

On a démontré par récurrence que, Vn € N*,

(1) (n - 1)!

Va €] — 1+ oo, f")(z) = AT o)

O]

2. On remarque que f est bien C*°(R) par somme de fonctions C*°(R).
On conjecture que, pour k € N, Vz € R, f4*+9 (2) = cos(z).

En dérivant 4 fois, on montre que P(0) est vraie.

223 /[359)



Soit k € N quelconque fixé. Supposons P(k) vraie.

On a Vz € R, f#+4(z) = cos(z). En dérivant 4 fois, on trouve que f*+8)(z) =
FAGFDTY () = cos(z).

Ainsi, P(k + 1) est vraie.

On a donc Vk € N, Vo € R, f#+9)(z) = cos(x).

En dérivant une, deux ou trois fois, on récupére que, pour tout £ € N, on a pour
tout = € R, fO*D(z) = —sin(z), f***D(z) = —cos(x), fFH*3)(2) = sin(z) et
f@RH4) (1) = cos(z) (au passage, les trois premiéres sont vraies pour k = 0 ce qu’on
montre en partant de la fonction). O

Exercice 2. 1. f est un polynéme donc dérivable sur R. On a, pour tout = € R, f/(z) =

5xt — 5 =5zt — 1) =5(z? + 1) (22 - 1).
Ainsi, on a Vo € R, f/(z) = 5(z? + 1)(x — 1)(z + 1). Ainsi, on a

T —00 -1 1 400
z 41 - 0 +
z—1 — — 0 +
f(x) + 0 — 0 +
6 +o0
f / \ /
—00 -2
Sur | — oo, —1[, f est continue, strictement croissante avec ll}m f(z) = —0 et
X —0o

f(=1) > 0, donc d’apres le corollaire du théoréme des valeurs intermédiaires, elle
admet une unique racine.

Sur | —1,1[, f est continue, strictement décroissante avec f(—1) > 0 et f(1) < 0, donc
d’apres le corollaire du théoréeme des valeurs intermédiaires, elle admet une unique
racine.

Enfin sur |1, +oo[, f est strictement croissante avec f(1) < 0 et lirf f(z) = 400
T—+00

donc f s’annule une unique fois.

Elle ne s’annule ni en —1 ni en 1.

Ainsi f a exactement trois racines. [

. Remarquons que g est un polynéme donc C*°(R) (dérivable suffira).

Ainsi, on a Vz € R, ¢'(z) = 482 — 4222 — 62 = 62(82? — 7Tz — 1). On remarque que
1

1 est racine évidente de 822 — 72 — 1, ainsi, comme le produit des racines vaut -3

Pautre racine est —3

Ainsi, on a ¢'(z) = 62(8x + 1)(x — 1).

On en déduit le tableau de variation suivant :
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x —00 —1 0 1 +00
8
8r —1 — 0 — + +
T — + 0 + +
z—1 - - — 0 +
g (x) - + — 0 +
+o0 —4 +00
g 1
g <_8> -9

1
Sur ] — 00, _8}’ g est continue, strictement décroissante avec gm g(z) = 400 et
x —00

1
g (_8) < —4, donc d’apres le corollaire du théoréme des valeurs intermédiaires, elle

admet une unique racine.
1
Sur [—8, 1}, g est strictement négative.

Enfin sur [1,+o0o[, g est continue, strictement croissante avec lirf g(z) = +o0 et
T—>+00

g (1) < —4, donc d’apres le corollaire du théoreme des valeurs intermédiaires, elle
admet une unique racine.

Ainsi, on a bien g qui s’annule exactement deux fois. [
. h est la combinaison linéaire de fonctions C*°(R) (la premiére étant un produit de
telles fonctions), donc est C*°(R).

On a, pour tout z € R, h/(x) = e* 4+ (z — 1)e* — e = ze® — e. Puis, on a h'’(z) =
e + xe® = (z+ 1)e*. On voit que h”(z) est du signe de = + 1.
De plus,ona lim h'(z) = —e par croissances comparées et lim h'(z) = +o00 (mais
T——00 r—+00
c’est moins indispensable) :
Enfin, lir+n h(z) = 400 en factorisant par xe® alors qu’il faut tout développer pour
T—r+00
avoir lim h(z) = +oo.
T——00

Ainsi, on peut en déduire le tableau de variations suivant
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T —00 -1 1 +00

h'(x) - 0 o+ +
—e€ 400

—el-e

B () - — 0o+

400 +00
—e+1
Ainsi, sur | — 0o, 1], h est continue, strictement décroissante avec lim h(z) = +oo
T——00

et h(1) < 0, donc d’apres le corollaire du théoreme des valeurs intermédiaires, elle

admet une unique racine.

Puis sur [1, +ool, h est continue, strictement croissante avec h(1) < 0 et lir}ra h(z) =
T—+00

400, donc d’apres le corollaire du théoreme des valeurs intermédiaires, elle admet une

unique racine.

Ainsi, en conclusion, h s’annule exactement 2 fois. [

Exercice 3. 1. On peut remarquer que la fonction sh est continue et dérivable sur R
car elle est combinaison linéaire de xz +— e et x — e~* qui le sont.

et + e *

On a, pour tout z € R, sh’(z) = ————— = ch(z) > 0.

sh est donc strictement croissante sur R. De plus sh(0) = 0, donc sh(z) < 0 pour

2

x € R_ et sh(x) > 0 pour z € Ry. En résumé :

T —00 0 400
ch(x) +
400
sh /o/
—00

O]

2. On peut remarquer que la fonction ch est continue et dérivable sur R car elle est

combinaison linéaire de z — e et z — e~ % qui le sont.

Par ailleurs, on a pour tout = € R, ch’(z) =

La dérivée de ch est sh, donc d’apres la question précédente ch est donc strictement
décroissante sur R_ et strictement croissante sur R .

On a

T _ —T

2

(&
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x —00 0 —+00
sh(x) - 0 +
+o0 +oo
Ch \ /
1 0

3. Pour tout = € R, ch(z) —sh(z) = e”* > 0 donc la courbe de ch est toujours au-dessus
de celle de sh.

FEn pointillés, la courbe représentative de sh, en trait plein, celle de ch avec sa tangente
horizontale

44

O

4. Sur R*, f est le quotient de deux fonctions continues et dérivables dont le dénominateur
ne s’annule pas.

En 0, on a, pour h # 0, f(h) = sh(h) —sh(0)

sh en 0. Ainsi, comme on sait que sh’(0) = 1, on a }lliH%) f(h) =1= f(0). f est donc
—

, donc f est le taux d’accroissement de

bien continue en O.

On a, pour tout = # 0,
xch(z) — sh(x

X

Etudions le signe du numérateur en posant g : R — R définie par, pour tout z € R,
g(z) = xch(z) — sh(x).

On a g est la combinaison linéaire de fonctions dérivables sur R (la premiére étant un
produit de fonctions dérivables sur R), et on a, pour tout x € R,

g (x) = ch(x) + xsh(x) — ch(x) = xsh(x).
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Or comme z et sh(z) sont de méme signe, on a, pour tout = € R, ¢’(z) > 0, donc g
est croissante.

De plus, ¢g(0) = 0, donc g est négative sur R_ et positive sur R . Comme, pour tout
x € R, f(x) est du signe de g(z).
X

Par ailleurs, on a pour x # 0, f(x) = ;—(1 —e ) donc lim f(x) = +ocoet f(x) =
x

T—+400
_eix
(1 —€?*), donc lim f(x) = 400, ces deux limites obtenues par croissances
2x T——00
comparées.

On peut en déduire le tableau de variation suivant :

T —00 0 400
f'(x) - 0+
400 400
f \\\\1////

O]

5. On aurait pu chercher I’éventuelle tangente horizontale en 0, ou la position relative
par rapport aux courbes précédentes.

O]

Exercice 4. Prenons z € [ et h € R* tel que z + h € 1.
On a

[f(z+h) = f(2)] < K[h".

Autrement dit, comme o« > 1, on a

flz+h) - f(x)
h

< K |h* 7t
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Or, comme o« —1 >0, on a }llim |h|0‘_1 = 0. Par encadrement, on a donc
—0

o S+ h) = (@)

h—0 h =0

Cela revient & dire que, pour tout = € I, f est dérivable en x et f/(x) = 0. Autrement
dit, f est constante sur I. []

Exercice 5. 1. La fonction 2 — e?* — 1 est continue et dérivable sur R, mais positive
seulement sur R (strictement sur RY).

Ainsi, par composition avec la fonction racine qui est continue sur R, f est continue

sur R;. Cependant, comme la fonction racine n’est dérivable que sur R, f n’est
dérivable que sur RY .

Ainsi, pour tout x € R% , on a

2€2x 62:5
N N

f(x)

Ainsi, f est strictement croissante sur R.

Par composition, comme lim e?*—1 = +oc et ligl Vx = 400, donc limx — +oof(z) =
T—>+00

T—r+00

+00.
Ainsi, on peut établir le tableau de variation suivant :

T 0 400

f'(x) +
+0o0
f /
0

Et Pallure est donnée par :

O]

2. f est continue sur R, strictement croissante avec f(0) = 0 et lim f(x) = +oo,

T—r+00
ainsi f réalise une bijection de R4 dans lui-méme. [
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3. Sur RY f est bijective et sa dérivée ne s’annule pas, donc on peut utiliser la formule
de dérivation des fonctions réciproques et on a pour tout x € R*.

1 e2f~Hx) — 1

(f_l)/(x) = f’Of_l(CC) - le—l(I)

Or Ve2f '@ —1= f(f () =z et @) = (F(f 12)2 +1 =22+ 1.

CE] * -1 _ z
Ainsi, Ve € RY, (f71)(z) = T

4. Soit y € R. Cherchons x € Ry tel que f(x) = y. C’est équivalent a

Vet —1 =y <= % —1=y? car tout est positif

= =941

<— 2= 1n(y2 + 1) car tout est strictement posifit
. In(y? +1)

—
2

1
f~! est définie que sur Ry par f~!(z) = B In(2? 4+ 1).

On remarque qu'’il s’agit d’une fonction dérivable (car composition d’un polynoéme
strictement positif avec In qui est dérivable sur R ), et on a

Vo eRy, (f71)(2)=

O]

Exercice 6. 1. Comme = — 22 + 4 est un polyndéme, cette fonction est dérivable sur
R et en plus elle est strictement positive. Donc sa composition avec la fonction racine
(dérivable sur R, ) est dérivable sur R. Ainsi, par combinaison linéaire avec un autre
polyndéme, f est dérivable sur R.

2z z
I+ —— =14 .
2va? +4 Va? 44
Or 0 < 22 < 2244 donc en appliquant la fonction racine qui est strictement croissante
sur Ry, on a
|z

x2+4

On a pour tout = € R, f'(z) =

lz| < Va? +4 < < 1.

On a donc ———— > —1 donc f'(z) > 0.

Va2 +4

Ainsi, f’ est strictement croissante sur R.

Par ailleurs, sans difficulté, on a lim f(z) = 4o0.
T—+00

2 4
Enﬁn,pour:):<0,onaf(:v)—x<1+—\/14—2).
x x

1 1
Or comme, en 0, on a V1 + h = 1—|—§h+0(h), on a pour z — —oo (car — —— 0),

Tr T—>—00

f(x):x<1+i—1—2+o(xl2>) — 24 o(1).

2

Ainsi, lim f(z) =2.
Tr—r—00
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On peut enfin dresser le tableau de variations :

x —00 +o0
f'(@) +
+00
f /
2

Et ’allure est donnée par :

—
w&yuxmmﬂmwﬁ

]
B
|
w
|
[\
1
—
O| =
—
[N}
w
S
8

O

2. On a f continue sur R, strictement croissante, avec lim f(zx) =2et lim f(z) =
Tr——00 T—r+00

+00, donc f réalise une bijection de R dans |2, +oo[. O

. Remarquons que f est une bijection dérivable dont la dérivée ne s’annule pas, ainsi
sa réciproque est dérivable sur ]2, +oo[ et on a, Vz €]2, 4+00],

—1yv/ o 1
(f )(x)_f/of_l(x)‘

Essayons d’exprimer f’(x) en fonction de f(z). On a vu que Vz € R,

x x4 Va2 +4
V2 +4 Vaz4+4

Mais comme z + Va? +4 = f(x) — 2, on a

fll@)=1+

flz) =2

f/(x): \/m'

Or, il semblerait que, pour = € R, on ait

T+ Va2 +4 2 x+\/x2+4+2(x—\/:v2+4)

2 TRV i 2 22 — 22 — 4
r+vVri+4 x—+Vz?+14
n 2 B 2

= Vx¢+4.

Ainsi,
/ _ f(l’) -2
f (x) T ozt V2? 14 + 2
2 x+Vr2+4
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Mais comme z + Va2 +4 = f(x) — 2, on a

/ f :L') —2
@) = 5=
4 2) 2 + f(x2)—2
Ou encore
f,(CL') — 2(f($) B 2)2
(f(z) —2)* +4
Ainsi,
@) = g = 22

Ce qu’on peut agréablement simplifier en

22 —4x +8

() = g

O]

4. Soit y €]2, +o00[. Cherchons = € R tel que

f@)=y<= z+2+Va2l+4i=y
= Vat+d=(y—z—2)
— 2?2 4+4=9+22 4422y —4dy+4dx
= 0=y>—2xy — 4y +4z
= 2x(y—2)=y>—4y
yly —4)
- 2(y —2)

Ainsi, comme nous sommes assurés de ’existence de cet antécédent et qu’il ne peut
avoir qu'une valeur, on a bien f~! définie sur |2, 4o0[, par Vo €]2, +oo[, f~1(z) =
x(x —4)
2(x —2)°

/7! est bien dérivable sur ]2, +oo[ (quotient de polynémes dont le dénominateur ne
s’annule pas), et on a Vz €]2, +o0],

sy 1Rz —4)(z-2)—a(z—4) 2 —4z+38
(f 1) (1’)*5 (x—2)2 = 2(3;—2)2 .

O]

Exercice 7. Soit ¢ €]a, b[. Formons le taux d’accroissement en c.
Pour h € R tel que ¢+ h €]a, b, on a

[f(e+h)| = 1f ()]
» :

Si f(c) > 0, on peut prendre h assez petit tel que f(c+ h) soit positif. Ainsi,

[fle+hm)|=1f)] _ fle+h)—flo) /
h N h h—0 f(C)

Si f(¢) < 0, on peut prendre h assez petit tel que f(c+ h) soit négatif. Ainsi,

et =ld _ ~fleth)+f0) _ fleth=f)
h h h
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Si f(¢) =0, alors si
[fle+ R =1f()] _ fleth)

h h
fle+h)

Si en plus f’(¢) = 0, alors lim = 0 donc
h—0

Lo e ) = 1f(e)
h

h—0

f(ch—i'h) — ; f'(¢) # 0, pour h > 0 assez petit, f(c+h) >0
—

[f(c+ )|
h

=0.

Si f’(¢) > 0, alors puisque

est du signe de f’(¢) donc ’llin% = f(c) et pour h < 0 assez petit, c’est 'opposé,
—

h>0
. |f(e+h)|
d lim ———= = —f’
R fe)
h>0
Le taux d’accroissement n’admet pas de limite en 0. C’est la méme chose (en changeant

les signes) si f/(c) < 0.
Ainsi, on peut dire que si f est dérivable, alors |f| sera aussi dérivable lorsque f ne
s’annule pas ou lorsque sa dérivée est nulle. []

Exercice 8. Notons a1, as,...,a,, avec a1 < az < ... < a, les n points ou f s’annule.
Pour tout ¢ € [1,n — 1], f est continue sur [a;, aj+1], dérivable sur |a;, a;1+1], et f(a;) =
flaivr).

Ainsi, d’apres le théoréme de Rolle, il existe ¢; €]a;, a; 1] tel que f'(¢;) = 0.

Ainsi, on a ¢; < ¢ < ... < ¢p—1 et pour tout 7 € [1,n— 1], f'(¢;) = 0. Ainsi f’ s’annule
bien n — 1 fois.

Ensuite on considere une fonction p fois dérivable qu’il s’annule p fois. Montrons par
récurrence que, pour k € [0,p — 1], f(k) s’annule p — k fois.

Notons P(k) : < f¥) s’annule p — k fois .

L’hypothése nous assure la validité de P(0).

Soit k € [0,n — 2] quelconque fixé. Supposons P (k) vrai.

On a f*) s’annule p — k fois d’aprés P(k). En utilisant la premiére partie de exercice
appliquée & f*) on obtient que f*+1) s’annule p—k —1 = p— (k+ 1) fois, soit P(k+1).
Ainsi, pour k € [0,p — 1], f*) s’annule p — k fois.

Enfin pour k = p — 1, on remarque que f®~1 s’annule une fois. OJ

Exercice 9. Notons (ay,...,a,) les racines de P avec a; < a2 < ... < a,. Pour
n

i € [1,n], on note d; 'ordre de multiplicité de la racine a;. Ainsi, on a deg(P) = > di
k=1

puisque toutes les racines de P sont réelles comptées avec leurs multiplicités.
Pour tout ¢ € [1,n — 1], P est continue sur [a;, a;+1], dérivable sur ]a;, a;y1[, et P(a;) =
0= P(a/iJrl).
Ainsi, d’apres le théoréme de Rolle, il existe ¢; €]a;, a;41[ tel que P'(¢;) = 0.
Par ailleurs, pour i € [1,n] tous les a; sont racines de P’ d’ordre d; — 1.
n
Ainsi, on a déja l'existence de (n — 1) + Y (d; — 1) racines comptées avec leur ordre de
multiplicité. -
Cela fait en fait

(n—1) Zd—l _n—1+Zd—n——1+deg( ) = deg(P).
k=1 k=1

Ainsi, P’ n’a pas d’autres racines, elles sont toutes réelles. []
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Exercice 10. Remarquons que, si pour tout z €la,+oo[, f(z) = f(a) alors f est
constante donc n’importe quel pour ¢ €]a, +oo| convient.

Sinon, il existe xg €]a, +o0] tel que f(xg) # f(a). Supposons que f(xg) > f(a) (dans le
cas contraire on appliquera tout ce que nous allons faire & — f pour conclure).

Notons k£ = M. D’apres le théoreme des valeurs intermédiaires appliqué a
la fonction continue f sur ]a,zo[, comme k €]f(a), f(zo)[, il existe b €la,xo| tel que
1) = k.

De méme, d’apres le théoreme des valeurs intermédiaires appliqué a la fonction continue
f sur Jzg, +oo|, comme k €] f(xg), 11111 f(2)], il existe b/ €]xg, +00] tel que f(V') = k.
T—r+00

On a f continue sur [b,d'], dérivable sur |b,V'[, avec f(b) = f(V'), il existe ¢ €]b,b'[ tel
que f'(¢) =0.0

Exercice 11 (Théoréme de Darboux). On supposera f’(a) < f’(b) (sinon, on appliquera
la suite & h = —f).
Comme suggéré, on pose ¢ : [a,b] — R définie par g(z) = f(z) — kz.
g est continue sur [a, b] donc atteint son minimum en un point ¢ € [a, b].
Si ¢ €]a, b[, comme g est dérivable sur Ja, b[, on a ¢'(c) = 0, soit f'(c) = k.
Le probléme est si ¢ = a ou ¢ = b.
B) —
On a, ¢'(a) = f'(a) — k < 0 donc }llin%) gla+ ]1 9(a) = ¢'(a) < 0. Dong, il existe n > 0
—
h>0
tel que, pour tout h < 7, g(a + h) — g(a) < 0 (sinon, ¢'(a) > 0). Ainsi, g ne peut pas
étre minimale en a. bk )
De la méme fagon, On a, ¢'(b) = f(b) — k > 0 donc }l}n})w = 4'(b) > 0.
—
h<0
Donc, il existe n > 0 tel que, pour tout |h| < n, g(b+ h) — g(b) < 0 (sinon, ¢'(b) < 0).
Ainsi, g ne peut pas étre minimale en b.

Donc le minimum de g est bien atteint sur |a, b], ce qui permet de conclure. [

Exercice 12. Soit x € [0,2] \ {0,1,2] (si z € {0,1,2}; on a f(z) = 0 donc c’est vrai
pour n’importe quel c).

—1(t—2
On pose alors ¢(t) = f(t) — w)\ en prenant A tel que ¢(x) = 0, c’est-a-dire
6w
x(z—1)(z—2)

¢ est C3([0,2],R) en tant que combinaison linéaire de telles fonctions.

On a ¢(0) = p(1) = ¢(2) = p(zr) = 0. Supposons = €]0,1] (la démonstration est
identique pour z €]1, 2[).

Sur chaque intervalle [0, x|, [z, 1], [1, 2], la fonction ¢ est continue, dérivable sur I'ouvert
et ¢ a la méme valeur aux bornes, donc en utilisant le théoreme de Rolle, il existe
a1 €]0,z], ag €]z, 1], et az €]1,2] tels que ¢'(a1) = ¢’'(a2) = ¢'(ag) = 0.

On peut 13 aussi appliquer le théoréme de Rolle & ¢’ qui est C2([0,2]) sur les intervalles
[a1, ag] et [ag, as], donc il existe by €lay, az| et be E€lag, as| tels que ¢ (b1) = ¢’ (b2) = 0.
Et on rapplique une nouvelle fois le théoréme de Rolle & ¢ qui est C*([0, 2]) donc continue
sur [by, bo] et dérivable sur 'ouvert |b, b2[. On a donc lexistence d'un ¢ €]by, b2[C [0, 2]
tel que ¢"”'(¢) = 0.

Or, p(t) = £(t) Mf“’fx, done ¢"(t) = f"(t) — A
Ainsi, on a ¢"(¢) = 0, donc f"”'(t) = A, soit f"(c) = @ _6{52 Y ou encore
oy = DEZDEZD) gy
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Exercice 13. 1. Notons D =|—1; +o00[. Remarquons que z + In(14x) est bien dérivable
sur D comme composition de deux fonctions dérivables avec Vx € D, 14+x > 0. f est
alors le quotient de deux fonctions dérivables sur D dont le dénominateur ne s’annule
pas.

Az —In(l+2
On a alors Yz € D, f'(z) = 1= 2( )
x
Notons h la fonction définie sur D, par Vo € D, h(z) = T In(1 + z). Comme

1+
Vo € D, 2% > 0, f'() est du signe de h(z).

Etudions h. Sur D, h est la combinaison linéaire de deux fonctions dérivables (un
quotient de polynéme dont le dénominateur ne s’annule pas et une autre déja étudiée).

Ainsi, Vo € D, on a

l+z—2 I 1-(1+2) -z

B (z) =

(1+2)? 1+2  (1+z) (1+x)2

Ainsi, h/(z) est du signe de —z. On peut donc en déduire le tableau suivant.

T -1 0 400

b (z) + 0 -
0

h / \

f(z) - -
+00
f T 1
\ 0

Les limites sont calculées dans les questions suivantes.

O
2. En —1 on trouve par quotient de limite que lim1 f(x) = +oo.
T——

In(z(1+1) In(z) In(1+1)

Pour z > 0, on a f(x) = - = + .
x x x
. , . In(x) . .
On a par croissances comparées lim = 0. Par composition, on a lim In(1+
T—>+00 x T—+00
In(1+1
%) =0 donc lim M = 0 par quotient.

r—+00 T

Ainsi, xll}r_‘l_loo flx)=0.0

3. On remarque que f(x) = In(1+4z) —In(1)

. Ainsi, f est le taux d’accroissement de la
1
fonction In en 1 donc lim f(z) =1n'(1) = = = 1.

z—0 1

Ainsi, on peut prolonger f par continuité en 0 en posant f(0) = 1. O
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4. On a

O]

1
5. Soit z € R%.. Cette inégalité est équivalente a —3 < fl(x) . La deuxieme partie

1
<3
est déja démontrée puisqu’on a vu précédemment que f'(z) <0
1 h 1 2h 2
Considérons donc f'(z) + 5= i? 5= (;U2l;—x
Posons hy la fonction définie sur Ry par, Vo € Ry, hi(z) = 2h(z) + 22. Par combi-

naison linéaire de fonctions dérivables, h; est dérivable et on a, pour tout x € Ry,

2z 20(1+2)*  2z[(1+x)?—1]  22%*(z+2)

L e s s B G

Il s’agit d’un produit de termes positifs, donc h} est positive, donc h; est croissante.
Or h1(0) =0, donc Vx € Ry, hi(z) > 0.
1 _ hl (LL’)

Or, sur R%, f(z) 3= 2
x

1 1
Ainsi, Vo € Ry, f'(z) + 3 > 0, donc ) < fl(@).
1

donc est du signe de hq(z) > 0.

Ainsi, on a montré que Vx € R% | |f/(z)] < 5 O

6. Posons g la fonction définie sur | — 1, 400 par Vz €] — 1, +o0], g(x) = f(x) — z.

g est la somme de deux fonctions strictement décroissante, donc g est strictement

décroissante. Par somme de limites, on a lim g(x) = 400 et lim g(z) = —oc.
z——1 T——+00
Comme en plus g est continue sur | — 1, 4+o00[, on peut appliquer le corollaire du

théoréme des valeurs intermédiaires et on a 'existence d’un unique o €] — 1, +00] tel
que g(a) = 0 soit f(a) = .

Par ailleurs, g(0) = 1 et g(1) = f(1) — 1 < 0 donc, le théoréeme des valeurs in-
termédiaires appliquée a la fonction g continue sur [0, 1] affirme que g s’annule entre
0 et 1 strictement, donc « €]0, 1[. O

7. On auy € Ry et Vn € N* u,, = f(up—1) = 0. Ainsi, pour tout n € N, u,, € Ry.

Soit n € N. Entre u,, et «, f est donc continue (bornes incluses) et dérivables (bornes
exclues) donc d’apres le théoréme des accroissements finis, il existe ¢ compris stricte-
ment entre u, et « tel que

fun) = fla) = f'(e)(un — @) <= unt1 — a = f'(c)(un — a).
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En prenant la valeur absolue, on obtient,
[unt1 — o = | f'(c)| |un — al.

Or c¢ est strictement compris entre u, et «, donc ¢ > 0 et d’apres la question
précédente, on a |f'(c)] < 5
Ainsi, on a pour tout n € N,

1
|un+1—a|<§\un—a.

O]

1
8. Notons, pour n € N, P(n) : < |u, —a < o >

Pour n =0, on a bien |ug — | < 2—10 car up =1 et o € [0, 1].
Soit n € N quelconque fixé. Supposons P(n) vraie.

On a |up+1 — o] < %\un—a\.

Or d’apres la propriété de récurrence, on a |u, — o < —.

Ainsi, on a

Ainsi, P(n + 1) est vraie.

1
Donc pour tout entier naturel n, |u, — a| < on O

1
9. Ona lim — =0, donc d’apres le théoréme des gendarmes, ona lim |u, —al = 0.
n—-+oo 2N n—-+oo

Ainsi, on a

lim u, = a.
n—-+o0o

O]

10. Naivement, on fait

import math as m

def f(x):
if x==
return 1
else:
return m.log (1+x)/x

def alpha(eps):
n=0
u=1
while 1/2%*n >eps:
u=f (u)
n+=1
return u

Attention a bien faire attention au calcul de f(u) : il y a un probléme quand u = 0.

237 / [359



In(e)

Ou alors apres avoir résolu on Le<=nz= 1 @) on peut remplacer la derniére
n
fonction par
def alpha(eps):
u=0
for k in range(m.ceil(-m.log(eps)/m.log(2))):

u=f (u)
return u

O

Exercice 14. 1. a. f est définie sur R et Vr € R, —x € R.

Ensuite, pour x € R, on a

—T —X xT

e _ e e
e 41 e 2(e2r41) €20 4+1

f(=x) = f(@).

Donc f est paire. [

b. f est le quotient de deux fonctions dérivables sur R dont le dénominateur ne
s’annule pas.
ez(eZ:r: + 1) _ 262:{:6:E
(eQ:B + 1)2

Ainsi, on a, pour tout z € R, f'(z) =

Ainsi,

ex(e2x +1— 262:(; _ ez‘(l _ e?x)
(62x+1)2 - (623‘"—}—1)2 )

Ainsi, il est clair que f/(x) est du signe de 1 — 22,

() =

Par ailleurs, lim f(z) =0 donc par parité lim f(z)=0.
T——00 r—+00

On dresse le tableau de variations :

x —00 0 —+00
f'(=) + 0 -
1
f 2
0 / \ 0

Ainsi, on a

Y
1
I L | | 1 &
B2 T T i 3
O
1
c. Comme Vz € R, on a 0 < f(x) < > il est clair que ce £ g’il existe, est tel que
0< < 3.

1
Sur [0, 2}, définissons la fonction g par Vo € [O
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Cette fonction est continue (somme de fonctions continues), strictement décroissante

1 1
(somme de fonctions strictement décroissantes) et g(0) = 5> Oetg <> =

2
r(1)-L<o

1
Ainsi, il existe un unique £ € [O, 2} tel que g(¢) = 0 soit

fe)=1¢
O
. Remarquons que Vz € R,
, _ ex(l o 6213) _ 1— 6296
Fo) = o = @
Ainsi,
1— eQx
/ _
7@ =17 @) | e |
Or, d’apres l'inégalité triangulaire, |1 —e**| < [1] + [e**| = 1+ €** et on a
!1 + 6233‘ =1+ €%,
1—e2®
Ainsi, | —| < 1.
insi, |~ 1

Ce qui donne,

Ve eR, |f'(2)| <|f(x)| = f(2).

Or vu l’étude des variations, on a Vo € R, f(z) < =. O

N

1
. Notons P(n) : < u, € [O, 2] >.

D’apres ’énoncé, ug = 0, donc P(0) est vraie.
Soit n € N quelconque fixé. On suppose P(n) vraie.

1
On a u, € {O, 2]. Or up+1 = f(uy), mais on a vu que, pour tout x € R, f(z) €

1 1
[O, 2]. Ainsi, up4q € {0, 2} Donc P(n + 1) est vraie.

1
On a donc montré que, pour tout n € N, u,, € [0, 2} O

. Soit n € N. Entre u,, et ¢, f est donc continue (bornes incluses) et dérivables
(bornes exclues) donc d’apres le théoréme des accroissements finis, il existe ¢ com-
pris strictement entre u, et £ tel que

Fun) = f(0) = f/(e)(un — £ = tny1 — = f'(c) (un — 0).

En prenant la valeur absolue, on obtient,

[uny1 — 4] = ’f/(c)‘ |un, — £].

N

Or on a vu que, peu importe la valeur de ¢, |f/(c)| <
Ainsi, on a pour tout n € N,
1

[unt1 — 4| < ) un — €]
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c. Notons, pour n € N, P(n) : < |up, — ¥¢| < >.

2n+1

1 1
Pour n = 0, on a bien \uo—ﬁ\gﬁcaru():OetEE {0,2}

Soit n € N quelconque fixé. Supposons P(n) vraie.

On a [ups1 — € < 3 |u, — 1.

1
Or d’apres la propriété de récurrence, on a |u, — ¢| < TESE
Ainsi, on a
1 1 1 1
|unt1 — €] < ) |un — €] < 9o+l on+2
Ainsi, P(n + 1) est vraie.
1
Donc pour tout entier naturel n, |u, —¢| < IESE O
d. Ona ngrfm ol = 0, donc d’apres le théoréme des gendarmes, on a ngr}rloo lup, — €] =

Ainsi, on a

lim u, = /.
n—-+o0o

O

e. Nalvement, on fait

import math as m

def limite(eps):
n=0
u=0
while 1/2**(n+l1) >eps:
u=m.exp(u)/(exp (2%u) +1)
n+=1
return u

Attention & bien faire attention au calcul de f(u) : il y a un probléme quand u = 0.

#<€<:>n>_ln(5)
2n+1) ~ - W@

Ou alors apres avoir résolu — 1, on peut remplacer

la derniére fonction par

def limite(eps):
u=0
for k in range(m.ceil(-m.log(eps)/m.log(2))-1):
u=m.exp(u)/(m.exp (2%u)+1)
return u

O]

17 Variables aléatoires

Exercice 1. Ona E(X) =1x0,14+2x0,25+3x0,25+4x0,15+5x0,15+6 x 0,1,
ce qui donne E(X) = 3, 3.

Ensuite, on calcule : E(X?) = 12x0, 1+22x0, 25+3%x0, 25+42x0, 15+5%x0, 15+62x0, 1.
On a donc E(X?) =13,1.

Puis on trouve, d’aprés la formule de Koenig-Huygens, V(X) = E(X?) — (E(X))? =
13,1 -10,89 =2,21. O
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Exercice 2. 1. On a évidemment X (Q) = [1,4].

On doit a avoir I'existence d’un coefficient de proportionnalité entre le numéro obtenu
et la probabilité qu'’il apparaisse. Ainsi, Ja € R tel que Vk € [1,4]], P(X = k) = ak.

Par ailleurs, pour que X soit une variable aléatoire, il faut et il suffit que Yk € [1,4],

4
P(sz))OdoncaZOetZP(X:k:):l.
k=1

0 iP(X k) 24: K=o~ 10
T = = K = = (o'
k=1 k=1 2

Autrement dit, X est bien une variable aléatoire si et seulement si 10a = 1.
k

On a donc, Vk € [1,4], P(X =k) = 0 O
2. On a .
2 1+449+16
E p— = = e —
(X)=> kP(X =k) 210 h
k=1 k=1
et donc E(X) =3.0
3. On a A A
B 148427464
EXH=NkPX=kK=) — = =10
(X7 ;;1 ( ) ,;10 10

et donc d’apres la formule de Koenig-Huygens

V(X)=E(X?) — (BE(X))*=10—09.

On a donc V(X) =1. 0

4. On a, d’apres le théoreme de transfert, comme X ne s’annule pas,

1 1 11k 4
E<X>_ZkP(X_k)_Zk10_1O.

k=1 k=1
1 2
Ainsi, F( — ) =-=. 0
1nsi, <X> 5

5. On va aller un peu plus vite. On a toujours évidemment X (Q2) = [1, n].
Ja € R tel que Vk € [1,n]], P(X = k) = ak.

Par ailleurs, pour que X soit une variable aléatoire, il faut et il suffit que Vk € [1,n],

P(X=k)>0donca>0et » P(X=k) =1
k=1

Or Zn:P(X:k:) = iak:aw.
k=1

k=1 2
2
Autrement dit, X est bien une variable aléatoire si et seulement si « = ———.
n(n+1)
2k
On a donc, Vk € [1,n], P(X = k) = —.
n(n+1)

Ainsi,

L L 2 nn n
E(X) =Y kP(X = k) Zn(sk—:kl) _2n(n+ D@n+1)
k=1 k=1

6n(n+1)
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On a donc

B(X) = 2n + 1.
3
Puis X ) )
- 2k 2n4(n+1)
E(X*) =) KFP(X=k=> =

Pt mn(n+1)  4An(n+1)

ainsi .

B(X?) n(n;— )

Puis, d’apres la formule de Koenig-Huygens

V() = B(x?) - (o) = 2 G bl

On a donc

P+ —8n* —8n—2 n*+n—-2 (n—1)(n+2)

X
ViX) 18 18 18

Et pour finir, comme X ne s’annule pas, en utilisant le théoréme de transfert :

1 | "1 2k
E() —Y PX=k) = ;— .
X =k = kn(n+1)

1 2
Ainsi, F( = | = .
()~ 21
O
Exercice 3. 1. X(2) = [1,4]. Notons N; I’événement < obtenir une boule noire au
tirage @ >.
S — 7
On a (X = 1) = Nl, donc P(Xl = 1) = P(Nl) = E
Puis on a (X = 2) = Ny N Ny, donc
P(X = 2) = P(N, N N3) = P(N)P(N3| V1) = -+ =
=2)= 1M Nz) = 1 2lN1) =159 = 30

d’apres la formule des probabilités composées car P(Ny) # 0.
Puis on a (X = 3) = N; N N2 N N3, donc

_ - 327 7
P(X = 3) = P(Nl N Ny mNg) = P(Nl)P(N2’N1>P(N3’N1 ﬂNg) = Egé = EO

d’apres la formule des probabilités composées car P(N; N Na) # 0.

Pour la derniére, on peut soit faire la méme chose, soit remarquer que comme (X =
i)z’e[[l,zl]] est un systeme complet d’événements, on a

P(X=4)=1-P(X=1)-P(X =2)— P(X =3).

En tout cas, la loi de X est donnée par loi est donnée par :

Valeur k de X 1 2 3 4

7 7 T
10 | 30 | 120 | 120
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2. Il est clair que l'on a Fx(z) =0 pour x < 1 et Fx(z) =1 pour = > 4.

7
On a, pour z € [1,2[, Fx(z) =P(X =1) = 0
14
Puis pour z € [2,3[, Fx(z) =P(X =1)+ P(X =2) = =
119
Enfin, pour z € [3,4[, Fx(z) =P(X =1)+ P(X =2)+ P(X =3) = 50"
Ainsi, on a
0 six <1
7 .
Q sil<e<?2
Fx(z)=< — si2<z<3
11159
120 sid3<xr<4
1 sid <.
d
3. On a A
7 7 7 1 165
(X) kZ::l ( ) 10 + 30 + 120 120 120
donc "
E(X)=—.
(0 =2
Puis
4
84 28 7 1 275 55
EX) =Y K¥PX=k)= — 44— 49— 16— = — = =,
(x5 kz:; ( ) 120 + 120 * 120 + 120 120 24

puis d’apres la formule de Koenig-Huygens,

55 121  440—363 77
VX)=2 o=
() =31~ 6 192 192

O]

Exercice 4. 1. C’est la méme technique que 'exercice précédent.

X(Q) =[1,5]. Notons B; I’événement < obtenir une boule blanche au tirage i >.

Ona (X =1)=Bj,donc P(X;=1)=P(By) = %

Puis on a (X = 2) = By N By, donc

_ — 14 2
P(X =2)=P(B1NBy) = P(B1)P(B2|B1) = 5~ = -
d’apres la formule des probabilités composées car P(Bj) # 0.
Puis on a (X = 3) = By N By N Bs, donc

_ — 134 1
P(X = 3) = P(Bl N By ﬂBg) = P(Bl)P(BQIBﬁP(B?,’Bl N Bg) = 5?6 = ?

d’apres la formule des probabilités composées car P(B; N Bz) # 0.
On continue et on a (X = 4) = By N By N B3 N By, donc

P(X = 4) = P(Bl ﬂBQﬂBg,ﬂE) = P(Bl)P(BQ|B1)P(Bg|Bl ﬂBg)P(E’Bl ﬂBQﬂBg),
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done 1324 2
PX=4)=----=—
( ) 2765 35
d’apres la formule des probabilités composées car P(By N By N Bs) # 0.
Pour la derniére, on peut soit faire la méme chose, soit remarquer que comme (X =

i)ie[[l,5]] est un systeme complet d’événements, on a

Ainsi,

En tout cas, la loi de X est donnée par loi est donnée par :

Valeur k de X 1 2 3 4 5

35120 |10 | 4 1

70 | 70 | 70 | 70 | 70

On a donc

 3542x204+3x10+4x4+5 126 9

70 T 70 5

E(X) = 25: kP(X = k)
k=1

On a

C35+44x20+9x10+16x4+25 204 21

70 T 0 5

B(X?) = 25: E*P(X = k)
k=1

On a plus qu’a appliquer la formule de Koenig-Huygens pour obtenir

21 81 2
V(X) = B(X?) — (B(X))? = = "% %

O]

2. Remarquons que Y = X — 1 (le nombre de boules blanches est le nombre de boules
piochées moins la boule noire qu’on a fini par obtenir), on en déduit donc immédiatement
que Y (Q) = [0,4] et on retrouve la loi dans le tableau suivant :

Valeur kdeY | 0 1 2 3 4

35120 |10 | 4 1

P(Y = i e g . [
( k) 70 | 70 | YO0 | 70 | 70
4
Par linéarité de 'espérance, on récupere F(Y) = E(X —1) = E(X) -1 = R puis
24
VY)=V(X-1)=V(X)= T

O

Exercice 5. 1. X suit une loi binomiale de parametres (5, %), puisque X compte le

nombre de succes a I’épreuve < obtenir une boule blanche en piochant dans I'urne > répétée

1
5 fois de fagon indépendante (il y a remise) et de probabilité de succes ok Son espérance
5

est donc E(X) = g et sa variance V(X)) = T O
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2. Méme chose, il suffit d’échanger noir et blanc. (J

Exercice 6. 1. On remarque que X () = [1,4].

On note B; I'événement < obtenir une boule blanche au tirage ¢ >. Ainsi, on a

(X: 1) = ((Bl OEQ ﬂ§3 ﬂ§4ﬂ§5)U(§1ﬂBg ﬂEg ﬂ§4ﬂ§5)
U(B1N BN B3N ByN Bj) U (B1NB2N B3N ByN Bs)
U(Bl ﬂBQﬂB3ﬂB4ﬂB5)).

Par incompatibilité des événements, on a

P(le) = P(Bl QEQQE3QE4QE5)+P(§1QBQ ﬂ§3 ﬂ§4ﬂ§5)
+P@1 m@ N Bs m@mE—,)JrP(E N By N B3N ByN Bs)
+P(B1NByN B3N ByN Bs).

Par la formule des probabilités composées, on a
P(Blﬁ§20§3ﬂ§4ﬂg5) = P(Bl)P(E‘Bl)P(Eg’BlﬂEQ)P(§4’Blﬂggﬂﬁg)P(§5‘Blﬂ§2ﬁ§3ﬁ§4).

—- = = 44321 1
Ainsi, P(BlﬁBQﬂBgﬂB;LﬂBg)) == g?égz == 770

— - = = 1
On remarque de la méme facon que P(B; N By N B3N By N By = 70’ puis que
L L 1 o _ 1 -
P(BlﬂBgﬂBgmB4ﬂB5:7O, P(BlﬂBgﬂBgﬂB4ﬂB5:7—0etenﬁnP(Blﬂ

- = 1
BQﬂB3QB4ﬂB5:%

9 1

=0~ 1

Par symétrie en échangeant blanc et noir, on réalise que P(X =4) = P(X = 1). De

plus, toujours pas symétrie, P(X = 2) = P(X = 3).
4

Ainsi, P(X = 1)

Enfin, il suffit de remarquer que Z P(X = k) =1 pour récupérer P(X =2) = E
P 14
1
En résumé,ona P(X =1)=P(X =4) = 1 et P(X =2)=P(X =3) = %

Sinon, en faisant du dénombrement (pour se préparer a l’exercice [L6) on numérote

les boules (les blanches de 1 a 4, les noires de 5 & 8), € est ’ensemble des 5-listes

| |
8! = 8— Munissons-le de la

sans répétitions de [1,8]. Son cardinal est donc D

probabilité uniforme.

L’événement (X = k) consiste a avoir pioché k boules blanches et 5 — k boules noires.
Le nombre de fagons de fixer les k boules blanches et 5 — k boules noires obtenues est

4 4
( ) < ) Il y a 5! fagons de les ordonner, ainsi Card(X = k) = 5!(;)( *).

k)\5—k 5=k
On a donc g
5! 131(41)2
pocon WG smae
5 k4 — k)5 —k)I(k—1)18!
1
En remplagant k par les valeurs qu’il doit prendre, on récupere P(X = 1) = w

1
P(X:Q):%,P(X:S):%etenﬁnP(X:AL):ﬂ.
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Ensuite, on a

B(X) = 24: kP(X = k)
k=1

1 6 6 1
= 1><14%—2><144—3><14+4><14
35
14
5
2
Et,
4
E(X*)= > kP(X =k)
k=1
2 1 2 6 2 6 2 1
DR VR VI B VR P
9%
14

Enfin, d’apres la formule de Koenig-Huygens, on a

95 25 190—175 15
V(X) = B(X?) — (B(X)? = 1, - 5 = ——— = .

O

2. Méme chose, il suffit d’échanger noir et blanc. [J

2 1
Exercice 7. 1. C’est une uniforme sur [1,2n], donc E(X;) = n;_ et V(X1) =

4n? — 1
12

O

2. On a X2(2) = [1,2n]. 1l faut utiliser la formule des probabilités totales appliquée au
systéme complet d’événement (B, By) ou By est '’événement : < le premier numéro
est strictement inférieur a k > pour calculer chacune des probabilités ci-dessous en
remarquant que By, et By sont bien non-négligeables.

Pour 7 > k,

_ k-1 1 o — (k—1)
- 2n 2n 2n — (k—1) 2n
_ 2n+k-—1
N 4n?
— 1
Le point subtil est : P(Xo =i|By) = m parce qu’on cherche la probabilité
n [e— —

d’avoir pioché la boule numéro 7 sachant qu’on a pioché une boule dont le numéro est

supérieur ou égal a k, alors que P(Xs = i|By) = o puisqu’on pioche une nouvelle
n

boule.

246 / [359)



Pour i < k,

P(Xy=i)= P(Xs=i|B)P(By) + P(Xz = i[By) P(By)

B 1k—1+02n—k+1
 2n 2n 2n
k-1

4n?

11 suffit ensuite de calculer I'espérance (qui existe bien puisque les valeurs prises par
X, forment un ensemble fini).

On a
2n
E(Xp) = Y iP(Xy=1)
;ﬂill 2n
= Y iP(Xa=i)+ ) iP(Xy=1i)
i=1 i=k

’“Zl E—1 i”:anjtk—l
p— 27
Z4n2 4n?

i=k

k 1

2n+k )
= Elvig Zk

i=1

2n 1 k—1)k
Zz-Zz—Zz— t Dk

Ainsi,
E—1(k—1Dk 2n+k—172n2n+1) (k—1)k
B = et T { 2 2

k(=124 2n+k—1)2n2n+1) — k(k — 1)]

B 8n?

_ 2n(2n+1)2n+k —1) — 2nk(k — 1)

N 8n?

_ 2n(4n®+2nk—2n+4+2n+k—1—k*+k)

N 8n?

B+ (2n+2)k+4n® -1

N 4dn

 —(k—=n—1)>+5n*+2n

N an
en prenant la forme canonique. Elle est maximale pour K = n + 1 et on trouve
E(X,) = 5n+2' =

Exercice 8. 1. Voila une question relativement simple : X,,(2) = [0,n]. O

2. On note B; ’événement : < on obtient une boule blanche au tirage 7. > On a vu que
X1(2) = [0,1].
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Ona (X1 = 1) = By done P(X; = 1) = P(By) = % puis, comme (X1 = 0), (X1 = 1))

1
forme un systéme complet d’événements, P(X; =0)=1—P(X;=1) = 3

Pour X», on a vu que Xo(Q) = [0,2]. Ainsi, on a (Xy = 0) = By N By, donc
P(Xy =0) = P(B1)P(B2|B1) = 55

d’apres la formule des probabilités composées car P(By) # 0.
Puis de la méme fagon, (X = 2) = By N By, donc

12
P(Xy=2)= P(B1)P(Bs|By) = 33
d’apres la formule des probabilités composées car P(By) # 0.

Pour terminer, on sait que (Xy = i)ie[[O,Q]] est un systeme complet d’événements, donc

On aurait aussi pu dire que (Xo = 1) = (By N By) U (B1 N Bg) puis calculer la
probabilité de cet événement.

Ainsi, X1 et X5 suivent des lois uniformes sur ’ensemble des valeurs qu’elles prennent.
O

. La technique que nous venons d’employer ne va pas fonctionner. Ainsi, nous allons
procéder par récurrence en posant P(n) < X, < U([0,n]). >

Remarquons que linitialisation a été faite pour n = 1 et n = 2 dans la question
précédente.

Soit n € N* quelconque fixé. Supposons que P(n) est vraie.
On a déja vu que X,,+1(Q) = [0,n + 1].
Soit k € [0,n+1], en utilisant la formule des probabilités totales appliquée au systéme

complet d’événements non négligeables (X, = 4);c[o,n], On a

n

P(Xnp1=k) = P(Xn41 = k| Xp = i) P(X, =1).

i=0
Or, pour toutiE[[O,n]],onaP(Xn:i):n+1.Ainsi,
1 n
P(X =k)= P(X =kl X, =1).
(Xnt1 ) n+1izzo (Xn+1 [ Xn =)

Si k € [1,n], remarquons que P(X,+; = k|X,, =i) =0saufsii=koui=%k—1
car le nombre de boules blanches obtenues au rang n + 1 ne peut étre égal qu’a celui
qu’on avait au rang n ou éventuellement a celui-ci plus 1.

Et on a
k

n 4+ 2
car il y a n+ 2 boules dans 'urne apres n tirages dont k blanches si on a obtenu k£ —1
blanches.

P(Xpi1 = k| X, =k —1) =
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De plus, on a

n+2)—(k+1) n+1—k
P(Xpiq = k|X, = k) = —
(Xnt1 =Kl ) n+2 n+2

car il y a n + 2 boules dans 'urne apres n tirages dont k£ 4 1 blanches si on a obtenu
k blanches.

Ainsi,

1 k n+1—k 1
P(X =k)= = .
(Xnt1 ) n+1(n+2+ n—+2 ) n—+2

Pour k£ = 0, le seul terme non nul est celui en ¢ = 0, donc

1 n+1-0 1
PXn p— p— p— .
(Xnt1=0) n+l n+2 n+2

Pour kK =n + 1, le seul terme non nul est celui en ¢ = n, donc

1 n+1 _ 1
n+ln+2 n+2

P(Xn+1:n+1):

Ainsi, X411 — U([0,n + 1]) et donc P(n + 1) est vraie.
Donc, pour tout n € N*| X, suit une loi uniforme sur [0, n]. O
Exercice 9 (Un peu difficile). 1. a. X(2) =[1,2n — 1].
Le plus simple est de déterminer P(X > k) pour k € [0,2n — 2].

En effet 'événement (X > k) consiste a n’avoir pioché que des cartes qui ne
sont pas un as noir en k tirages. Si on considere que l'univers est I’ensemble des

2n
combinaisons de k cartes prises dans un jeu de 52 cartes, il a pour cardinal ( A )

et Card(X > k) = <2nk— 2).

Autrement dit

(2n —k)(2n —k —1)

PX > k) = 2n(2n — 1)

Remarquons que ce résultat est vrai pour £k = 2n — 1 ou k = 2n.
De plus, pour k € [1,2n — 1]

=
~
I

=
I

P(X>k—-1)—P(X > k)
2n—k+1)2n—-k) (Cn—-k)@2n-k-1)

2n(2n — 1) B 2n(2n — 1)
Cn—k)@2n—k+1-2n+k+1)
2n(2n — 1)
2(2n — k)
2n(2n —1)°

2n — k
Autrement dit, Vk € [1,2n — 1], P(X = k) = h
n(2n —
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b. On a
2n—1

E(X)= > kP(X =k)
k=1

2n—1
2n —
=
n(2n —1)

k=1
2n—1 2n—1

_ 1 n B 2
o n(2n—1)<2 kz::lk kz::lk>

_ 1 ( 2n(2n—1) 2n(2n—1)(4n — 1))

n(2n —1) 2 6
_12n*(2n—1) — 2n(2n — 1)(4n — 1)
B 6n(2n — 1)
_ 2n(2n —1)[6n — (4n —1)]
B 6n(2n — 1)
_ 2n+1
3
O
c¢. G1 = —X + a donc, par linéarité de 'espérance
3a—2n—1
E(Gy) = — 5
O
- . s , . 2n+1
d. Ai-je besoin de détailler le résultat 7 On doit prendre a = 3 0

2. a. Il suffit de réaliser qu’on a fait une bonne partie.
On a G2(2) = {—n} U [a — n,a — 1]. Ensuite,

2n — k .
Vk € [1,n],P(Ge = —k +a) = n@n 1) autrement dit V¢ € [a — n,a — 1],
2n —a+/4
PGy =10 = n(2n —1)
Ona P(Ga=-n)=1—P(X <n)Or
P(X<n)= > P(X=k)
k=1
- 22—k
= n2n—-1)
2n? 1 -
= - k
n(2n—1) n(2n—1) l;
B 2n? B 1 n(n+1)
~ n@2n-1) n@2n-1) 2
_ 4An? —n(n+1)
B 2n(2n — 1)
- 3n?—n
2n(2n — 1)
3n? —n n?—n n—1

et P(Ga=—-n)=1

T om@n—1) 2n(2n—1) 2@n-1)
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b. Allons-y, c’est long et assez pénible mais pas tres difficile.

E(Gy)= > kP(Ga=k)

keG2(Q)
n—1 “I on—a+k
BTNV R SirTore
— _nni_l+n_1(z‘+a_n)n7+iaeci—k—a—i-n
IO Y n@n—1) 0T
n—1 1 .
= _n2(2n—1)+n(2n—1) ZIZO(H—a—n)(n—&—z)
n—1 1 A
= n2(2n—1)+ n(2n—1) ZO(Z +ai +n(a—n))
B n—1 1 n(n—1)(2n —1) n(n —1) 9
— —n2<2n_1)+n(2n_1)( o +a—— —I—n(a—n))

n—1 (n—1)(2n—1)+3a(n — 1) + 6n(a —n)

= —-n
2(2n — 1) 6(2n — 1)
B _3n2—3n N —4n? + (=34 3a+6a)n+ 1 —3a
 6(2n—1) 6(2n — 1)
B ~m? +9an +1 - 3a
B 6(2n — 1)
=2+ 1+33n-1)a
B 6(2n — 1)
—n? +1 —1
On a donc E(Gs) = "+ 14330 )a, donc pour avoir un jeu équilibré, on
6(2n — 1)
n? — 1
doit prendre a = 33— 1) (;Ln 1y
Exercice 10. On a E(X Z EP(X Z EP(X = k).

Or, Vk € [1,n], P(X =k) = (X>k:—1) P(X>k)car ( X =k)UX >k)=(X >
k — 1) avec une union disjointe. Ainsi,

E(X) = Zn:k:P(X>k:—1)—k:P(X>k)
k=1
= zn:k:P(X>k:—1)—

k=1 k
n—1

= ) ((i+1)P(X>i)—

=0 k

NE

kEP(X > k)

Il
—

EP(X > k) en posant dans la premiére somme i = k — 1

NE

Il
—

n—1 n—1

= Y iP(X>i)+ ) P(X Z (X > k)
1=0 =0 k=1
n—1

= 0P(X>0)+ > P(X>i)—nP(X >n)
i=0
en simplifiant les termes de la somme qui peuvent 1'étre.
Remarquons alors que P(X > n) = 0, donc en fait, il ne reste plus que
n—1
E(X)=> P(X >1i).
i=0
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O

Exercice 11. 1. Notons €2 'ensemble des 3-listes d’éléments de [1,n] qui modélise notre
expérience et munissons-le de la probabilité uniforme.

On a Q = [1,n]3, donc Card(Q2) = n3.

Par ailleurs (X > k) = [k + 1,n]?® puisque tous les numéros doivent étre strictement
plus grands que k.

Ainsi, Card(X > k) = (n — k).

_ 3
onadoncP(X>k;):(” k).m
n

—1
i n—k

2. On trouve E(X) =) (
k=0

3
).Enposantﬁzn—k,ona
"N 1 nn+1))?
20 =3 () = m ()
=1

On a donc

O]

Exercice 12. Tout d’abord, remarquons que X (€2) = [0, 20].
Notons F; I’événement <« on a obtenu face au lancer ¢ >.

k-1
On a alors pour tout k € [1,20], (X =k) = (| F; N Fy.
i=1
k—1 17
On a bien entendu, P(X = k) =P (ﬂ N Fk> , puis par indépendance des lancers
i=1

k—1
P(X =k)= <H ;) %: 21k.

=1

20
Par ailleurs, (X =0) = ﬂ F; et comme ci-dessus, on applique P puis par indépendance
i=1
des lancers, on récupere :
20 4 1
i=1

On peut passer au calcul de I'espérance.
Premiére fagon : On remarque qu’on nous suggére d’utiliser I'exercice[I0} donc déterminons,
pour k € [1,20],

20 20 1 20 1
P(X > k)= Z P(X =1i) = Z 9i — 9k+1 Z 9i—k—1°
i=k+1 i=h+1 =kl
1 20-k-1 4
Enposantﬁzz'—k:—l,onaP(X>k’):W ;} ol"

Autrement dit )
1 1- 220—k 1 1

P(X>k):72k+1717% = ok T gm0
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19 19
1 1
I1 ne reste plus qu’a calculer E(X) = Z P(X > k)= Z < )

9k~ 920
k=0 k=0 2 2
On a donc : »
1 20
E(X)= 2 55~ 5%
= 2 2
o l-g3m 20
= 1 920
1—-35 2
B 2 20
- 9220~ 920°
Donc 11
E(X) ~ 919

Deuxieme fagon :

Ona E(X) = Z kEP(X =k)= Z kP(X = k) car le premier terme est nul.

On a donc E(X Zka Zkzk T

En utilisant l’astuce et en developpant on récupere :
1 220 1
k=1
20 20
1 1 1
Z k—1 Z k—1
o 2 25 2

19 1 20 4
= {4+ 1) — k— en posant £ =k — 1
20 2k
ZEO 1 19 1k:1 20 4
1 19
- 1 20
_ 220

2 k=1
2 20
p— 2 _— = —,
220 220
Soit 1
B(X)=2- o
221
La derniére solution était de considérer, pour x €] Z " = , de dériver
20 20 21
—21 1— 1-—-
cette égalité en le justifiant (on trouve Z kab—t = :1: ( 2) —i—;:( v ))et de
= (1—-=x)
1 20
I'appliquer en z = 3 pour obtenir Z kF qui est exactement le double de la valeur
k=1

recherchée (c’est la technique la plus facile). [

Exercice 13. 1. Notons, pour tout ’exercice, B; : < obtenir une boule blanche au iéme
tirage >.
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11 est clair que Y7(Q2) = {1, 2} (soit on n’a pas changé la composition, soit on a enlevé
une blanche).

2
OIl a (}/1 = 1) = Bl, dODC P(Yl = 1) = P(Bl) = —.

Et (Y1 = 2) Bl, donc P(Yl = 2) . O

oo\»—n

. OnaY,(Q2) ={0,1,2}.

Ona (Y, = ﬂBz, donc P(Y, (ﬂB)

=1
En utilisant la formule des probabilités composées, on a

(et au passage, I'hypothese de la formule est bien vérifiée).
(Y, = 1) correspond a I’événement < on a pioché une seule boule blanche >, ainsi

n

n
= U By, ﬂ B; | ce qu’on peut écrire
=

n
=UUBiN..nBioi NByN By N...N By,
=1

On a donc :

n
P(Yn_l)_P<UBlm...mBkmBkmBka...mBn)
k=1

Comme 'union est disjointe :

n
:ZP(EH...mBk_mBkmBkHm...mBTL).
k=1

On applique encore une fois la formule des probabilités composées et on a :
P(BTm...mBk_l N By N Bpyt m...mBTb) =P(BY)...P(Br1|BiN...NByy)

k—1
P(By ﬂ B))...P(By|BiN...NBy_1NBxNBjy1N...NBy_1).

1
Or les probabilités valent 3 jusqu’a ce qu’on pioche la boule blanche avec probabilité

—, puis chacune vaut encore —.
3’ 3
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Ainsi

- L 1 k712 9 n—k 2n—k‘+l
P(31ﬂ...ﬂBk_lﬂBkmBkHﬂ...ﬂBn):<3> 3(3) ="

Au passage, on remarque bien que I'hypotheése de la formule des probabilités com-
posées étaient bien vérifiée.
n 2n—k+1 9 n—1
Ainsi, P(Y,, =1) = Z 3 =3 Z 2% en posant £ =n — k.
k=1 =0
2n+1 —9
3n
Pour récupérer la derniére probabilité, le plus simple est de remarquer que (Y, =
1)o<i<2 est un systéme complet d’événement, donc

On a donc P(Y,=1) =

et donc B
3" — 2" 1
P(Y, =0) = R
3TL
O
3. On a
: ontl _ 9 1
k=0 3" 3n
2n+1
On trouve E(Y,) = TR

Exercice 14. 1. On a X () = [n, N] et Vk € [n, N], il est facile de déterminer P(X <
k). En effet, Q est I’ensemble des combinaisons a n éléments pris entre 1 et N et
(X < k) est 'ensemble des combinaisons a n éléments pris entre 1 et k.

o ()
Ainsi, P(X < k) = 1.
(n)
On adonc P(X =k) =P(X <k)—P(X <k—1) (en prenant P(X <k—1)=0si
k—1 < n ce qui est cohérent avec ’écriture avec les coefficients binomiaux en prenant
la convention habituelle).

On a donc, Vk € [n, N], en utilisant la formule de Pascal,

G- G

P(X=k)= -2 s

O

k k+1
2. La encore, nous allons utiliser la formule de Pascal puisque ( ) = ( + ) —
n

n+1
e
S0 -(5) -2 0 -2 00)

255 / [359)



En posant ¢/ = k 4+ 1 dans la premiére somme, on a

2265205

Or en simplifiant les termes qui apparaissent dans les deux sommes, il ne reste que
% kY (N+1 n
n) \n+1 n+1)
k=n

n
) = 0, on a bien démontré le résultat souhaité.

Mais comme (
n—+1

A noter que ce résultat porte le nom de formule de Pascal itérée. [J
k—1
(nfl)

)

N N
3.0naE(X)=> kP(X=k)=> k
k=n k=n

On a donc

1 g (k—1)!
PO =y L F e i =

n/ k=n

RN —ap & k
- NI glnn!(k—n)!

n(N —n) L [k
- (N! )Z(n>

k=n
nl(N—-n)l [N +1
N! <n+ 1
n!(N —n)! (N+1)!
NI (N —n)ln+1)!
n(N +1)
n+1

= n > d’apres la question précédente

= n

N+1
On a donc E(X) = n(—:—l)
n

O

Exercice 15. 1. Pour des raisons de généralités (la formule est connue dans ce cas un
peu plus général), on va faire la preuve de la formule de Pascal itérée, a savoir

=\ n+1
Il suffit ensuite de prendre N = 2n pour démontrer la formule demandée. On aurait
bien entendu pu faire directement le travail avec 2n.

1
Nous allons utiliser la formule de Pascal puisque F = ko — K , ainsi
n n+1 n+1

= \n = n+1 n+1 = n+1 = n+1
En posant ¢ = k 4+ 1 dans la premiére somme, on a

> (0)=2 ()2 hh)
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Or en simplifiant les termes qui apparaissent dans les deux sommes, il ne reste que
i kY (N+1 n
= \n C\n+1 n+1)
=n

n
) = 0, on a bien démontré le résultat souhaité.

Mais comme (
n+1

A noter que ce résultat porte le nom de formule de Pascal itérée.

Il suffit de remplacer N par 2n pour obtenir le résultat désiré. En utilisant la formule
de Pascal pour remplacer chaque terme, on tombe sur une somme télescopique. [J

2. On a clairement X (Q) = [n,2n]. Soit k € [n, 2n], déterminons P(X = k).
Prenons 2 ’ensemble des tirages possibles, c’est-a-dire I’ensemble des combinaisons a
n éléments de 1 & 2n qui contiennent les rangs d’apparition des boules noires. Il y en

2
a < n) Munissons €2 de la probabilité uniforme.
n

Considérons (X = k). C’est I'ensemble des sous-ensembles & n — 1 éléments pris entre
1 et K — 1 qui représentent le numéro du tirage ot on a pioché les k — 1 premieres
boules noires que l'on réunit avec le singleton {k} ou l'on pioche la derniére boule
noire. (X = k) contient donc (Zj)

Ainsi, on a Vk € [n,2n], P(X =k) =

Ensuite, cherchons son espérance.
On a

2n

E(X)= > kP(X =k)
k2=n o1
. _
_ Z Lk (n2;1)
k=n ( n )

(n))? & (k—1)!

n(2n+1)
n+1
Exercice 16 (La loi hypergéométrique, exercice difficile). 1. a. Numérotons les boules
rouges de 1 & m et les vertes de m +1 a m + n.

On a donc E(X) = O

Il s’agit de combinaisons & k éléments pris dans [1,m + n] qui contient m + n

éléments. Il y a (n —l: m) tirages a k boules. [J
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b.Ily a (m) ensembles a ¢ boules rouges (combinaisons & i éléments de [1,m])
i

n N . . . ~ . 7’ 7
et b ensembles & k — i boules vertes (combinaisons a k — i éléments de
—1

m) (k: " > ensembles a k boules dont exactement
-1

[m+1,m+n]). Ainsi, il y a (
i

1 sont rouges.
La convention prise permet d’éviter de distinguer certains cas. [

c. L’ensemble des tirages possibles peut s’écrire comme 'union disjointes des tirages
a exactement ¢ boules rouges pour 7 entre 0 et k. Ainsi, comme 'union est disjointe,

k
ilya Z (m) (k: 71 z) ensembles & k boules.

i
. n-m N . . p s . p
Comme nous en avions ( i ) d’apres la premiere question, I’égalité est démontrée.
O
n
a. On doit vérifier que Z P(X =k)=1.

k=0

On a
= (1)

zn:P(X:k):Z b nk
k=0

= G

En mettant tout sur le méme dénominateur, on a

. 5> () (M)
k=0

On a bien défini une variable aléatoire. [J
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b. On a

E(X)= Y kP(X=k)
k=0
n (Np)(Nq
= Zk k A *” le premier terme est nul
k=1 (n)
1 & (Np)! Ngq
= Yk
(]X)]; E(Np—k)!'\n—k
_ Ly (Np- LN (Nq>
(]X) = (k=1D(Np—k)!'\n—k
_ Npi(Np—l)(Nq)
(]X)k:ll k—1 J\n—k
Np &~ (Np—1 N
= Tp ( p )( a )avecﬁzk—l
(n) (=0 ¢ n—1-4
Np (Np+ Nqg—1
_ p(Np+Na d’apres la formule de Vandermonde
G)\ n-l
n!(N —n)! (N —1)!
= N
PN - DUV — )
= np.

O]

c. Cela modélise un tirage sans remise (ou simultané) de n boules parmi N dont p/N
ont une certaine propriété et ou X compte le nombre de telles boules obtenues. On
parle de boules, mais il peut s’agir d’autre chose (individus dans une population
qui ont un certain caractere). [

. a. Considérons, pour k € [0,n],

P(Xny =k) = (]7\;)
On a (N )(Nq)
P(Xy=k) = k(Nr)zk
i (Np) (NQ)'n'(N n)!
-~ Kk{(Np-— k “K)I(Nq—n+ k)IN!
_ <n> (Ng) (N —n)!
 \k)(Np— k (Ng—n+k)! NI
Or pour N — +oo,
Et de méme,
k—1
(Nivp)k) [T(Vp i) ~ (Np)*
i=0
et
(Ng)! B n—k—1 | N
(Ng—n+k) g) (Nqg—i) ~ (Ng)"*
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En regroupant tous ces équivalents, on a

<n> (Np)! Ng)!  (N—n)! <n> (Np)*(Ng)"*
N!

k) (Np—k)!(Nq—n+k)! k Nm

Or, on a

n (Np)k(NQ)n_k: ) gt

k N7 k ’
Ainsi,

: oy (Y Kk on—k

=0

O

b. Autrement dit, lorsque N est grand, une loi hypergéométrique n’est pas tres loin
d’étre une loi binomiale. C’est relativement prévisible puisque ’absence de remise
ne change pas énormément les probabilités lorsqu’on tire un nombre n négligeable
de boules comparé au nombre total de boules dans I'urne. En pratique, on peut
utiliser cette approximation d’une loi hypergéométrique par une binomiale lorsque
10n < N. O

Exercice 17. Notons X, le nombre de 6 obtenus en n lancers. Comme les lancers sont
indépendants et ont la méme probabilité de faire 6, il est clair que X,, — B(n, %)
Or, d’apres 'inégalité de Bienaymé-Tchebychev, on a, pour tout € > 0,

V(Xn)

P(IX, — B(X,)| 2 ) < -5

3

5
Or, on connait E(X,) = % et V(X,) = % L’inégalité devient

n 5n
PllX,—=|>¢) <22,
(‘ " 6‘ 6) 3622

X
Faisons apparaitre la fréquence d’apparition de 6 soit —, on a
n

g

1
On veut la probabilité que la fréquence de 6 soit autour de 5 au centiéme pres, donc

Xn 1’>5>< 5n

o 67 n) S

n 6|

X, 1 € omn
1-Pl|l——-—=|<—- )< —5
(’n 6‘ n) 362

X, 1 € om
Pl|— —-= - >21—-—.
(‘n 6’<n> 36¢2

ce qui revient a

1
On veut que % =100 donc € = % ce qui nous donne,
X 1 1
P(‘n—‘ < > S1- 50000'
n 6 100 36m
s - .95 .
On veut cette probabilité supérieure a 100’ ce qu’on pourra affirmer si
1 50000 > &
36n 100
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On résout cette bien brave inéquation, pour obtenir

50000 1
<

36n 20

donc
36n

2
50000

1000000
et pour finir n > TR ~ 27777, 78.

On trouve qu’il faut 27778 lancers.
En fait, I'inégalité de Bienaymé-Tchebychev est vraiment grossiére pour ce genre de
travail et d’autres que vous verrez I’an prochain permettent de conclure avec nombre
bien moins important de lancers. [J

Exercice 18. On remarque que si on note X le nombre de vaches qui vont vers la
premiere étable, X compte le nombre de succes a I’épreuve < la vache va vers la premiere
étable > répétée 100 fois de fagon indépendante, donc X — B(100, %)

En utilisant I'inégalité de Bienaymé-Tchebychev, on a, pour € > 0

V(X

P(X ~ B(X)| 2 2) < 1)
soit o5
P(IX - 50/ > ¢) < 5

autrement écrit o5
1-P(X —50]<e) < =
ou encore

25

P(0—e<X <50+¢e)>1-=
(3

. e - , . 9 ,
On veut choisir ¢ tel que cette probabilité soit supérieure ou égale a 100° ce qu’on peut
assurer lorsque

autrement dit

soit
€ > V500 ~ 22, 4.

Il faut donc 23 places au-dessus de 50, soit faire des étables de 73 places. [

18 Intégration sur un segment
Pour les trois premiers exercices, seules les méthodes, astuces et résultats sont indiqués.

Pour la rédaction, reportez-vous aux exemples du cours. []

1
Exercice 1. 1. Soit on fait apparaitre un 2 au numérateur et on multiplie par 5 pour

Lde In(3)

i it =2 1.On t = O
se corriger, soit on pose u = 2x + n trouve o1 5
; . -z +3
2. Soit on pose u© = x + 2 et on coupe en deux, soit on remarque que 3 =
T
_ 2) + 5 2 —r+3
—+2)+5 et on coupe la fraction en deux. / s dz =5In(2) —2. O
x4+ 2 0o x+2
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10.

11.

12.

13.

14.

15.

Soit on la reconnait tout de suite, soit on pose u = 3z+5. /

O]

dx

2\F—4f

V3xr +5

On peut poser u = x + 2 pour se simplifier la vie, ou u = 2x + 4.

Ensuite, il faut remarquer que x —

/1 In(2e+4) _ (In(6))° — (In(4))* _
0

xr+2 2

xe?®. [

Il faut faire une IPP : dériver le In intégrer le polynoéme et simplifier la nouvelle

T
intégrale qui se trouve étre celle d’un autre polynome. / (t*+t—1)In(t)dt =
1

x? 2?In(z)  2®In(x) 23
S | - =.
T 3 T3

xr
Deux IPP, a chaque fois dériver le polynéme. / (=2 +t—1)e tdt = (22 +24+2)e " —
1

471 O

Commencer par remarquer que In(z3) = 31n(z), puis IPP, on dérive le In. /

3—6e 1.0

32

5
On peut poser t = 23 + 2. /
P P 2 a3+

On peut poser t = 22 + 1.

/ \/7dx—3\f 3v2. O

Attention & vérifier que le dénominateur est bien de signe constant! On a z% — 22 +

5 dz =1In(127) —

r—1=(z—1)(z>+2%+1) <0 pour x € [0,1/2].

On a donc

/% 43 — 2x + 1
dx =
0o vr—a2+2-1

[ln(—x4 + 22

O

1
Si on ne voit rien, on peut poser t = % + 2. / zln(z?+2)dz =3
0

O

—x—l—l)}

—In(x) est la dérivée de = —

0

0

In(10). O

1/2
/ ln<

11
16

)

2
Si on ne voit rien, on peut poser t = 3z2+2z—1. / (3x+1)e3m2+2x_1 dr =
0

O
25 +2

0 par encadrement car pour tout x € [0,1], 0 < 3 S
e+x

0 par encadrement car pour tout x € [0, 1], 0 < 2"e” < ex
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1
e

5n+2 ]

m.0O

1

2

% In(x)?2.

3

X
. 11 faut faire une IPP (dériver le polynome, intégrer I'exponentielle). / (2t+1)e* dt =

3

¢ In(z?%)

e

Lo

2

1
2

—€

dx =

lné?)) —In(2) — =

-1



16. C’était un semi-piege, on peut la calculer et ¢’est méme plus facile.

¢ In?"(z) 1 2n+1]° 1
——der=|——(1 " = .
/1 x v [Qn—i—l (In() 1 2n+1

Ou on pose t = In(z). O

17. On remarque que cos(z) + 1 = 2 cos? (;) et sur cet intervalle, cos (g) > 0.

vy vy €T
Ainsi 1 dx = 2 — | dz =2v2. O
insi, /0 \/ 1+ cos(x) dx /0 V2 cos <2> r=2V?2
18. On trouve / V1—22dx = / v/ 1 — Cos2 —sin(¢ dt Or comme sur cet inter-

/2
valle sin(¢) > 0, on a /1 — cos?(t) = sin(¢).

1 /2 /2 1— 2
Ainsi, on a / V1—22dz = / sin®(t) dt = / 1 — cos(2z) —
0 0

™
—. 0O
0 2 4

0 1—t
19. En la notant I, avec le changement de variables indiqué, on tombe sur I = / In (1 + an(u)) (—du)
/4 1+ tan(u)

(& vérifier en explicitant tan (Z — .CL‘) )

In(2 In(2
7rn()—l,aimsilzwn()

4 S'D

w/4
Puisona I = / In(2) — In(1 + tan(u))du =
0

Exercice 2. 1. C’est une intégrale de fonction continue donc ¢a existe. Une IPP pour

1
obtenir / ze®dr =2¢7 1. 0O
1

2. On peut se placer sur R puisque la fonction ¢ —— sin3(t) est continue sur R par
composition. Ensuite on commence par remarquer que sin®(¢) = sin(¢)(1 — cos?(t)) =
sin(t) — sin(t) cos?(t).

On peut désormais intégrer terme a terme.
X x 1
On a / sind(t) dt = / sin(t) — sin(t) cos(t) dt = [ cos(t) + 5 cos* (1)
0 0

On a donc . ) 5
/ sin®(t) dz = — cos(t) + = cos®(t) + =.
0 3 3

Remarquons que I’ensemble des primitives x — sin®(x) est constitué des fonctions
L 3
x +— —cos(x) + 3 cos () +k; kEeR.

O

3. Il s’agit d’une IPP, mais les fonctions qu’on a envie de poser ne sont pas C! sur [0, z].
I1 faut donc le faire sur [A, x| puis faire tendre A vers 0 pour avoir le résultat que I'on

T 2] 2
souhaite. / tin(t)dt = vIn@) _ O
0 2 4
1 n
E 3.1.0 =
xercice na Z k‘—i—n 02
s : . 1 -1 LS|
sociée & la fonction continue sur [0,1] = . lim Z = / dx =
1+ n%JrOOk:lk‘f‘n o 14+

In(2). O
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2
k
1 n v
2. On a Z = — Z (n)2 Ainsi, il d’'une somme de Riemann associée a
k +n)? oo (1+%
- n
2

la fonction continue sur [0, 1] = — (1173:)2

n k2 1 372
| = .
On a donc n_lﬁlooz (k)2 /0 TETSE dx

1 2 1 2 ) 1
Ensuite, / (xi dz = / (L+2) ( 2x+ ) dz, donc
0 0

14 x)? (1+x)
1
/ /1— a:—l—l 7+ 1 dzx.
0 (1+z)?
Ainsi,
La? 13
———dx = —2In((1 — = — —2In(2).
[ o= [o-2m o) - | =3 -2me)
OJ
n k 1 n k 1
3. L’idée est de remarquer queH<1+) = exp (ln <H <1+) ))
n n
k=1 k=1
Or

(T (14 5)) =25 (14 ).

Il suffit ensuite de remarquer qu’on tombe sur la somme de Riemann associée a la
fonction continue sur [0,1] x — In(1 4 z), et par conséquent

% Enj In <1 + :z) _ In(1+z)dz = [(z + 1) In(z + 1) — (z + 1)]; = 2In(2)—

n—-+4o0o 0

Ensuite, par continuité de la fonction exponentielle, on a

S=

" k
li 1+—~) = 2In(2) — 1) = 4e L.
i TL(142)" = emiain) -1 = s

O
4. C’est clairement une somme de Riemann associée a la fonction continue sur [0, 1]

x + cos(x) sin(z). Ainsi

ngl}rloo - Z cos ( > sin (:) = /01 cos(z) sin(x) do = B sin2(af)} = %sinZ(l).

O

Exercice 4. Nous 'avons déja faite de nombreuses fois, mais au cas ot... on va d’ailleurs
en faire un peu trop.

Notons h la fonction définie et dérivable sur | — 1;4+o00[ par h(x) = x — In(1 + x), bien
définie et dérivable car sur cet intervalle 1 + z > 0, donc on compose des fonctions
dérivables puis on fait une combinaison de fonctions dérivables.
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1
Onah/(z) =1- oz H% Ainsi, h/(x) est du signe de x puisque 1+ z > 0. Donc
h est décroissante sur | — 1;0] et croissante sur [0, +oo[. Ainsi A est minimale en 0. Or

h(0) = 0, donc Vz €] — 1 + o0, h(z) > 0, ce qui est équivalent &

Vo €] —1;400[; In(l1+4+2z) <.

Ensuite, on remarque que Va > 0, 2™ > 0 donc , on a 0 < In(1 + z™) < z™.
En intégrant tout ca de 0 & 1 avec les bornes dans 1’ordre croissant, on obtient

1 1 1
0</ ln(1+x")dx</ x”dx:{
0 0

. . 1
Puis, comme lim
n—+oon + 1

1
0_n+1

= 0, d’apres le théoreme des gendarmes, on a

n—-+o0o

1
/ In(1+2")de —— 0.
0
O

w/4
Exercice 5. 1. Remarquons tout simplement que Iy = / dz = —.
0

/4 o
nsuite, on a I; = sin(z) dz. Or sur [0;7/4], cos(z) > 0, ainsi
E I

0o cos(x)

. /4 \/5 . 111(2)
I = [~ In(cos(x))],’” = —1In <2> =—

O

2. Remarquons que Vx € [0, W], 0 < tan(x) < 1, ainsi,

4
tan" ! (z) < tan"(z).

T
En intégrant dans 'ordre croissant des bornes entre 0 et —, on obtient,

w/4 w/4
/ tan" ™! (z) dz < / tan” (x) dz
0 0

autrement dit [,,41 < I,,. La suite (I,)nen est donc bien décroissante. [

3. Considérons

w/4 w/4
I+ 1 :/ tan" "2 (z) d$+/ tan” (z) dz.
0 0

/4

Inyo+ 1, = / (1 + tan?(x)) tan™(z) dz.
0

Pour ceux qui ne voient pas qu’il s’agit d’une dérivée classique, on pose u = tan(x)
le changement de variables C1([0,7/4]) tel que du = (1 + tan?(z)) dz.
Ainsi,

1
n+1
(Pour les étourdis, on se souvient que cette derniére intégrale a été calculée dans une
question précédente.) [

1
Inyo+ 1 :/ udu =
0
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4. On a (Ip,)nen décroissante et minorée par 0 (c’est 'intégrale d’une fonction positive
avec les bornes dans I'ordre croissant, donc positive).

Ainsi, (I5,)nen est une suite convergente. Notons ¢ sa limite.

0, or d’apres la question précédente,

On a lim I,y9 + I, = 2/ mais
n—+0o

n n——+00
ces quantités sont égales, donc 2¢ = 0.
Ainsi,
O
= k+1
Exercice 6. 1. Notons, pour n € N*, S, = Zln (n++> .
= n+k
On a
= n+k+1
Sim Yo (A
= n+k
n
= Z n(n+k+1)—In(n+k)
k=1
n n
= Y In(n+k+1)—> In(n+k)
k=1 k=1
n+1 n
= Zlnn—i—é Z (n+k)avecl=k+1
=2 k=1
= 1n(2n+1)+21n(n+£) In(n+1 Zlnn—i—k‘
(=2
<2n + 1)
= In .
n+1
2 1
r 2 + 2, donc, comme In est continue en 2, par composition on a

n-+1 n—oo
n+k+1
| In|{ — | =1n(2).
n—1>r—lr—loozn< n+k ) n()

O]

2. Onazk+n——z

k=1

- Il s’agit d’une somme de Riemann associée a la fonction
+5

1
continue sur [0, 1] z 02 Et on trouve donc :
x

L 1 CE |
li = dz = In(2).
nﬂu}klookglk—{—n /() 1+ . n(2)

O
1 < 1 < 1
"4n? T (n+ k)2 T on?’

En ajoutant toutes les inégalités entre 1 et n, on a

1 <§n: 1 <
n\k:1 (n+k)2 =

3. On a pour tout k € [1,n]

S |-
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1 1
Or lim — = lim — =0, donc d’apres le théoreme des gendarmes,
n—+4o0 4n n——+o0o N

" 1
lim —_— =
n——+o00 l;l (n + k)z

0.

O

. Notons h la fonction définie et dérivable sur | — 1; +-o00[ par h(z) =  —In(1 + z), bien
définie et dérivable car sur cet intervalle 1 + x > 0, donc on compose des fonctions
dérivables puis on fait une combinaison linéaire de fonctions dérivables.
1 T
Ona h'(z) =1— —— = ———. Ainsi, /() est du signe de = puisque 1+ = > 0.
(z) 57 =112 (x) g puisque 1 +
Donc h est décroissante sur | — 1; 0] et croissante sur [0, +00|[. Ainsi h est minimale en

0. Or h(0) =0, donc Yz €] — 1 4 oo, h(x) > 0, ce qui est équivalent a

Vo €] — 1;400[; In(l1+4+2z) <z

Notons g la fonction définie et dérivable sur | — 1; +o0[ par

2

g(x) =In(1+2z) —z+ %

nag@) = —1+z= =2 > 0. Ainsi, g est croissante. Par ailleurs g(0) = 0,
O g/( ) Hl—cc 1 19—65—30 g g
donc Vz € RT, g(z) > 0 <=z — %2 <In(1+ ).
O
n n+k+1 “ 1

. Notons, eN* S, = In({— | = In{1 .

otons, pour n n kz:ln< nk ) kz:ln<+n+k>
D’apres l'inégalité précédente, on a

L L <ln(1—|— ! >< L
n+k 2n+k)? " n+k)  n+k

En ajoutant toutes les inégalités pour k allant de 1 a n, on obtient

L 1 " 1 n 1
g::anrk_kz::lQ(nJrk)Q <Sn<kz::ln+k:'

Or, d’apres les premieres questions,

n
1
nEJroo Z n+k =n(2)
k=1
et
" 1
1 =0
n—1>r-ir-lookZ::1 2(n+k)2 ’

ainsi, par le théoréeme des gendarmes,

. - n+k+1\
w2 I () = mo.

267 / [359)



5’ 72r] dans
T
2,2} dans [—1,1]. Elle admet donc une

Exercice 7. 1. La fonction sin est continue, strictement croissante de [—

[—1,1] donc établit une bijection de {—

réciproque que nous noterons g. [

. . - ™ T e .
2. On sait que sin est dérivable de sur {—2, } et sa dérivée s’annule uniquement en

2
1
—g et g Ainsi, g est dérivable sur | — 1,1[ et on a Vx €] — 1,1[, ¢'(x) = m.
Or, Vz € { 57 2] cos?(r) = 1 — sin?(x) et cos(x) > 0, ainsi cos(x) = /1 — sin?(z).
/ 1 . T
On a donc, pour tout = €] — 1, 1], ¢'(z) = puisque g(z) €| — —, = |.
1 —sin?(g(x)) 22

Ainsi, Vo €] — 1,1, ¢'(z) = ——.
N

3. Notons, pour n € N*,

- 1

L1y
VAR — k2 n 4—%

1 1
On reconnait une somme de Riemann, ainsi lgrm Sn = / W dx.
0 0

[ e

On pose le changement de variable ¢ = L donc dt =
1

1
2 2
hmsn:f / () T o
n-+oo 0 1—¢2 g -9 6

s

N R
n——4o00 P An2 — k2 o 6

En factorisant par 5, on a hrn Sp =

[\')

dz pour avoir :

Ainsi,

Remarquons que nous aurions pu éviter le changement de variables en factorisant

directement par 2n et en reconnaissant 'intégrale de 0 a 3 O

Exercice 8 (Comparaisons Séries-Intégrales). 1. Soit & € N. Sur l'intervalle [k, k + 1],
comme f est croissante, on a Vk <Vz <Vk+1.

En intégrant cette inégalité de k & k4 1 (les bornes étants dans I'ordre croissant), on
récupere

k+1

\Fdx/ fdx/ VE + 1dz.
k+1

Soit \/ES/ Vredr < VE+1.
k

En ajoutant toutes ces inégalités de 0 a n — 1, on récupere grace a la relation de
Chasles,

n—1 n n—1
Z\/Eg/ Vade <Y VE+1.
k=0 0 k=0
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On trouve alors, en posant £ = k + 1, et en calculant 'intégrale,

n—1 n
2 n
S VE < [W] <3 VI
k=0 3 0 =1
Soit,

S, —/n < gn?’ﬂ < S,

En remaniant un peu, on obtient

§n3/2 <5, < gn?’/z ++/n.

11 suffit de diviser le tout par %n\/ﬁ pour avoir

S, 3

< 14 —.
%n\/ﬁ n

N

1<

: - . S
En faisant tendre n — 400, le théoreme des gendarmes assure lim 2771,

2
Sp o~ —nyn.O

n—+o0o 3

. On pose g la fonction définie sur R* par g(z) = . Soit k € N*. Sur l'intervalle

-

T
1 1

1
—— < —= < —=.
VE+T  Vr oV

En intégrant cette inégalité de k & k+ 1 (les bornes étants dans 1'ordre croissant), on

récupere
k+1 1 k+1 1 k+1 1
dx < / —dz / —dux.
/k k+1 kT ko VE

k+1 1 1

1
< —dr < —.
VE+1T S vz T Vk
En ajoutant toutes ces inégalités de 1 a n — 1, on récupere grace a la relation de
Chasles,

[k, k + 1], comme g est décroissante, on a

N

Soit

n—1 n n—1
> L </ Ldx< !
SVE+l L Voo T k

Soit,

En remaniant un peu, on obtient

1
2f—2+%<Tn<2\/ﬁ—1.
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11 suffit de diviser le tout par 2,/n pour avoir

1 1 1
l—-—+—<T, <1 - ——.
NG o, S 2/n
. PO . T, .
En faisant tendre n — +oo, le théoreme des gendarmes assure lim ——= = 1, soit
n—+o0 2,/
Th et 2y/n. O
1
3. On pose h la fonction définie sur R* par h(x) = —=. Soit k € N*. Sur l'intervalle
x
1 1
[k, k + 1[, comme h est décroissante, on a <-< -
k+1 "z "k

En intégrant cette inégalité de k & k + 1 (les bornes étants dans I'ordre croissant), on

récupere
k+1 1 k+1 1 k+1 1
4 </ 24 </ = da.
/k k+1 v k T . k k .
1

S 1 k+11d
it — < S
T /k 2 ISk

En ajoutant toutes ces inégalités de 1 a n — 1, on récupere grace a la relation de
Chasles,

On trouve alors, en posant £ = k + 1, et en calculant 'intégrale,

n 1 n—1 1
Y s <h@l<y o
=2 k=1
Soit,
1
U,—1<In(n)<U, ——.
n

En faisant tendre n — 400, le théoreme des gendarmes assure lim

n——+00 ln(n)
U, ~ In(n). O
n——+0oo

=1, soit

Exercice 9. 1. a. Comme Yz € [0,1], 1+ 22 >0, on a

J —/lx d —[1ln(1+ 2)} =
YT T2 T2 T
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b. On a, Vo € [0,1], 0 <

e < 1 puis en multipliant par z" > 0,

x?’b

< <z"

En intégrant de 0 a 1 avec les bornes dans ’ordre croissant, on obtient :
1 n 1 1 1 1
0<J, z/ de < / " dz = {:c”"'l} = —.
0 n + 1 0 n -+ 1
O]
. 1l suffit d’appliquer le théoreme des gendarmes puisque lim —— = 0. Ainsi,
n—oon + 1

Jp — 0. O
n——+oo

.Ona .
I, = / 2" In(1 + %) da.
0

En posant u et v deux fonctions C!([0, 1]) définies par

1
/ _n. _ n+1,
u(z) = a™; u(x) o A
2
v(z) =In(l+2%); V'(z) = 1 4:22
on a ) . .
1 22"
I, = | ——a2""In(1 + 22 ] —/ dz.
"ln+1 ( )0 o (n+1)(1+22)

En calculant ce qu’il est possible et en procédant par linéarité de l'intégrale, on
obtient,

~ In(2) 2 7
"Tafl n1 M
O
. Il s’agit tout simplement de faire une somme de limites pour voir que ngrfoo 1, =0.
O

. On remarque que I, est égal & une somme de termes dont le premier a 'air < plus
gros > que l'autre (le deuxieéme est le produit de deux termes qui tendent vers 0,
dont un est du méme ordre que le premier).

On factorise donc,

I In(2) 1 N 2 T
n — n .
n 1+4 In(2) (1 + %)
. . 2 .
Or il est clair que T > 1 et Jn+2 — 0 (ce dernier par
L+ nooo In(2) (1 + %) n—+o0

produit ).
Ainsi ) 5

T+ + 1

LHo () (1+3) 7 e
et donc 1n(2
I ~ nT(l )

O



Exercice 10. 1. Remarquons que pour tout z € [0, 1], on a
k(n+1)

1+ ak

~X

puisque 1+ 2* > 1 (mais c’est méme vrai pour x > 0). Si on intégre le tout entre 0
et 1 (bornes dans l'ordre croissant), on obtient

1 h(n+1) 1 1
/0 1+ak " /ox T k1) +1
1
O 0
' k(n+1)+1 no+too
1 k(n+1)
Ainsi, par encadrement / dx 0.
0 1 + l‘k n—-+00

Et donc lim I, =0.0
n—-+o0o

1 d$ 1 xk(nJrl)
2. —I,= — (=1 “+1/ d
OnalJ /0 T o (-1) A T

Par linéarité, on a

11 _ (_ kyn+tl
J—In:/ Ll G
0

1— (—ak)
1—(— kyn+1 n )
On reconnait 1_((% = Z:(—xk)J ainsi,
7=0
1 n
J—1I, = / Z(—wk)j dz
s

Ou encore, par linéarité,

J=0 0
I 1 ! 1
o/ "“Jd:[_ LAS] I
g 0 roar ki+1 o kji+1
Ainsi,
~ (=1)
J—1I,= Z ;
s kj+1
O
3. Remarquons que
J—1Iy= fj (="
N_n:O kn +1

N
—1)»
Or lim IN:O,doncZ( ) J—Iy —— J.
n=0

N—+oc0 — kn+1 - N—+4o00
N
_1n
Ainsi, lim Z( )" _
N—>+oonzol€n+1

Elle converge vers J. [
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N
—nn g
4. On a donc, en prenant k = 1, N1—1>I-ir-loo Z (n—l—)l /0 1 —I—xa: = [In(1 + z)]g = In(2).

.0

. Y= L dx 1
Et en prenant k = 2, Nl_1>rJrr100n§0 1 /0 T 2= larctan(z)], =

N

Exercice 11. 1. On a, pour z € [0, 1],

x2n_x4n 1_( n

_.2n 2n
1-22  ° 1—3:2 B Z

Ainsi, I,, est I'intégrale d’une fonction continue sur [0, 1], prolongeable par continuité
en 1 (polynéme), donc I, est en réalité I'intégrale d’une fonction continue sur [0, 1],
donc existe bien.

Et on a par linéarité,
1 n—1 n—1 .1
I, = / 2" Z 22k d = Z / 222 g
0 k=0 k=079

1 1 ! 1
0 / o2k g _ [ 2n+2k+1] _ .
Tt I DT 0 2n+2k+1

On a donc bien

n—1
Z:;) n+2k:+1

o

O

1 1

2.0 ke[o,n—1 < S -
na, pour k € [0.n =1, 5 =0 S 5 o T S ook

ces inégalités, on récupere

En ajoutant toutes

n—1 1 n—1 1 n—1 1
Zzn+2k+2 S Z2n+2/~c+1 S Z2n+2k'
k=0 k=0 k=0

On reconnait I, et en posant £ = k + 1 dans la premiére somme, on obtient

n n—1 1
> << o——r
= 2n+2€ = 2n + 2k

ce qui est exactement ce qui était demandé. [

|
3.0mna / T dz = [In(1 + z)]) = In(2) puisque 1 + = > 0 sur [0, 1].
0 x

Par ailleurs, Z

1 n
- E TE On reconnait la somme de Riemann associée a
n EAR

n

I'intégrale precedente a1n81

. =~ 1
ngl:lo—loo]; —— = In(2).
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n—1 1 1 n—1 1

4 Ona,§)2n+2k:§]§n+k'

On reconnait presque la somme précédente. On peut soit justifier que les sommes de
Riemann ne changent pas si on commence a 0 ou a 1 et si on termine a n — 1 ou n ou
tout simplement remarquer que

13 11 In(2)
Z R e

De la méme facon

zn: 1 zn: In(2)
= n+2k: 25tk noo 2
" 1 " 1
Ainsi, puisque Vn € N avec n > 2, g::l CESDTA < I, < kz::om, on a par enca-
drement (o
lim 1, = 22
n—-+o00

O

Exercice 12. 1. Pour tout z € Ry, la fonction g, est une fonction continue (quotient

de fonctions continues dont le dénominateur ne s’annule pas). Ainsi, f est bien définie
sur R. O

2. Prenons z,y deux réels positifs avec z < y.

Pour tout ¢t € [0,1], on a t* > t¥ (car t¥ —t* = t*(t * —1) < Ocar y —z > 0). En

multipliant par > 0, on obtient

1+t
t* tY
= .
1+¢t7 141

En intégrant ces fonctions continues avec les bornes dans ’ordre croissant, on obtient

1 +* 1 tY
/ dt}/ dt.
o 1+1 o 1+t

Autrement dit, f(z) > f(y). La fonction f est donc décroissante. [

x

1 t
3. On a pour tout t € [0, 1], T+1 < 1 donc 0 < T+1 < t*. En intégrant ces fonctions

continues avec les bornes dans l'ordre croissant, on obtient

1 4= 1 1 1 1
< / dt < / " dt = {t“l = :
o 1+1 0 z+1 o w+1
Comme lim —— =0, d’apres le théoréme des gendarmes, on a lim f(x) =0. O
z—+o00 1 4+ 2 T—+00

4. a. On a 0 < t < 1 donc en appliquant la fonction ¢ —— t%¥ qui est croissante car

x > 0,on at® <1, ce qui nous donne 0 < 1 — t*. En multipliant le tout par
1
—— > 0, on obtient
1+t
1—t*

14+t
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Par ailleurs, comme < 1, en multipliant par 1 —¢t* > 0, on a

1+t
_ 1T
1=t <1-—t".
1+t
On a donc, pour ¢ € [0, 1],
_ T
0< 1t <1 -t~
1+t
En intégrant ces fonctions continues avec les bornes dans l'ordre croissant, on
obtient
Oé/ dté/l—t‘rdt:[t—le =1- S )
o 1+t 0 r+1 0 r+1 z+1
O]

b. On a, par linéarité de l'intégrale,

/11_txdt= i dt—/1 P dt = (1 + 0]} - f(z) = n(2) - f(2).
0 0

1+t o 1+t 144
Et d’apres la question précédente, on a 0 < In(2) — f(z) < i T
x
Comme lim L, d’apres le théoréme des gendarmes, on a lim In(2) — f(z) =0,
z2—=0x + 1 z—0

soit ili% f(x) =1In(2). O

Exercice 13. 1. Sur R*, ¢t — 1 + t? est une fonction continue avec 1 4 t?> > 1, donc
t + In(1 + #2) est continue par composition et strictement positive donc non nulle.
1
Ainsi, la fonction que nous appellerons g définie sur R* par g(t) = m est bien
n
continue sur R*, donc en particulier sur [min(z, 2z), max(z, 2x)].

Ainsi, Vo € R*, f(z) est bien définie. (]

2. Notons G une primitive de g sur R . On a f(z) = G(2z) — G(x).

Donc, comme G est dérivable sur R et que x +— 2x est dérivable de R* dans R*, f
est bien dérivable sur R* par composition de fonctions dérivables puis combinaison
linéaire. On a de plus, Vo € RY,

f'(x) = 2G"(2z) — G'(x) = 29(22) — g(a).
On a donc

2 1
In(1+422) In(1+22)

fl(@) =
En réduisant au méme dénominateur, on a

In((1+ 22)?) — In(1 + 42?)

fw) = In(1 + 422) In(1 + 22)

Ainsi, f'(x) est du signe de son numérateur (le dénominateur est toujours strictement
positif).

f'(z) > 0 <= In((1 +2%)?) > In(1 + 42?%).
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Mais comme la fonction exp est strictement croissante sur R, cela revient a
fl(x) > 0= (1+2%)? > 14422

Ce qui est équivalent & 1 + 222 + 2% > 1 + 422, soit z2(2®> — 2) > 0 ou encore
2?(x — V2)(z +v2) > 0.

Donc, sur R% f/(z) > 0 si et seulement si x — /2 > 0 (le reste est strictement positif).
f est décroissante sur |0, /2] puis croissante sur [y/2, +ocol. [J

3. a. Notons h la fonction définie et dérivable sur | — 1;+o0o[ par h(u) = u — In(1 + u),
bien définie et dérivable car sur cet intervalle 1 + v > 0, donc on compose des
fonctions dérivables puis on fait une combinaison linéaire de fonctions dérivables.

1
Onah’(u):1—1+u r Ainsi, B/ (u) est du signe de u puisque 1+ u > 0.

Donc h est décroissante sur | —1; 0] et croissante sur [0, +-00[. Ainsi h est minimale
en 0. Or h(0) = 0, donc Vu €] — 1 + oo[, h(u) > 0, ce qui est équivalent &

Vu €] —1;+00[; In(l+wu)<u

On aurait pu se contenter de regarder sur [0, 400, mais... une fois n’est pas cou-
tume, il vaut mieux en faire trop : cette inégalité étant classique, cela ne fait pas
de mal de la revoir. O

b. En utilisant la question précédente, on a, pour tout ¢t € R*, 0 < In(1 + ¢2) < ¢2,
donc en prenant I'inverse (tout est bien du méme signe), on a

1 1

vVt € R* _ = .
N nare e

En intégrant de z a 2x dans 'ordre croissant puisque x > 0, on a

2x 1 2x 1 d
- - > _
L 1m1+ﬂ)&’”é b

2z 112 1 1 1
0) —dt=|->| =——4=—
r/:c t2 { tL 2x+a: 2z’

1
Ainsi, on a, pour tout z € R% | f(x) > Z 5
1
Or, on a lim — = +00, ainsi, par minoration,
z—0 2%
>0
lim oo. [
x—>0f( ) +
x>0

4. Soit x € Ri.

a. Pour z > 0, lorsque ¢ € [z,2z], on a
0< 22 < 12 < 4>

puisque la fonction carrée est strictement croissante sur Ry. En ajoutant 1, puis
en prenant le In qui est strictement croissant sur R,

0=In(1) < In(1+2?) <In(1 +t?) < In(1 + 42?),
puis en prenant I'inverse (décroissante sur R? ), on a

1 1 1
> > :
In(1422) 7 In(1+¢2) ~ In(1+ 4a?)
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On integre ensuite de = & 2z (encore une fois, les bornes sont dans le bon sens car
x >0), on a

2z 1 d 2z 1 d 2z 1 d
—dt > —dit > ——dt.
/ar: In(1 + x2) /ac In(1 + ¢2) /g; In(1 + 422)

On termine en réalisant que le terme de gauche est celui de droite sont évidents

et donc
2r —«x 20 —«x

(l +22) 2 flz) 2 n(1 + 422)’
ce qui nous donne le résultat attendu. [J
b. Puis, on cherche I’équivalent,
x x

In(z2) + In (1 41 ) > flo) > In(22) + In(4) + In (1 + ﬁ)

2

En arrangeant un peu les termes, on trouve :

T 1 > (@) > x 1
z J\x) =2 .
21In(x) ln(l—&—%%) 21In(x) In(4) In 1+$)
L+ 2In(x) L+ 21n(z) + 21n(z)
Autrement dit, avec x > 1 pour que _r > 0, on a
21In(z)
1 1
(i)~ e n(g) | Mm(+gs)
L+ —nm @) 14 s s
. 1 . 1
Or lim ————— = lim — = 1, donc par encadrement
z—+o0 n(1+4) @00 m@4) , n(l+5)
+ 21n(x) L+ 21n(x) + 21n(x)
f@)
21In(z) TrHeo
Ainsi, en 400, f(2) ~ = [
insi, en +o0, f(x) ~ .
’ ’ 21In(z)
5.0n a, Vo € R*, —z € R*, donc f(—x) = f:ﬁxmdt. On pose u = —t donc
du = — dt le changement de variable C' qui nous donne

10 = [ e ) = 1)

Ainsi, f est impaire. [J

6. On peut écrire, en utilisant ce qui a été démontré précédemment et I'imparité de f :

T | —oo -2 0 V2 +00




7. Vous n’oublierez pas de respecter les signes : f (@) > 0, la tangente horizontale a

cet endroit 13, le fait que f tende vers +o0o pas trop vite et la symétrie par rapport a
0 due a imparité. [

Exercice 14 (Intégrales de Wallis, un classique indémodable). 1. Une question qui ne
servira pas dans la suite, mais qui permet de vérifier que le candidat sait faire un

changement de variable. En posant le changement de variable C* ([0, Z]), u = g -

donc du = —dx, on a

I, = /0 sin” <72T - u> (—du) = — /0 cos" (u)du = /Og cos"(x) dz.

s s
2 2

O
T
2. On a, pour tout x € [0, 2], 0 < sin(z) < 1, donc 0 < sin™*!(z) < sin™(x). Ainsi, en
™
intégrant dans I'ordre croissant des bornes de 0 a 50 on obtient
0< In+4,5§ In-

Donc (I,)nen est décroissante. [
/2
3.0nal, 5= / sin"*? (z) dz. Faisons une intégration par parties en posant u et v
0
deux fonctions C! ([0,%]) définies par
o' (z) = sin(x); u(x) = —cos(x)
v(z) =sin" M (z); V() = (n+ 1) cos(z) sin™(z)

Ainsi, on a

w/2

Iyio = [— cos(z) sin"“(az)} o

w/2
/0 —(n 4+ 1) cos?(z) sin™(z) dz.

/2

Or {— cos(x) sin”“(x)}o =0 et cos?(z) = 1 — sin?(x), donc

w/2
Inio = (n+1) /0 (1 — sin®(z)) sin™(x) da.

En utilisant la linéarité de l'intégrale, on trouve

w/2 w/2
Into = (n+1) / sin"(z)dz — (n + 1)/ sin™2(z) da.
0 0

Soit Ipyo = (n+ 1)1, — (n+ 1)I,+2 ce que nous arrangeons en

n—+1
I = I,.
n—+2 n/+>2 n
(2p)! 2% (p!)?
Not It lle : t al t Iy, = —*— t 1 =——— [
ote culturelle : on peut alors montrer que I, 22P(p!)27T et Iopt1 2p+ 1)
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4. Multiplions ’égalité précédente par (n + 2)I,,4+1 pour obtenir
(n + 2)In+1_[n+2 == (n + 1)In+1_[n

Ainsi la suite ((n + 1)In+1[n)n€N est stationnaire.
On a donc, Vn € N, (n+ 1) 1411, = L1 1o.

w/2 T w/2 /2

Or, Iy = / ldx = 5 et I) = / sin(z) dz = [—cos(z)],’” = 1.
0 0

Ainsi, Vn € N, (n + 1) 1,111, = g O

5. La, ¢a se complique un peu. Remarquons que comme ([,,) est décroissante, on a

I I 1

TILJFQ < }L—H < 1 puisque 49 < Iny1 < I, puis en multipliant tout par T >0
n n n

(I, > 0 car c’est I'intégrale d’une fonction continue positive non nulle).

n -+ 1 In+2 n+ 1
—1,, d =
n+2" one I, n4+ 2 n—ooo

Par ailleurs, I,,12 =

Inta
ntl 1, ou encore 1,41 ~ Ip,.

Ainsi, par le théoréme des gendarmes, on a
n—oo

n
Ensuite, reprenons 1’égalité précédente. On a (n + 1)1, 111, ~ nI? puisque n +1 ~n
et In+l ~ In

T T
On a donc nI?2 —— —, autrement dit I2 ~ —.
n—oo 92 2n

. , . 7r
En prenant la racine carrée, on obtient, I;, ~ 4/ -—. [
n

19 Géométrie

Exercice 1 (A propos des droites et des plans.). 1. C’est 'ensemble des points M (x, y)
tels que OM est orthogonal a 7. En posant <OM , w

= 0, on trouve immédiatement
qu’il s’agit de la droite d’équation x + 2y = 0.
C’est I'ensemble des points {(z,y) € R?/z + 2y = 0} = {(-2y,y)/y € R} ce qui nous
donne une représentation paramétrique.

>
De la méme fagon, on montre que le plan est ’ensemble des points tels que <OM , ﬁ> =

0 donc a pour équation x + 2y + 3z = 0 donc a pour représentation paramétrique
{(72y - 327ya Z)/(y7 Z) € RQ} O

—

2. Notons le point A(3,2). Cette fois, on cherche les points M (z,y) tels que AM est
orthogonal a 7. On trouve alors que la droite a pour équation x + 2y = 7 et donc
c’est 'ensemble des points

{(,y)/z+2y =T} ={(T—-2y,y)/y € R}.

—

Dans R?, on note A(3,2,1) et les points M(z,y, z) tels que AM est orthogonal &
7. On trouve que le plan a pour équation = + 2y + 3z = 10 et pour représentation
paramétrique {(10 — 2y — 32,v,2)/(y,2) € R?}. O

3. La droite peut étre représentée par
{(1,1) + M1, 2)/A e R} ={(1+ A\, 1 +2)\) /X € R}.

Pour déterminer une équation, on réalise qu’on cherche les points M tels que, en notant
A(1,1), AM et W sont colinéaires. En faisant le déterminant de ces deux vecteurs,
on récupere une équation cartésienne de cette droite, par exemple —2x +y = —1.
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Le plan peut étre représenté par
{(1, 1, 1)4A(1,2,3)+4(2,1,0)/(A, 1) € R*} = {(14+A+2p, 1422441, 1430) / (A, 1) € R?}

Pour déterminer une équation de ce plan, on prend M (z,y,z) un point de ce plan.
Ainsi, il doit exister A et p tels que (1 4+ X+ 2u,1 +2X 4+ p, 1+ 3X) = (z,y, 2). Cela
revient au systeme

1+A+2u= =z
I+2X +pu=y

1+3\ = =z
1+A+2u= =«
<~ 143\ = —x+4+2y Lo+ 2Ly — I,
1+3XA= =z

A+2u= -1
= 3IN= —x+2y—1
0= x—2y+z L3<—L3—L2

Ainsi, A et p existent si et seulement si z — 2y + z = 0.
Une équation cartésienne de ce plan est x — 2y + z = 0. [J
Exercice 2. 1. On remarque que cet ensemble se décrit By = {(z,2z)/z € R} =

{(0,0)+x(1,2)/x € R}. On reconnait alors la droite de vecteur directeur (1,2) passant
par (0,0). O

2. On reconnait le plan de vecteur normal (—2, 1,0) passant par (0,0,0) (attention, nous
sommes bien dans R?).

R_e)marquons que O € E», ainsi que A(1,2,0) € E3 ou B(0,0,1) € Ey Les vecteurs
OA = (1,2,0) et OB = (0,0,1) sont directeurs du plan (ils ne sont pas colinéaires),
donc une de ses représentations est

Fo = {(0,0,0) + X(1,2,0) + 1£(0,0,1)/(\, ) € R*} = {(X\, 2\, 1)/ (A, i) € R?}.
O

3. Immédiatement, on reconnait le plan de vecteur normal (—2,1, 1) passant par (0,0, 0).
Remarquons que O € Es, ainsi que A(1,2,0) € E3 ou B(0,—1,1) € E3 Les vecteurs
O—1>4 = (1,2,0) et @ = (0, —1,1) sont directeurs du plan (ils ne sont pas colinéaires),
donc une de ses représentations est

E3{(070’0) + )‘(17 2’0) + :U’(O’ -1, 1)/()‘7/‘) € R2} = {()‘7 22— ,LL,/L)/()\,,U,) € R2}'
O

4. Comme a la question précédente, il s’agit du plan de vecteur normal (—2,1, 1) mais
passant par (0,0,3) (par exemple). Comme il a le méme vecteur normal, il est dirigé
par le méme systéme que le précédent (sinon, on aurait la encore pris 3 points du plan
formants deux vecteurs non colinéaires). Ainsi, une représentation est

Ey={(0,0,3)4+X(1,2,0)+ (0, —1,1) /(A i) € R®} = {(\, 2XA— 11,3+ p)/(\, ) € R%}.

O]
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5. Ona E5 = {(0,0,0) + A\(2,3,—1)/A € R}. On reconnait la droite de vecteur directeur
(2,3,—1) passant par (0,0,0).

Pour lui trouver un systéme d’équations, on prend (z,y,z) € E5. Cela signifie qu’il
existe A € R tel que

20 = =z
3=y
A= z

0= x+2z L+ L1+2L;3
— 0= y+32z Lo+ Lo+ 3L3
A= z

0= x+ 2z

Ainsi, (x,y,Z)EEEv@{ 0= y+3z

r+2z =0

Ainsi un systeme d’équations est, par exemple, { Y43z =0

Attention, ce n’est pas le seul! Celui qui apparaitra dépendra de la facon dont vous
avez échelonné le systeme. [

6. Ona Eg = {(—1,2,0)+X(2,3,—1)/X € R}. On reconnait la droite de vecteur directeur
(2,3,—1) passant par (—1,2,0).

Pour lui trouver un systéme d’équations, on prend (x,y,z) € Eg. Cela signifie qu’il
existe A € R tel que

20—-1= =z
3IN+2=y
A= z

—1= xz+2z L1<—L1—|—2L3
<~ 2= y+32z Lo Lo+ 3L3

_)\ = zZ
o 1= z+2z
Ainsi, (z,y,2) € Eg & { 2= y+3z
2z =-1
Ainsi un systéme d’équations est, par exemple, { ;j_t 32 -9

Encore une fois, ce n’est pas le seul! Celui qui apparaitra dépendra de la fagon dont
vous avez échelonné le systeme. [

7. On a E; = {(0,0,0) + a(2,1,1) + b(—1,2,0)/(a,b) € R?}, ains il s’agit d'un plan de
base ((2,1,1),(—1,2,0)) passant par Porigine.

Pour en déterminer une équation, on prend (z,y, z) € E7 si et seulement si il existe a
et b deux réels tels que

2a—b= =z
a+2b= vy
a= =z

b= -2z L1<—L1—2L3
<~ 2b = Yy—z L2<—L2—L3
a= =z
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10.

—-b= x—-2z
<— = 204+y—952z Lo+ Lo+214
a= z
Le systéme est bien échelonné, il admet un unique couple solution si et seulement si
2z 4+y—952=0.

Ainsi, le plan a pour équation 2z +y — 5z = 0. O

On a Fg = {(=2,1,6) +a(2,1,1) + b(—1,2,0)/(a, b) € R?}, ains il s’agit d'un plan de
base ((2,1,1),(—1,2,0)) passant par (—2,1,6).
Pour en déterminer une équation, on prend (z,y, z) € Eg si et seulement si il existe a
et b deux réels tels que
20—b—2= =z
a+2b+1= y
a+6= =z

—b—14= z -2z L1<—L1—2L3
<~ 2b—5 = Yy—z LQ%LQ—Lg

a+6= z
—b—-14= x—2z
= —33= 2x+y—5z Lo Lo+21,
a+6= z

Le systéme est bien échelonné, il admet un unique couple solution si et seulement si
20 +y —5=-33.

Ainsi, le plan a pour équation 2x +y — 5z = —33.
O

. On pourrait croire qu’il s’agit d’une droite, mais pour identifier proprement les choses,

essayons de paramétrer proprement 1’ensemble.

—2z+y+z= 0

Ona(:x,y,z)EEg<:>{ Mr—2y—2:= 0"

— —2z+y+z= 0
0= 0 Lo+ Lo+2L4

= y=2x-—2

Ainsi, By = {(, 21—z, 2)/(z, 2) € R?} = {(0,0,0)+z(1,2,0)+2(0, —1,1)/(z, z) € R?}
donc E3 est un plan de base ((1,2,0), (0, —1,1)) et passant par l'origine. [J

r+y+z= 0

Ona(x,y,z)eElg(:){ r—ytie 2

r+y+z= 0
—2y: 2 LQ(—LQ—Ll

{x+z: 1
—
y= -1

{z: —r+1
=
y= -1

Ainsi, Eyjp = {(z,—1,—z+1)/z € R} = {(0,—-1,1) + x(1,0,—1)/2 € R} donc Ejg est
la droite donc de vecteur directeur (1,0,—1) et passant par (0,—1,1). O

282 /[359)



11. C’est faussement difficile : en effet, 22 + 4?2 =0 <= 2 = y = 0. On a donc

Ey ={(0,0,2)/2z € R} = {(0,0,0) + 2(0,0,1)/z € R}.
Il s’agit de la droite de vecteur directeur (0,0, 1) passant par (0,0,0). O
Exercice 3. 1. On a, au vu du cours, 77 = (2,3). O

2. Notons D' cette droite. Considérons un point M de coordonnées (z,y).

r—3 2
y+6 3

Autrement dit M € D' <= 3(z —3) —2(y+6) =0 <= 3z — 2y = 21. O

—
Ona M e D < det(AM, ) = 0 < =0.

3. Notons (z,y) les coordonnées du point H. Le projeté orthogonal de A sur D est le

point H tel que ﬁ est orthogonal & D, autrement dit que H € D', et tel que H € D.
Autrement dit, H est le point d’intersection de D et D’.

2¢ 43y =1 {23: +3y =1

. . !/
Ansi, H € DN D' = { 3z -2y =21 L2<—<2T2>—3L1 —13y = 39.

AutrementditHeDﬂD’<=>{2x ;33/ i1_3 <:>{x y iig

Ainsi, H a pour coordonnées (5, —3). [J

1
4. Ona D= {(z,y) € R?/2x + 3y = 1}, donc D = {(2 — Zy,y) /Yy ER}.

Ainsi, la droite D est la droite passant par le point M de coordonnées (—1,1) (en
faisant y = 1 pour s’éviter des fractions) et dirigée par le vecteur (—2, 1| ou encore

par @ = (—3,2). O

(—3,2) car || = V13.

— 1
5. On peut ainsi dire que D est dirigée par le vecteur v/ = ——
P q gee p \/ﬁ
— ==
Ainsi, on a MH = <MA, u'> u’. Notons (z,y) les coordonnées de H. On a alors

<J\7Z,7> = B+ 1,-6-1),(=3,2)) = 22

V13 V13
Ainsi, MH = —20(_3 9) = (6, —4).

13

En notant (z,y) les coordonnée de H, on a Mﬁ = (x+ 1,y — 1), donc H a pour
coordonnées (5, —3). [

— 1
Exercice 4. 1. Notons u' = || Hﬁ un tel vecteur. On ||| = /5, donc prenons
— 1
u = —=(1,2).
75t
=\ =
Notons (z,y) les coordonnées de H. On a AH = <1@, u’> u'.

FANE _5
Or AB = (—5,5), donc <E,u>—\/5<( 5,5), (1,2)) = —.
5)

Deplus,m:(a?—Z,y—i-l) etﬁ:5

(1,2) = (1,2)., donc (z,y) = (3,1).

Ainsi, H a pour coordonnées (3,1). O
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—_—
2. Notons M un point et (z,y) ses coordonnées. On a M € D <= det(AM, W) = 0 <

r—2 1
y+1 2
Ainsi, M € D <= 2(z —2) — (y+ 1) = 0 <= 2z — y = 5. La droite D admet donc
pour équation 2x —y = 5. [J

=0.

3. Notons M un point et (z,y) ses coordonnées. On a M € D' < <B—J\>4, 7> =0«
(z+3,y—4),(1,2)) =0.
Ainsi, M € D' <= (x + 3) + 2(y — 4) = 0 <= z + 2y = 5. La droite D" admet donc
pour équation x 4+ 2y = 5. [J

4. Le point H est le point tel que ﬁf est orthogonal & D, donc H € D' et H € D.
Notons (x,y) les coordonnées de H.

2c —y =5 {Z:U -y =5

insi, He DND’
On a ainsi, H € DN <:){ x 42y =5 L2<—<L:2—|>—2L1 5z = 15.

Au‘cremen‘cditHGDﬁD’(:){iﬂlj -y i5 @{x -y =1

Ainsi, H a pour coordonnées (3,1). [

— 1
Exercice 5. 1. Notons v’ = 77 un tel vecteur. On ||2/|| = v/6, donc prenons

(4|
- 1
W= —(1,1,2).

V6
%
Notons (z,y, z) les coordonnées de H. On a zﬁ = <ﬁ, u’>

g\ _ 1 N _ 3
Or <ﬂ§,u>_\/€<(1,4, D.(1L1.2) = 2

3 1
De plus, xﬁ =(x—2,y+1,z—1), et ﬁ = 6(1,1,2) = 5(1,1,2), donc (z,y,z) =
5 1
2 2 2).
(332

5 1
Ainsi, H a pour coordonnées (2, 5 2) . O

%
u'.

2. Notons M un point de coordonnées (z,y,z). On a M € D si et seulement si il existe
A €R tel que AM = AT

Ainsi, M € D <= JX € R, Y +1 =X — —-r 4y +3 =
LQ(—LQ—Ll
z —1 =2)\ [icl;-20, —2x +z +3 =0
- . ) . , . -z 4y =-3
Ainsi, un systeme d’équation caractérisant D est ou encore
—2z +z =-3
our éviter ’abus de signe moins Ty =3 O
p & T 2z —z =3

3. Notons (z,y,2) les coordonnées de H. Le point H est tel que B—H) est orthogonal
a D, donc & . Ainsi <§ﬁ7> =0« ((x—3,y—3,2),(1,1,2)) = 0. Ainsi les
coordonnées de H vérifient (r —3)+ (y —3)+22=0<«<=z+y+ 2z =6.
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Ainsi, comme H € D, les coordonnées de H vérifient

r -y =3 r -y =3 r -y =3
2x —z =3 . <?>L 2x —z =3 . <T>L 2x —z =
T 4y +2z =6 PTETH o +2; =9 WBTHTR g 3z =6
Ce systeme est équivalent a

1

—y —

r -y =3 2

2 =5 <=1 _ _ 9

0 z =2 2

0 z =2

1
Ainsi, H a pour coordonnées (g, 5 2) .Od

Exercice 6. 1. On sait au vu du cours que l’on peut prendre = (1,-2,1). 0
—
2. Une telle droite D est constituée par I'ensemble des points M tels que BM est co-

linéaire a W, c’est-a-dire tels qu’il existe A € R tel que E?\? = \77.
Ainsi, D ={(-14+X\,2-2\, 1+ X)/A e R}. O

—
. Le point H est le point d’intersection de D (puisque BM et P sont orthogonaux) et

de P.

Ainsi, comme H € D, il existe A € R tel que H ait pour coordonnées (—1 + A, 2 —
2X\,1+ X). Mais de plus, les coordonnées de H vérifient ’équation x — 2y + z = 2,
donc

(=14 X)) —=22-20)+(1+ V) =2<=6A=6<= A= 1.

Ainsi, H a pour coordonnées (0,0,2). O]

. Considérons un point M de coordonnées (x,y,2). Ona M € P <= = —2y+ 2z =

2= ax=2y—2z+2.

Ainsi, P = {2y — 2 + 2,y,2)/(y,2) € R?} = {(2,0,0) + A(2,1,0) + pu(—1,0,1)/
(A, p) € R?}.

Le plan P passe par le point (2,0, 0) et admet pour systéme directeur le couple (7, 7)
avec U = (2,1,0) et ¥ = (—1,0,1). O

— —

Si v est coplanaire & (U, ¥), il existe (X, p) € R? tel que v/ = AU + p0.
_>

On souhaite avoir <v’ , 7> = 0, soit <)\7 + u7, u) = 0, soit encore

MU, W)+ p (U, W) =0 <= A5A—2u = 0.
ﬁ
Prenons par exemple A = 2 et =5, donc v' =2(2,1,0) +5(—1,0,1) = (—1,2,5). O

, 1 N 1 = .
Posons ui = =T U et v] = va' qui forment deux vecteurs orthonormaux (or-
/
v

12l [

thogonaux d’apres la question précédente, orthonormaux puisque normalisés).

1 1
Ainsi, 0 = —=(2,1,0) et o] = —(—1,2,5).

V5 V30
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On a alors, comme E =(-3,2,1),

AH = <E,E{>E{+<E,vﬁ>v_’1

—4 12

= —(2,1,0 1,2,5
—(2,1,0)+ o (-1,2,5)
—24 12

= —(2,1 —(—1,2
30(770)+30( ”5)
1

= —(-60,0,60).
30< /0, 60)

Ainsi, ﬁ —2,0,2). Comme A(2,0,0), H a pour coordonnées (0,0, 2). [J

— —
Exercice 7. 1. On cherche donc (X, p) € R? tel que v/ = AW + p 0 et <v’,7> =0.
On a

<7,7>:(A7+u7,7>:)\(7,7>+u<?,7>:6)\+2u:0.

%
On peut par exemple prendre A =1 et = —3, donc v/ = & — 37 = (4,-2,-1). O

1
2. 11 suffit de prendre u; = I H7 = \/6(1, 1,2) et v; = ﬁv’ =—(4,-2,-1).

|
En effet, ils sont orthogonaux et une fois renormalisés, ils sont de norme 1. [J

3. Notons (z,y, z) les coordonnées de H. On a
TH - (AB,2) 7 + (AB.7) .

Or AB = (1,-7,4), puis <ﬁ17{>17{ - %(1,1,2) - 5(1,1,2) ot <Ev—{>ﬁ -
14
21

Ainsi, AH = 1 1,2 +§(4,—2,—1) = é(g, —3,0) = (3,—1,0).

Or AH = ( x—l,y—l,z—l), done (2,y,2) = (1,1,1) + (3,-1,0) = (4,0,1).
H a pour coordonnées (4,0,1). OJ

(4, -2, —1)édfra623(4, -2,-1).

4. Notons M un point de coordonnées (z,y, z). On a

MeP  +« 30 eR%AM = AT + 470

xr—1 = XN —p
— I pu) eRES y—1 = X +u
z—1 = 2\ +u
x—1 = A —pu
= I\ p) ERES o+y—2 = 2A
A r+z-2 = 3\
x—1 = A —u
I\ p) eRES x4y —2 = 2)\

L3+2Ls—3L
s heTe —r—3y+22+2 = 0

Ainsi, une équation caractérisant P est z + 3y — 2z = 2. [
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e
5. Notons M un point de coordonnées (z,y, z). Ona M € D si et seulement si <B ,u> =
0 et <BM, 7> = 0.
—
Ainsi, comme BM = (z — 2,y + 6,z — 5), on a
—
BM,u) =0 <= (z—=2)+ (y+6) +2(2—5) =0

et on a
<§?\7,v>=0<:>—(x—2)+(y+6)+(z—5):0.

Ainsi, un systeme décrivant D est

T +y +2z =6
-r +y +z =-3

O

6. Le point H est sur la droite D et dans le plan P ainsi, ses coordonnées notées (z, vy, 2)
vérifient le systeme d’équations

r 4y +2z =6 r +y +22 =6 r +y +2z =6
-z 4y 4z =-3 . ?L 2y +3z =3 . ?L 2y +3z =3
T 43y -2 =2 Ot 2y —dz =—4 T Tz =-T
T =1
C’est équivalent a y = 0
z =1

Ainsi, la seule solution du systéme est (4,0, 1) ce qui donne les coordonnées de H. [

Exercice 8. 1. Notons M ce point. Comme M € Dy, il existe t € R tel que M (1+t,2—t).
Comme M € Do, il existe s € R tel que M (s, 2s).

Ainsi, on doit avoir I'existence d’un couple (s,t) tel que

1+t= s
2—t= 2s

PN s—t= 1
3s= 3 L2(*L2+L1

Donc le couple (s,t) existe, est unique et vaut (1,0).

Ainsi, M est le point de coordonnées (1,2). [

2. 1l est clair que le point (2,0) € D. Par ailleurs, un vecteur normal est (1,1), donc un
vecteur directeur est (—1,1). Par ailleurs,

D={(z,y) eR*/x =2y} ={(2-y,9)/y € R} = {(2,0) + y(~1,1)/y € R}.

On retrouve ce qu’on a affirmé au-dessus. [
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3. Notons H(zp,ym) cette projection.
On a Mﬁ = (rg —2,yg — 1) normal a A, donc 3\ € R tel que Mﬁ =A(2,-1).
Ainsi, H(2 +2X,1 — ). Par ailleurs, comme H € A, on a

2242\) —(1-=X)+2=0<«= 5\ = —5.

Ainsi, A = —1, donc H(0,2), et on a m = (=2, 1) donc la distance est HWH = /5.
O

Exercice 9. 1. Notons H le projeté orthogonal de U sur la droite. On sait que (ﬁ] est
colinéaire au vecteur normal a la droite, donc il existe A € R tel que UH = \(2, —3).

Ainsi, H(1+42X,1—3)).

On a aussi, comme H est sur la droite,

2(142)) —3(1 —3X) =0 < 13A = 1.

1 )
Soit A = 3 Ainsi, H a pour coordonnées E(?), 2). O

2. Notons H le projeté orthogonal de U sur la droite. On sait que U? est colinéaire au
vecteur normal a la droite, donc il existe A € R tel que UH = A(—1,2).

Ainsi, H(1 = X, 24 2)).

On a aussi, comme H est sur la droite,

—(1=XN)+22+2)\) =1<=51=-2.

2 1
Soit A = —E Ainsi, H a pour coordonnées 5(7, 6). O
3. Notons H (z,y, z) le projeté orthogonal de U sur la droite. On a alors

{ Z i —2?;1'_4—33 en faisant Ly < Ly + Lo.

Ainsi, on sait qu'il existe x € R tel que H(x,—3z + 3,2z — 3).

Au passage, on récupere que (1, —3,2) dirige la droite. Ainsi, on a (ﬁf =(r—1,-3x+
2,2z — 2) orthogonal avec (1,—3,2).
On a alors

(r—1)=3(-3x+2)+2(2x —2) =0 <= 14z = 11.

En réinjectant la valeur de x dans les coordonnées de H, on récupere ses coordonnées :

1
—(11,9,-20). O
14( ) )

4. Notons H le projeté orthogonal de U sur le plan. On sait que (ﬁ] est colinéaire au
vecteur normal au plan, donc il existe A € R tel que UH = A\(2,2,—1).

Ainsi, H(1+ 2,2+ 2X, —\).

Comme H est dans le plan, on a aussi

2(142X) +2(2 4 2X) — (—A) = 0 <> 9\ = —6.

2 1
Soit A = -3 Ainsi, H a pour coordonnées §(—1,2,2). O
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Exercice 10. 1. Il s’agit tout simplement d’utiliser la forme canonique du trinéme du
second degré. En effet,

N2 1
x2+y2—4x+y—|—m—0<:>(:r—2)2—4+<y+2> —Z+m:0.

Ainsi, on trouve que ’équation qui régit cet ensemble est en fait

1\%2 17
_9)2 ) =2
(x )+<y+2) T

On peut donc conclure :
. 17 .
e Sim > R I’ensemble est vide.

17
e Sim= T il s’agit du point de coordonnées (2, —3).

1
1) et de rayon\/ T
17 1
Danscecas,ona{<2+\/4—mcos(t), 3 \/——msm )/tE}R}

2. On cherche les points qui vérifient deux équations simultanément, celle du cercle et
celle de la droite. Notons M (z,y) un tel point. On a alors

(@=3+y*= 1 __ | (@=3+(pz+1)’= 1
pr—y+1= 0 y= pr+1

17
e Sim< R il s’agit du cercle de centre (2, —

O]

Intéressons nous a la premiere équation. En développant, elle est équivalente a

22— 64+ 9+p22 +2pr+1=1= P>+ 122 +2(p—3)z+9=0.

Son discriminant est A = 4(p — 3)% — 4(p? + 1)9 = —32p? — 24p = —8p(4p + 3).

3
Ainsi, il n’y a d’intersection que lorsque p € [ T } une seule lorsque p = 0 ou
3
p= _1)'
Dans ce cas, on a
2(3—p) — vV—8p(4p + 3) p2(3 —p) = V-8p(p+3)
2(1+p?) ’ 2(1+p?)
et
23—p)++/-8p(4p+3) 2(3—p)+ /—8p(4p + 3) +1
2(1+p?) P 2(1+p?) '
. 3
Ces deux solutions sont confondues lorsque p =0oup=—-. O

4

3. Les éventuelles intersections vérifient les deux équations de cercle. Ainsi, un tel point
de coordonnées (z,y) vérifiera :

3 2 2 9 2 2 __
(w—2> Ty = 4 = { :;2;3:251_2 B 7On—4 On va commencer & es-
2?4+ (y—2>2= m y y=

sayer de simplifier le systeme.
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Il est équivalent a

2 —3r4+y*= 0
3a:—4y: m—4 LQ%LQ—Ll

On a donc 4y = —3x + m — 4, donc la premiére équation devient

1
1:2—333+E(—3x+m—4)2:0<:>16m2—483:+9:E2—6(m—4)x+(m—4)2.

Soit
252% — 6(m +4)x + (m — 4)? = 0.

Cherchons le discriminant de cette équation. On a

A =36(m +4)% —4 x 25(m — 4)? = [6(m + 4) — 10(m — 4)] [6(m + 4) + 10(m — 4)] .

Soit
A = (—dm + 64)(16m — 16) = —64(m — 16)(m — 1).

Ainsi, on a un seul point d’intersection lorsque m = 1 ou m = 16. On en a 2 si
m €]1,16[ et aucun dans le cas o m < 1 ou m > 16.

Je vous laisse exprimer les coordonnées des points d’intersection en fonction de m :
les expressions sont vraiment encombrantes (c’est pour ¢a que je n’ai pas posé la
question). [

Exercice 11. 1. Comme il est parallele a P;, il a le méme vecteur normal, donc il existe
d € R tel que son équation soit

r+y+z=d.

Comme A € Py, ses coordonnées vérifient ’équation. Ainsi, on doit avoir 1+2+3 = d.

Ainsi, P{ est le plan d’équation z +y + 2z = 6. [J
2. Notons (z,y,z) € P; NPa. Clest équivalent a

r+y+z= 3 z4+y+z= 3 z= —3y+4
20 —y+z= 2 x—2y= —1 Lo— 1L, r= 2y—1

Onadonc A= {(2y — 1,y,-3y +4)/y € R} = {(-1,0,4) +y(2,1,-3)/y € R}.
Ainsi, A est la droite passant par (—1,0,4) dirigée par (2,1, —3). O

3. Notons que A" = {(a + 2u,b + p,c — 3u)/p € R} puisqu’elle est parallele & A oun
(a,b,c) représente un point par lequel elle passe.

Comme A’ € Py, on a (a+ 2u) + (b+ p) + (¢ — 3u) = 3 ce qui est équivalent a
a+b+c=3.

De plus, on doit avoir A’ et D qui sont sécantes, donc il existe un point dans I'une et
dans l'autre simultanément. Ainsi, il existe A\ et u deux réels tels que

(L4+2X\3\, =14+ X)) = (a+2u,b+ p,c — 3u).
2 -2p= a-—1

C’est équivalent au systeme 3N—pu= >
A+3u= c+1
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4N = a—2b—1 L1<—L1—2L2
¢ 3AA—u= 1>
10AN= 3b+c+1 L3+ L3+ 3Lo
—4XA= a—-2b—1
¢ 3AA—pu= >
0= ba—4b+2c—3 L3« 2L3+5L
- . . PR a+b+c= 3
Ainsi, un point par lequel doit passer A’ doit vérifier { Sa—db+ 2% — 3 —
a+b+c= 3 e ) c= 2b+ 4
3a—6b= —3 Lo+ Lo—2L, a= 2b—1

Ainsi, on peut remarquer qu’elle peut passer par, entre autres, (—1,0,4)... et 1a on
remarque qu’en fait A’ = A. [

Exercice 12. 1. On peut chercher un paramétrage du plan en disant qu’il s’agit du plan
passant par A dirigé par (AB, AC'). Mais soyons plus originaux et direct. On cherche
4 réels tels que, pour les coordonnées de A, B, et C on ait ax + by + cz = d.

Ainsi, on a le systéme suivant

a+b+c= d
20+2c= d
—a+2b= d

3b+c= 2d L[4+ L1+ Ls
—= 2b+2c= d
—a+2b= d

4b= 3d L1+ 2L1— Lo
<— 2b+2c= d
—a+2b= d

En prenant d = 4 (pour éviter une fraction dans la valeur de b), on récupere b = 3,
c= —1 et a = 2. Ainsi, une équation du plan est 2x + 3y — z = 4. O

2. C’est une droite passant par (0,—3,1) et dirigé par (2,3, —1), donc elle peut se pa-
ramétrer par :

{2\, =343\, 1—-A/A€R} O

3. Il s’agit d’un point D’ de la droite évoquée ci-dessus (puisqu’elle est orthogonale au
plan P) tel que le milieu de [DD'] soit le point d’intersection entre la droite et P.
Commencons par déterminer ce milieu que ’on notera 1.

Comme I est sur la droite, il existe A € R tel que I(2A,—3 + 3,1 — A) et comme il
est dans P, on a

220 +3(-34+3N) —(1-N)=4d<—= U\=14<= \=1.
Ainsi, 1(2,0,0).
—
Or comme I est le milieu de [DD'], on a DI =1D'.

Or DI = (2,3,—1). Si on note D'(z,y,z), on a (x —2,y,2) = (2,3,—1) donc D" a
pour coordonnées (4,3, —1). O
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Exercice 13. 1. Comme il s’agit de quantités positives, on a

17+ =7 -7 = [T+ =" -7
= (U+T, 0+ =(d -7, d -7
— (U, 7+7> (U, U + )

LU — 7> par linéarité a gauche
— <77> <77>+<77>+<77>
= (W, d) - <7 Y+ (U, %) — (W, ) par linéarité & droite

— 2(U, V) =0 en simplifiant et par symétrie

Ainsi, |7 4+ V|| = || @ — V|| si et seulement si @ et ¥ sont orthogonaux. [l

2. Un parallélogramme est ABCD est un rectangle si et seulement il admet un angle
droit en n’importe lequel de ses sommets. Donc ABC' D est un rectangle si et seulement

si AB et AD sont orthogonaux.

Cela arrive si et seulement si Hzﬁ + EH = Hzﬁ — EH .

Oron a zﬁ B? ainsi, la condition devient Hzﬁ + B?H = Hzﬁ + DAH Ce qu’on

réécrit en HﬁH = H

Autrement dit, un parallélogramme est un rectangle si et seulement si ses diagonales
ont la méme longueur! [J

Exercice 14. 1. OnaD; = {(3,—2,1)+t(1,—1,1)/t € R} donc D; passe par A;(3,—2,1)
et est de vecteur directeur v = (1,—1,1).

On pourrait paramétrer Dy, mais on peut remarquer que Dy passe par A2(0,0,0) et
aussi par B(—1,0, 1) donc est dirigée par A2§ =} = (—-1,0,1). O

2. On cherche W = (x,y, 2) tel que (W, 07) =0 et (W, v3) = 0.
Cela revient au systeme

r—y+z= 0 — —y+2z2= 0 Li<+ L1+ Lo
—z4+z= 0 —r4+z= 0

Ainsi, on peut prendre n’importe quel vecteur de la forme (z, 2z, z) donc U = (1,2,1)
par exemple. [

3. 1l suffit de calculer (u,v1), (W, v3), et (vf, v3), on trouve que chacun fait 0. CJ

4. Remarquons que U5 est orthogonal a P; puisqu’il est orthogonal a U et v7.

Ainsi, une équation de P; sera de la forme x — z = d. Comme A7 € P;,ona3—1=d,
donc une équation de Py est x — z = 2.

De méme, o1 est orthogonal & Py puisqu’il est orthogonal a U et v3.

Ainsi, une équation de Ps sera de la forme x —y+ 2z = d. Comme As € Po, on a 0 = d,
donc une équation de Py est x —y + z = 0.

L’intersection de ces deux plans est bien une droite, ils ne sont pas paralleles (ils
admettent des vecteurs normaux ne sont pas colinéaires).

On remarque alors que Py N Py = {(2,9,2) ER3/z —2=2et . —y + 2z = 0}.
Cherchons les points d’intersection des droites.

Notons M € DND;. Alors, comme M € Dy, il existe t € R tel que M (3+t, —2—t, 1+t).
Comme M € D, on a

B4t)—(1+t)=2et B+t)—(-2—t)+(1+t)=0<=>t=—2
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Donc on a M(1,0,—1). Ainsi, on a DND; = {(1,0,—1)}
Notons un nouveau M (z,y,z) € D N Dy. Clest le cas si et seulement si le systéme
suivant est vérifié :
rT—Yy+z=
rT—z=
r+2y+z=
—r+2y—z=

S O N O

T—y+z=
y—2z=
3y =
y =
z+z= 0
<= —2z= 2
y= 0

Ainsi z = —1, donc = 1. On a donc M(1,0,—1).
OnaDND; ={(1,0,-1)} et DNDy = {(1,0,—1)} aussi.

Les droites D et D; sont sécantes ainsi que les droites D et Dy. Et vu le Ay que nous
avons choisi, elles sont méme concourantes.

LQ(—LQ—Ll
L3%L3—L1
Ly<+ Ly+ Ly

o O N O

Pour finir D passe par M (1,0, —1) mais aussi par N(2,2,0). Ainsi elle est dirigée par
m = (on aurait pu s’en douter en faisant un dessin). Comme U est orthogonal
aux vecteurs directeurs de Dy et Dy et que les droites sont sécantes, elles sont bien
perpendiculaires. [

Exercice 15. 1. Notons H le projeté recherché. Comme || = 1 et que O € D, on a
—
OH — <OM, 7> Q.

Ainsi, le projeté H a pour coordonnées (0, 1). O]

2. Notons H le projeté recherché. Comme |@| = 1 et que O € D, on a OH =
<0M,7> .
Ainsi, le projeté H a pour coordonnées (2,0). [J

3. Notons H le projeté recherché.

Notons o = ﬁﬁ Ainsi, ¥ dirige D et | 7| = 1. Comme O € D, on a OH =

Y
<OM, 7> .
3
Une fois les calculs posés, on trouve que le projeté a pour coordonnées 5(1, 1). 0O

4. Notons H le projeté recherché.
—
On a @ dirige D et | @] = 1. Comme A(—1,1) € D, on a AH = <AM,7> .
Une fois les calculs posés, on trouve que le projeté a pour coordonnées (1,—1). [

5. Le projeté a pour coordonnées (3,1) : il est déja sur D (humour de prof de maths). O

6. Notons H le projeté recherché.

Notons o = ﬁﬁ Ainsi, ¥ dirige D et || 7| = 1. Comme A(3,1) € D, on a

AH = (AM. 7).

Une fois les calculs posés, on trouve que le projeté a pour coordonnées (5,—3). [
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7.

10.

Utilisons 'autre méthode. Notons H le projeté recherché et A(—2,—3).

Comme A, H € D et 0 dirige D, on sait qu’il existe A € R tel que ﬁ = \7.

Ainsi, H(—2+ A\, —3).

De plus, on doit avoir <J\ﬁ], 7> =0. Or MH = (=14 A\, —1). Ainsi, on a
(-1+ M) x14+(-1)x0=0<= A= 1.

Comme

Ainsi, H a pour coordonnées (—1,—3). [J

Notons H le projeté recherché. Notons o = (1,0,0) et v = (0,0,1). On a la chance
que la base soit une famille orthonormale. Ainsi, comme O € P, on a

R S
OH = (OM, W)@ + (OM, 7) 7.
Ainsi, on récupere immédiatement en posant les calculs que le projeté a pour coor-
données (2,0,1). O

Notons H le projeté recherché. Notons A(0,1,1), U = (1,0,—1) et v = (1,—-1,1).
Comme la base n’est pas une famille orthonormée, nous allons devoir utiliser la
définition.

Ona A€ P, H € P, donc il existe A, u deux réels tels que ﬁ = A\u + (.
Ainsi, HO+ A+, 1+0X —p, 1 = A4+ pu) = A+, 1 — p, 1 — X+ p).
Par ailleurs, on doit avoir <J\ﬁ], 7> =0et <]\ﬁ], 7> = 0.
Comme MH = T+ N+ p,—p,—1 = A+ p)
Ainsi, la premiere équation donne
T4+ A4+p—(—1—A4p) =02\ = -2,
Et la seconde

T+X+p)—(—p)+(-1=A+pu) =0<=3u=0.

Ainsi, on obtient (le systéme est facile), A = —1 et p =

0 et en réinjectant ces
informations, on a les coordonnées du projeté H : (—1,1,2). O

Notons H le projeté recherché. Notons A(1,1,1), U = (1,0,0) et v = (0,—1,1).
Comme la base n’est pas une famille orthonormée, nous allons devoir utiliser la
définition.

Ona A€ P, H € P, donc il existe A, u deux réels tels que ﬁ = A\u + po.
Ainsi, H(1 4+ A, 1 — p, 1 4 p).
Par ailleurs, on doit avoir <m, 7> =0et <m, 7> =0.
Comme MH = (=24+ X, —1—pu,—1+p)
Ainsi, la premiére équation donne
—24+A=0= A =2.

Et la seconde
—(—1—p)+(-14+p) =0<=2u=0.

Ainsi, on obtient (le systéme est facile), A = 2 et x4 = 0 puis en réinjectant ces
1

0
informations, on a les coordonnées du projeté H : (3,1,1). O
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11. Je vous laisse détailler... mais la méme technique que la question précédente donne
(seuls les calculs changent)... que le projeté a pour coordonnées (3,1,1). Etonnant ?
Pas vraiment. Remarquons que (1,0,0) = o et (1,—1,1) = @ 4+ ¥ (en prenant
les notations de la question précédente). Ainsi, le plan a la méme direction que le
précédent, passe par le méme point, donc c’est le méme! On projete orthogonalement
le méme point sur le méme plan... trouver un autre résultat aurait été inquiétant. [

20 Applications linéaires

Exercice 1. Pour montrer qu'une application est linéaire, je vous renvoie aux exemples
traités dans le cours. Pour déterminer les matrices associées, il suffit de calculer les images
des vecteurs de la base canonique est de les mettre en colonne puisque nous sommes dans
la base canonique.

La encore, je vous renvoie aux exemples. []

1. Elle est linéaire et sa matrice représentative dans les bases canoniques (arrivée et
, 00 O
départ) est (2 0 _1>.
O
2. Elle est linéaire et sa matrice représentative dans les bases canoniques (arrivée et
. 1 0 —1
départ) est (1 0 9 ) .
O
3. f3(0,0,0) # (0,0) donc elle n’est pas linéaire. [J

4. On a f4(1,0,0) = (0,0), f4(0,1,0) = (0,0) et f4(1,1,0) = (0,1).

Ainsi, f4(1,0,0) + f4(0,1,0) = (0,0) # f4(1,1,0) = (0,1), donc f4 n’est pas linéaire.
]

5. Ona f5(0,0,1) = (0,1) et f5(0,0,—1) = (0,1), donc f5(0,0,—1) % —f5(0,0,1).

f5 n’est pas linéaire. [

6. fo est bien linéaire et sa matrice représentative dans les bases canoniques (arrivée et
1 -1 1
départ) est .0
épart) es (O 0 1>

Exercice 2. 1. f va de R? dans le méme espace.

Voir les exemples du cours pour la rédaction de la preuve de sa linéarité. [J

2. On a Im(f) = Vect((1,1),(2,3)). Or ((1,1),(2,3)) forme une famille libre, donc une
base de Im(f).

On a donc dim(Im(f)) = 2 et Im(f) C R?, donc Im(f) = RZ L’application est
surjective. [

3. Puisque f € £(R?), et que f est surjective, f est en réalité un isomorphisme donc elle
est injective et Ker(f) = {0}. O

4. On a f(1,0) = (1,1) et f(0,1) = (2, 3) donc il s’agit de (i g) .

O]
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Exercice 3. 1. Voir les exemples du cours pour la rédaction de la preuve de sa linéarité.

O]

2. D’aprés le théoréme du rang, dim(Ker(f)) +rg(f) = dim(R?), donc dim(Im(f)) < 2.
Ainsi, Im(f) # R? puisque dim(R3) = 3. O

3. On cherche & déterminer le noyau. On a donc (z,y) € Ker(f) < f(x,y) = (0,0,0)
ce qui est équivalent au systéme suivant

r—y= 0
r+y= 0
—zx+2y= 0

En faisant Ly <— Ly — Ly on récupére y = 0, puis donc z = 0 dans les deux autres.
Ainsi Ker(f) = {(0,0)} donc f est injective. OJ

4. Ona f(1,0) = (1,1,-1), f(0,1) = (=1,1,2) donc M = | 1 1 |.O
-1 2

Exercice 4. 1. Voir les exemples du cours pour la rédaction de la preuve de sa linéarité.

O]

2. On a (z,y,z) € Ker(f) si et seulement si f(z,y,z) = (0,0) ce qui est équivalent au

systéme suivant
20 —z= 0
y+2z= 0

Ainsi, Ker(f) = {(%z, —2z,2)/z € ]R}, autrement dit
Ker(f) = Vect((1,—4,2)) donc non. [

3. On a dim(Ker(f)) = 1 puisqu’il est engendré par un seul vecteur non nul. D’apres le
théoréme du rang, dim(Ker(f)) + rg(f) = dim(R?), ainsi rg(f) = dim(Im(f)) = 2.
Or Im(f) € R? de dimension 2.

On a donc Im(f) = R? donc f surjective. [J

4. Onaf(l,(),()) = (270)7 f(0> 170) = (Oa 1) et f(070a 1) = (_LQ) donc M = (2 i _1>

0 1 2
O
Exercice 5. 1. Voir les exemples du cours pour la rédaction de la preuve de sa linéarité.
O
2. On a

Im(f) = Vect(f(1,0,0), £(0,1,0), £(0,0,1)) = Vect((1,1),(-1,2),(1,—1)).

Or Im(f) € R? et ((1,1),(1,—1)) est une famille libre de R? (deux vecteurs non
colinéaires) donc une base de R? donc engendre R? donc Im(f) = R2.

f est surjective. [
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3. On nous demande Ker(f) donc on est obligé de le déterminer.

(z,y,2) € Ker(f) si et seulement si f(z,y,z) = (0,0) ce qui est équivalent au systéme
suivant

r—y+z= 0
z+2y—z= 0

En faisant Ly < Ly — Ly, on a

{x—y+z: 0

3y—2z= 0
Yy= 3%
Ainsi, Ker(f) = {(—%z, 22,2)/2 € ]R} soit Ker(f) = Vect((—1,2,3)).

Ker(f) #{(0,0,0)} donc f, n’est pas injective.

On peut remarquer que méme sans avoir fait le moindre calcul, le théoreme du rang
aurait pu permettre de déterminer que f n’était pas injective. En effet dim(Ker(f))+
rg(f) = dim(R3) mais rg(f) = dim(Im(f)) < dim(R?) = 2, donc dim(Ker(f)) > 1.
O

Exercice 6. 1. Voir les exemples du cours pour la rédaction de la preuve de sa linéarité.

O
2. On a £(1,0,0) = (1,0,1), £(0,1,0) = (—i,1,—1) et £(0,0,1) = (1,2 + 4,0). Ainsi,
1 —i 1
M=|0 1 2+
1 -1 0

O

3. On prend (z,y,z) € Ker(f) ce qui est équivalent & f(z,y,2) = (0,0,0) qui est
équivalent au systeme :
r—iy+z= 0
y+(2+i)z=
r—y= 0

[an}

En faisant Ly < L1 — L3, on a
I-d)y+z= 0
y+2+i)z= 0
r—y= 0

Puis en faisant Ly < Ly — (1 —i)Ls, on a

(=24id)z= 0
y+(2+1i)z= 0
r—y= 0

Soit z =y = z = 0. Ainsi, Ker(f) = {(0,0,0)} donc f est injective. ]

4. Puisque f est un endomorphisme et que f est injective, d’apres le théoreme du rang
(son corollaire), on a f est un isomorphisme donc surjective. [J
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Exercice 7. 1. Voir les exemples du cours pour la rédaction de la preuve de sa linéarité.

O
2. On a f(1,0,0) = (4,0), f(0,1,0) = (0,1 +14), et f(0,0,1) = (1,2). Donc M =

0 1
<O 141 2>'D

3. On a (z,y,2) € Ker(f) si et seulement si f(z,y,2) = (0,0) ce qui est équivalent au
systéme suivant :

w+z= 0
(I+iy+2z= 0

Ce qui est équivalent &

{ y; —(1—1)z

En multipliant la premiere ligne par —¢ et la seconde par % Ainsi, Ker(f) =
Vect((7,—1 +1,1)). Ker(f) # {(0,0,0)} donc f n’est pas injective. [J
4. On peut soit déterminer Im(f) et voir s’il est égal ou non a C2.

Mais sinon, le plus simple est de remarquer que dim(Ker(f)) = 1 (engendré par un
seul vecteur non nul).

Ainsi, d’aprés le théoréme du rang, on a dim(Ker(f)) + rg(f) = dim(C?), soit
dim(Im(f)) = rg(f) = 2. Or Im(f) C C? qui est de dimension 2. Ainsi, Im(f) = C?,
donc f est surjective. [

Exercice 8. 1. Voir les exemples du cours pour la rédaction de la preuve de sa linéarité.

O
2. On commence a avoir I’habitude, non? On a f(1,0) = (1,1) et f(0,1) = (¢,1) donc

1 4
M_<1 1>D

3. Ona (z,y) € Ker(f) si et seulement si f(z,y) = (0,0) ce qui est équivalent au systeme
suivant :

r+iy= 0
r+y= 0

Ce qui est équivalent a, en faisant Lo <— Loy — L,

z+iy= 0
(1—iy= 0
Ainsi, c’est équivalent & y = = = 0 donc Ker(f) = {(0,0)} et elle est injective. [J

4. f est un endomorphisme injectif de C?, donc un isomorphisme donc elle est bien
surjective. [

Exercice 9. 1. Remarquons que p va de R? dans le méme ensemble.
Voir les exemples du cours pour la rédaction de la preuve de sa linéarité. [J

2. On a (z,y) € Ker(p) si et seulement si p(x,y) = (0,0) ce qui est équivalent au systeme
suivant :

2z4+y= 0 — 22+y= 0
4:6 + 2y == 0 Lo+ Lo—2L4 O == 0

Ainsi, Ker(p) = {(z, —2z)/x € R} = Vect((1, —2)).

L’endomorphisme p n’est pas injectif. [
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3. OnalIm(p) = Vect(p(1,0),p(0,1)) = Vect(5(2,4), 2(1,2)) = Vect((1,2)) et ce puisque
2(1,2) = (2, 4).

On a donc ((1,2)) qui est une famille constituée d’un unique vecteur non nul, elle est
donc libre, et donc une base de Im(p).

Ainsi, dim(Im(p)) # 2 = dim(R?), donc p n’est pas surjectif. (]

4. On prend (z,y) € R2. On a
1 1
pop,y) =p| (22 +y,dv+2y) | = 7p(2z +y, 4w + 2y).

Et donc . )
popla,y) = 168z + 4y, 16z +8y) = - (22 +y, 4o + 2y).

Ainsi, pop et p sont des endomorphismes de R? tels que V(z,y) € R?, on a pop(z,y) =
p(@,y).
On a donc pop =p. O

5. On a déja calculé les images des vecteurs de la base pour déterminer Im(p), donc on

1
peut affirmer tout de suite que A = 1 (i ;) O

6. On trouve A? = A. Et oui puisque A? est la matrice représentative de pop = p... O
7. C’est ce qu’on appelle une projection! [

8. Il s’agit de deux vecteurs non colinéaires, donc ils forment une famille libre, et il y a
deux vecteurs soit autant que la dimension de R?. Ainsi, on a une base de R2.
Par ailleurs, on a p(1,—2) = (0,0) = 0(1,—-2) +0(1,2) et p(1,2) = (1,2) = 0(1 — 2) +
1(1,2).

0 1

Vu la matrice, il est clair qu’elle est de rang 2, que son carré est égal a elle-méme,
que le noyau est engendré par le premier vecteur de la base et ’ensemble image par
le deuxiéme. []

Ainsi, la matrice de p dans cette nouvelle base est (0 0).

Exercice 10. 1. Remarquons que f va de C? dans le méme ensemble.

Voir les exemples du cours pour la rédaction de la preuve de sa linéarité. [J

2. Montrons que cette famille est libre. Soient A, u, v trois éléments de C tels que
)‘(17 07 O) + M(l, Oa 1) + V(_la 17 O) = (07 07 0)

C’est équivalent au systeme

Ad+p—v= 0
v= 0
p= 0

Autrement on a forcément y = v = 0 donc A = 0. Il s’agit donc bien d’une famille
libre de trois vecteurs, dans un espace vectoriel de dimension 3. Ainsi, cette famille
forme bien une base de C3. [
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3. Calculons

£(1,0,0) = (2,0,0) = 2(1,0,0) + 0(1,0,1) + 0(—1,1,0).

On a aussi

f(1,0,1) = (¢,0,4) = 0(1,0,0) +i(1,0,1) + 0(—1,1,0).

Pour finir

f(-=1,1,0) = (0,0,0) = 0(1,0,0) +0(1,0,1) + 0(—1,1,0).

Ainsi, la matrice M représentative de f dans la base évoquée est M =

S O N
O = O
o O O

O]

4. Tl est tellement simple de remarquer que, dans cette nouvelle base, Ker(f) est ’espace
engendré par le troisieme vecteur et on voit tout de suite que Ker(f) = Vect((—1, 1,0)).
Ainsi, f n’est pas injective. [

5. Non plus, sinon, elle serait un isomorphisme a cause des dimensions, donc injective.

O]

/ /
Exercice 11. 1. On considere (Z Z) et (CCL, Z,) deux éléments de Ma(K) et A\, p

deux éléments de K. On a

a b a v\\ Aa + pa’ b+ pb
! <A <c d) T (d d'>> =/ ((Ac—l—uc’ Ad + pd’
_(OQatpa) = Qb ) (at ) — (M + pd)
N e+ ud e + ud

_ a—b a—d N a—-bv d-d
o c c H c c

a b a b
(e 8) (& 2)
Ainsi, on a bien f € L(M3(K)). O

2. Comme (( 0 0 >est une base de M3(K), on a Vect(f) =

@)
ol )6 )6 3o D)
s onaimc v (3 2).(3 ). (¢ 9). (2 3)
o) (300 )
N (A ) R R )

Considérons A, u et v trois éléments de K tels que

NS T (I A U B B
0o o "Hlo of TV\1 1) T PM®)

Il est clair que ¢a implique A = =v = 0.
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0 01 0 0 0
0 1 01

[an}

S =



. 10 01 0 0 . . , .
La famille ((0 O) o 0) , <1 1>> est donc libre. Il s’agit donc d’une base de

Im(f) et f est de rang 3. (]

a
3. Prenons (c d

b) € M3(K). On a

a—b= 0
— a—d= 0
c= 0
c= 0
b= a
e = a
c= 0

Ainsi,Ker(f)z{(S Z)/aEK}:{a<(1) 1>/GEK}:Vect<<(l) 1))[]

Exercice 12. 1. Notons que, si P € Ry[X], deg(P’) < 1, donc deg(f(P)) < 2. L’appli-
cation f est donc bien définie a valeurs dans Ro[X].

Prenons A et p deux éléments de K et P, @ deux éléments de Ry[X]. On a

JOP+1Q) = (AP+ QY + (\P+ Q) (0)
AP+ u@" + AP(0) + pQ(0) par linéarité de la dérivation

= AP+ P(0) + u(Q + Q(0))
= M(P)+ uf(Q).

Ainsi, f € L(R[X]). O

2. Comme (1, X, X?) est une base de Ry[X], on a Im(f) = Vect(f(1), f(X), f(X?)) =
Vect(1,1,2X) = Vect(1, X) = R [X].

Ainsi, il est clair que rg(f) = 2 et que f n’est pas surjective. [J

3. Si f était injective, comme il s’agit d’un endomorphisme, elle serait un isomorphisme,
ce qui est exclu (elle n’est pas surjective).

L’application linéaire f n’est injective. [

Exercice 13. 1. Montrons que, si P € K,,1[X], alors f(P) € K, [X].

n+1
Si P € K,y 1[X], il existe (ag, ..., ans1) € K"2 tel que P = Z ap Xk,
k=0
n+1 n+1
Ona f(P)=P(X+1)—P(X) = Z an(X + 1)k - Z o X*. On peut réorganiser
k=0 k=0

n
les termes en f(P) = > a((X + DF = XF) 4 g (X + 1) — X,
k=0
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n
On a clairement deg (Z ar((X + 1)k - Xk)> < n. Par ailleurs, (X +1)"H - xn+l =
k=0

> (n _; 1) X*, donc deg (apy1((X +1)"H — X)) < .
=0
Ainsi, deg(f(P)) < n. L’application f est bien définie & valeurs dans K, [X].
Enfin, prenons A et p deux éléments de K et P, @ deux éléments de K, ;[X]. On a
FOP+pQ) = (AP +pQ)(X +1) — (AP + pQ)(X)
— AP(X + 1)~ POX)) + pu(Q(X + 1) — QX))
= M(P)+uf(Q).
Ainsi, f € [’(Kn-&-l[X]vKn[X])' O
2. Soit P € Ker(f). On a alors P(X +1) — P(X) = Ok x], soit P(X +1)=P(X).
Posons ) = P—P(0). On a alors Q(0) = 0, mais Q(1) = P(1)—P(0) = P(0)—P(0) =
0. On pose alors P(k) : < Q(k)=0 ». On vient de voir que P(0) est vraie.

Soit & € N. On suppose P(k) vraie. On a alors Q(k+1) = P(k+1)—P(0) = P(k)—P(0)
car P € Ker(f). Ainsi, Q(k + 1) = Q(k) = 0 car P(k) est vraie. Ainsi P(k + 1) est

vraie.

On a donc, pour tout k£ € N, Q(k) = 0. Ainsi, Q qui est de degré au plus n+ 1 a une
infinité de racines. C’est exclu, sauf si @ = Ogx). On a donc P = P(0).

On vient de démontrer que Ker(f) C Ko[X]. L’inclusion réciproque est immédiate.
On en conclut donc que Ker(f) = Ko[X]. L’application f n’est donc pas injective. [J

3. Appliquons le théoréeme du rang : on a dim(Ker(f)) + rg(f) = dim(K,,+1[X]), donc
rg(f)=n+2—-1=n+1

Autrement dit, on a dim(Im(f)) = dim(K,[X]), et comme Im(f) C K,,[X], on a bien
Im(f) = K [X].

L’application linéaire f est donc surjective. [

Exercice 14. 1. Il s’agit tout simplement d’une famille de deux vecteurs non colinéaires,
donc ils forment une famille libre de E, qui est de dimension 2, donc une base de F.
O]

2. On remarque que u1 = e1 + €9 et ug = e — eg. Ainsi,

1
er = §(U1 + ug)

et

1
es = —(u1 — u2).
2= 5(ur —u2)
Ainsi, par linéarité,

flen) = £ (lur +u) ) = 5 ) + 5 fw) = (1.5.3)

fle2) = f (;(Ul - uz)) = %f(m) - %f(UQ) = (O, %, —;) .

Pour finir, v = 2e; + 3es, dong, toujours par linéarité,

100 = 726+ 3ea) = 20ex) + ) = (2. 3.1
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3. Sans aucune difficulté, étant donné qu’on a déja déterminé f(e;1) et f(e2), la matrice

1 0
recherchée est % % O

1 1

2 2

4. Soit on tatonne, soit on cherche tous les antécédents jusqu’a tomber sur une condition
et on prend un élément qui ne la vérifie pas.

On peut par exemple deviner que si (a,b,c) € Im(f), on a forcément 'existence de x
et de y tels que f(xe; + ye2) = (a, b, c).

Or f(zer +yes) = (x, s(@+y), 3z — y)) En prenant par exemple (0,1,1), on doit

avoir x = 0 mais y = 2 et y = —2 simultanément, ce qui est bien difficile. (]
1 -3 -7
Exercice 15. 1. La réponse & cette question est évidente! M = | -1 2 4 (O
2 -1 1

2. On peut raisonner sur la matrice ou plus simplement remarquer que les coordonnées
de I'image de (z,y, z) sont le vecteur colonne

x r—3y— "7z
Mlyl=]|—-2+2y+4z
z 20 —y + 2

On a donc, pour tout (x,y,2) € R3, f(x,y,2) = (x —3y— Tz, —x+2y+4z,22 —y+2).
On cherche (z,y, z) € R? tel que f(z,y,2) = (=1, —1,8). C’est équivalent au systéme
r—3y—T7z= -1
—x+2y+4z= -1
20 —y+z= 8

En faisant Lo « Lo+ Ly et Ly < L3 — 2L, on a le systéme équivalent

r—3y—T7z= -1
—y—3z= =2
5y + 15z = 10

Puis en faisant Lg < L3 + 5L9, on a

r—3y—T7z= -1
—y—3z= -2
0= 0

Ainsi, ’ensemble des antécédents de u est {(5 — 22,2 — 3z,2)/z € R}.

Pour v, on cherche (z,y,z) € R? tel que f(z,y,2) = (—=2,1,3). Cest équivalent au
systeéme
r—3y—Tz= -2
—r4+2y+4z2= 1
2 —y+z= 3

En faisant Ly + Lo+ Ly et L3 < L3 — 2L, on a le systéme équivalent

r—3y—T7z= =2
—y—3z= -1
Sy +15z2= 7
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Puis en faisant Ls < L3+ 5L9, on a

r—3y—7z= -2
—y—3z= -1
0= 2

Ce systeme n’a pas de solution, donc v n’admet aucun antécédent. [J

3. Elle n’est pas surjective vu la question précédente (v n’admet pas d’antécédent), et
non injective (u en admet une infinité). [

Exercice 16. 1. f est un isomorphisme si et seulement si A est inversible, donc si le
systeme homogene associé a A est de rang 3.

az= 0
z+bz= 0
y+cz= 0

Ce systeme est échelonné, ses coefficients diagonaux sont a, 1 et 1, donc il est de rang
3 et et seulement si a # 0.

A est inversible si et seulement si a # 0, autrement dit f est un isomorphisme si et
seulement si a # 0. [

2. 11 est nettement plus simple de travailler sur la matrice représentative de f. Ainsi,

0 a ac a ac ab + ac?
A2>=10 b a+bc|,puisA3=|b a+bc ab+ ac+ b

1 ¢ b+c? c b+c? a+2bc+cd
Ainsi, A3 — cA? —bA —al3 = Ort5(K) -

O]

3. Lorsque a # 0, on a (A% — cA — bl3) A = I3, ainsi

Al = 2 (A2 A b13) .

1
On en déduit que f~! = a(f2 —cf — bidgs).

Si on veut une expression explicite de f, il vaut mieux calculer A~! ce que 'on peut
faire soit en résolvant un systéme, soit en se servant de ce qu’on vient de faire. On a

1 b a 0
Al=="1-c 0 a
“\1 0 o0

1
Donc f~Y(x,y,2) = —(—bxr — ay, —cx + az, ).
a

4. On est dans le cas ou a = 0 (sinon, f est injective). Auquel cas, (z,y,z) € Ker(f) si

8

et seulement si A |y | =

0

0

z 0
0 0 O T 0
Autrement dit |1 0 b 0
0 1 0
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Soit le brave systeme :

0= 0
r+bz= 0
y+cz= 0

On obtient tres rapidement :
Ker(f) = Vect((b,c,—1)). O

Exercice 17. 1. Prenons u tel que f2(u) # 0.
Montrons que (f2(u), f(u),u) est une famille libre. Soient A, u, v € K tels que
M2 (u) + pf(u) + vu = 0.

Appliquons f? & cette égalité. Par linéarité, on obtient

M) + pfP () + v (u) = 0.

Or comme f3 = 0, on a simplement vf?(u) = 0, mais comme f?(u) # 0, on a v = 0.
Donc I’égalité devient
A2 (u) + pf (u) = 0.

Appliquons f a cette égalité. Par linéarité, on obtient
A (u) + pf?(u) = 0.
Soit comme ci-dessus, pf?(u) = 0, et comme ci-dessus cela implique u = 0.

Donc en fait, on avait juste Af?(u) donc A = 0 puisque f2(u) # 0.

Ainsi, la famille (f2(u), f(u),u) est une famille libre de 3 éléments de K* donc elle
une base de K3. [J

2. On a
F(F2 ) = £3(u) = 0= 0f%(u) + 0f (u) + Ou.
Puis
F(f(w) = f2(u) = f2(u) + 0f(u) + Ou.
Et enfin

f(u) = 0f%(u) + f(u) + Ou.

Il s’agit de la matrice A =

o O O
o = O

1
0
0
O

Exercice 18. 1. Il est plus simple de travailler sur A.

7T -6 =3 0
0 1 0 0
2 _
On trouve A = 6 -6 -2 0
0 3 0 4

On réalise alors que A%2 —3A + 21, = 0, ce qui se traduit sur les endomorphismes par
f2=3f+2id=0.0
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1
2. On obtient rapidement & partir de 1’égalité précédente sur les matrices que —=(A —
P p g b q 9

1
3I4)A = I4, donc A est inversible et A~! = —§(A —31).

1
Ainsi, f est bijective (isomorphisme) et f~! = _5( f = 3id).
o 1 %0
On peut alors voir que A~! = 0 1 2 0
-1 1 % 0
0 —3 0 3

1 3 1 1
Autrement dit, fﬁl(az, Y, z,t) = (y + §z, y,—r+y+ iz, —iy + 2t) O
3. Notons, pour n € N, P(n) : < il existe a, et b, tels que " = anf + bpid. >

Cette propriété est vraie au rang 0 puisque f° = 0f + id et au rang 1, (puisque
f = f+0id) et méme au rang 2 d’apres la premiere question.

Soit n € N quelconque fixé. On suppose P(n) vraie.

On a f"*l = fo f* = fo(anf + byid) = anf? + by f.

Or, on sait que f2 = 3f — 2id d’aprés la premiére question.
Ainsi, f"*! = a,(3f — 2id) + b, f. Autrement dit

T = (3ay 4 bp) f — 2ayid.

La propriété est donc vraie au rang n+1 en prenant a,4+1 = 3a, + by, et b1 = —2a,.

Ainsi, on a Vn € N, f™ = a,f + bpid ot (an)nen et (bp)nen sont deux suites définies
parag =0et bg =1et Vn € N, ay11 = 3an, + by et bpy1 = —2a,. O

4. On a pour tout n € N, anyo = 3any1 + bnt1, or b1 = —2a, donc

Vn €N, apt2=3ant1 — 2an.

Résolvons I’équation caractéristique associée X2 —3X +2 = 0. On trouve deux racines
évidentes, 1 et 2, donc il existe deux réels A et u tels que a, = A2" + u.

En faisant n =0, on récupere A+ p=0et 2 X+ pu=1donc A =1et p = —1.
On a donc, Vn € Nya, = 2" — 1.
Ensuite, on a, pour tout n € N, b, = ap+1 —3a, =2x2"—1-3(2" —1) = —2" 4 2.
On a donc, pour tout n € N, f* = (2" —1)f + (2 —-2")id. O
5. On veut savoir si pour tout n € N, (f~1)" = (27" — 1) f + (2 — 27")id.
Composons donc
(27" =1 f+@2=2"idlof"=[27"=1)f+(2—-2"")idlo[(2" —1)f + (2—2")id].

On a donc

(27" —1)f+(2—=2")id] o f* = (27" — 1)(2" — 1) f*
+[2=1D)@2=-2M+(2-2")2" = 1)] f+(2-2"")(2 - 2")id.
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Ainsi
(7" =Df+2-2""id)o f"=(2-2""=2")(3f — 2id)
F[6+3x27+3x27 f+(5—2x27"—2x2")id.
En simplifiant, on obtient bien ((27" — 1)f + (2 — 27")id) o f™ = id.
Ainsi, on a bien pour tout n € N, (f~H)" = (27" — 1)f + (2 — 27")id. O

Exercice 19. 1. On sait que le vecteur f(z,y) est représenté relativement a la base
. 1 5
canonique par le vecteur colonne A (5) = <:E * y)

T2\ +y
Ainsi, f: R? — R? O
1

2. La famille B’ est constituée par seulement deux vecteurs qui s’avérent étre non co-
linéaires. Elle est donc libre. Comme elle contient exactement deux vecteurs et que
dim(R?) = 2, la famille B’ est donc une base de R.

O
3. La matrice P est constituée par les coordonnées des vecteurs de B’ exprimés dans

L _1>. Ensuite, on a det(P) = 2 donc

la base canonique en colonne. Ainsi, P = ( 11

11 1
-1 _ =
P _2<—1 1>‘D

4. Remarquons que f(1,1) = (3,3) =3(1,1)+0(—1,1) et f(—1,1) = (2,-2) =0(1,1) —
3 0
0 -2/

Enfin, aprés calculs, on a PDP~' = A. [

2(—1,1). Ainsi, D =

5. Par récurrence, on pose pour tout n € N, P(n) : « A" = PD"P~1 5.
Ona A’ = I et PD°P—1= PP~! = I3, donc P(0) est vraie.
Soit n € N quelconque fixé. On suppose P(n) vraie.
On a A"t = AA™ = APD"P~! d’aprés P(n). Or, en utilisant la formule de chan-
gement de base, on a A = PDP~!. Ainsi, A"*! = pPDP~'PD"P~! = pprtip—1
donc P(n + 1) est vraie.
On a donc pour tout n € N, A» = PD"P~1. [

6. Il suffit désormais de poser les calculs. On a PD™ = (gn _((__5,)1 ), puis

A" = ppnp~l = 1 (

3n + (_2)n 3n _ (_2)n
B .

3n _ (_Q)n 3n + (_2)71,
O

Exercice 20. 1. Vérifions la linéarité de . Soient M et N deux éléments de M2 (R) et
A et p deux éléments de R. On a

©(AM + puN) A(AM + pN)
= ANAM + pAN

= Ap(M) + pp(N).
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Ainsi, ¢ est une application linéaire. De plus, comme ¢ est définie sur My(R) et a
valeur dans Mjs(R), il s’agit bien d’un endomorphisme de Mo (R). O

10 01 00 00
2. NotonsE1—<0 O)’E2_<O 0>,E3—<0 1) etE4_<() 1))

On a p(E1) = (:; 8> = —FE1 —3E3, et on a aussi p(Fy) = (8 :;) = —Fy—3E,,

puis ¢(Es3) = (é 8) Ey + 3E;3 et pour finir ¢(Ey) = <8 é) = FEy + 3E;4.
-1 0 1 0
0 -1 01

On a donc C' = 3 0 30
0 -3 0 3

O

s Notans 1= (1 )= () 1)om= (5 o) = (5 4)

La famille B’ est une famille de quatre vecteurs et dim(Msy(R)) = 4. La famille B’ est

une base si et seulement si elle est libre.
4

Considérons (A1, Ao, A3, Ag) € R* tels que Z AeFy = Opg,(w)- Cela implique le systeme

k=1
A1 +A3 =0 A1 +As =0
A 43 — 0 Ly iy Iy 23 —
Ao 43\, =0 baclale 22 =0

Ce qui implique A\; = Ay = A3 = Ny = 0.
La famille B’ est donc une base de M2(R). O

4. On a p(F1) = Orgy(r)s P(F2) = Oppy(w), p(F3) = 23 et o(Fy) = 2Fy.

La matrice D est donc D =

o O O O
o O O O
o N OO
N O OO

5.0na Fy =F1+ FE3, Fo = FEy+ Ey, F3=F1 +3FE3 et Fy = FEy + 3E4.

1 010
o 01 01 1
Ainsi, on a P = 103 0 et le calcul donne C' = PDP~. O
01 0 3

Exercice 21. 1. Prenons \ et p deux éléments de K et P, ) deux éléments de K[X].

On a
Pn(AP +pQ) = (AP + pQ)(0),. (/\P+MQ)(”))
= (AP(0) + pQ(0 ), AP(n) + pQ(n))
= A(P(0),. (n)) ( (0),...,Q(n))
= Apn(P )+uson(Q)

Ainsi, ¢, € L(K[X],K"1). O
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2. Considérons P € K[X]. On a P € Ker(py,) si et seulement si (P(0),...,P(n)) =
(0,...,0) soit si et seulement si P a 0,...,n comme racines.

Ainsi, P € Ker(py,) si et seulement si il existe Q € K[X] tel que P = H (X —k)Q.
k=0

On peut encore écrire Ker(p,) = {ITr—o(X — k)Q/Q € K[X]}. L’application ¢, n’est

donc pas injective. [J

3. L’application 1), est tout aussi linéaire que ¢,, donc v, € L(K,[X],K*!). Par
ailleurs, considérons P € K, [X]. Si P € Ker(v,,), alors ¢, (P) = ¢n(P) = (0,...,0),

donc P € Ker(py,). Ainsi, il existe @ € K[X] tel que P = H(X — k)Q. Cependant,
k=0
si Q # Og[x), deg(P) = deg(Q) +n +1 > n, ce qui est exclu car P € K,[X].

Ainsi, @ = Og[x] ce qui implique P = Ogx). On a donc Ker(v,) = {Okgx)}. L’appli-
cation 1, est injective.

De plus, comme en plus dim(K,[X]) = n + 1 = dim(K"*!), I'application 1), est un
isomorphisme. []

4. Considérons Py tel que ¥, (FPy) = (1,0,...,0). Ainsi, Py s’annule pour tout ¢ € [1,n],
n
et comme deg(Pp) < n, il existe C' € K tel que Py = C H(X —¢). Comme Py(0) =1,

=1
1 -1H"
on prend C' = — :( ').
[Ho-o ™
(=1
—1)"
On a donc Py = ( ') H(X —0). 0
n!
(=1
5. De la méme fagon, on considére P; tel que ¢, (P;) = (0,,1,0,...,0). Ainsi, P; s’annule
pour tout £ € [0,n] \ {1}, et comme deg(P;) < n, il existe C € K tel que P, =
& 1 —1)n!
C’H(X—Z).Comme Pi(1) =1, on prend C = = (=1) .
& (n—1)!
(=0 [1(1-1)
041 =0
i#1
(-1
On a donc Py = -—— (X =1
(n—1)! 5

O]

6. Plus généralement, on considere Py tel que ¢,(Px) = (0,...,0,1,0,...,0) ou le 1
apparait en position k + 1. Ainsi, Py s’annule pour tout ¢ € [0,n] \ {k}, et comme
n

deg(Py) < n, il existe C € K tel que P, = C H(X —¢). Comme Py(1) =1, on prend

=0
£k
1
C =
[I(k—20)
(=0
0£1
]

7. Considérons (a,b,c) € K3. On a (a,b,c) = a(1,0,0)+5b(0,1,0) +¢(0,0,1) = as(Py) +
b (P1) + cipa(P).
Plus précisément, on a (a, b, c) = a2(aPy + bP; + c¢P). Rappelons que l'on a, d’apres
X 1)(X—2), P = —X(X—2) et Py = ~X(X—1).

2
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Ainsi, comme 5 est un isomorphisme, sa réciproque est I’application

Pyt K3 — Ko[X]
(a,b,c) — a%(X —1)(X —-2) - bX(X —2) —l—c%X(X —1).

O
8. Il s’agit de généraliser la démarche précédente. On considere (aq, . .., a,) € K" et on
n n
remarque que (ag,...,a,) = Z arr(Py), donc que (ag,...,an) = ¥, (Z akPk> .
k=0 k=0
Ainsi, comme ), est un isomorphisme, sa réciproque est I’application
ot K3 — Ko[X]
n
(ao, - ,an) — Z akPk.
k=0
O
Exercice 22. 1. Déterminons Ker(f). Soit (x,y,z) € Ker(f), alors c’est équivalent a
T 0
Aly| =10] cest-a-dire le systeme
z 0
r—y—z= 0
r+y+z= 0
—z= 0
Soit tout simplement
z= 0
—y—z= 0
y+z= 0

Ou encore, pour bien détailler,

Ainsi,
Ker(f) = Vect((0,-1,1)).
On remarque que ((0,—1,1)) forme une base de Ker(f) a lui tout seul (un seul vecteur
non nul). On a donc dim(Ker(f)) = 1.
Par ailleurs Im(f) = Vect(f(1,0,0), (0,1,0), £(0,0,1)), soit

Im(f) = Vect((1,1,—1), (—1,1,0), (—1,1,0)).

Ou plus simplement
Im(f) = Vect((1,1,-1),(-1,1,0)).

((1,1,-1),(—1,1,0)) est une base de Im(f) puisqu’en plus de 'engendrer, cette famille
est composée de deux vecteurs non colinéaires donc libres. On a donc dim(Im(f)) = 2.
O
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2. C’est équivalent a regarder le rang de A — Al3 autrement dit le rang du systéme

T 0
homogene associé a cette matrice soit (A — A3) [y | = ]0]. Cest & dire :
z 0
(1—=XNzx -y -z =0
x +(1-Ny +z =0
—x -z =0

On fait ensuite Ly <~ Ly + (1 — X\)Lg et Ly <~ Lo+ Ly et on a

—y +(AN2=X=1)z =0
+(1-Ny +(1-XN)z =0
—x -z =0
Ensuite, faisons, Lg <— Ly + (1 — A)L; et on a
-y +N=-A-1)2z =0
(=X +2X2-X%)z =0
—T -z =0

En réorganisant un peu les termes, on trouve

—x —Az =0
—y +(N=-A-1)z =
“AA=12z =0

Le systéme n’est pas de rang 3 lorsque A =0 ou A = 1. [

3. On ne l’a encore jamais écrit mais f(z,y,2) = (z —y — z,x + y + 2z, —x).
Si s € Vect(u), il existe p € R tel que s = pu, ainsi f(s) = pf(u) = p(0,0,0) €
Vect(u).
Si s € Vect(v), il existe p € R tel que s = po, ainsi f(s) = pf(v) = p(1,1,-1) €
Vect(v).
Ainsi, Vect(u) et Vect(v) sont des droites vectorielles stables par f.

Soit w non nul tel que Vect(w) soit une droite vectorielle stable par f. Alors f(w) €
Vect(w), donc il existe un A € R tel que f(w) = Aw.

On peut le réécrire tel que f(w) — dw = (0,0,0) ou encore (f — Nid)(w) = 0. Cela
implique que rg(f — Aid) < 3 (sinon d’apres le théoréeme du rang, Ker(f — \id) =
{(0,0,0)} donc w = (0,0,0) et il n’engendrerait pas grand chose).

Ainsi, on remarque que, d’aprés la question précédente, A = 0 ou A = 1.

Orsi A = 0, c’est tout simplement w € Ker(f) = Vect(u), donc on retrouve la premiere
droite vectorielle.

Si A =1, alors w = (x,y, z) est solution du systéme de la question précédente avec
A =1, donc de

- —z =0
0 =0

On trouve donc w € {(—z,—z,2)/z € R} = Vect((—1,—1,1)) = Vect(v).

Ainsi, on retrouve la deuxiéme droite vectorielle. [
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Exercice 23. 1. Soit x € Ker(f). On a alors f(z) = 0, donc g(f(x)) = 0, autrement dit
go f(z) =0, soit x € Ker(g o f).

Ainsi, Ker(f) C Ker(go f).
Soit y € Im(go f), alors il existe z € K" tel que y = go f(z) = g(f(x)) donc y € Im(g)
Ainsi, Im(g o f) C Im(g). O

2. Soit y € Ker(g) NIm(f), alors il existe z € K" tel que y = f(x) et on a g(y) = 0.
Ainsi, g(f(xz)) = 0, donc g o f(x) = 0. Ainsi € Ker(g o f). Or y = f(x), donc
y € f(Ker(go [)).
On a donc Ker(g) NIm(f) C f(Ker(go f)).

Réciproquement, soit y € f(Ker(go f)), donc il existe z € Ker(go f) tel que f(x) = v,
donc y € Im(f).

Par ailleurs g(y) = g(f(z)) = g o f(x) = 0 puisque = € Ker(g o f), donc y € Ker(g).
Ainsi, on a y € Ker(g) NIm(f).

On a donc f(Ker(go f)) C Ker(g) N Im(f).

Par double inclusion, on a bien Ker(g) N Im(f) = f(Ker(go f)). O

3. Soit = € Ker(g). On a

puisque = € Ker(g).
Ainsi, g(f(x)) =0, donc f(z) € Ker(g). Ker(g) est donc bien stable par f.
Soit y € Im(g). Ainsi, il existe z € K" tel que g(x) =y. On a

fly) = f(g(x)) = fog(x) =go f(z) = g(f(2)),

autrement dit f(y) € Im(g).
Im(g) est donc bien stable par f. O

4. Soit x € K". On a fog(x) = f(g(x)) donc fog(z) € Im(f). De méme, go f(z) € Im(g).
Or, Vi € K™, f o g(x) = go f(x), donc f o g(x) € Tm(g).
Ainsi, fog(z) € Im(f)NIm(g) = {0}. Donc Vz € K", fog(x) = 0. On a donc fog =0
et comme fog=go f, gof =0 aussi. ]

Exercice 24. 1. On prend z € Ker(fP). On a donc fP*l(z) = f(fP(z)) = f(0) = 0,
donc = € Ker(fPT1).
On a donc Ker(fP) C Ker(fP1).

Soit y € Im(fPT1), alors il existe z € K" tel que y = fPH(z) = fP(f(x)). Ainsi, y
admet un antécédent par fP qui est f(x). Donc y € Im(fP).

On a donc Im(fP*) C Im(fP). O

2. a. Supposons ¢ ¢ N.
En prenant e = min(¢ — |£], [¢] + 1 — ¢), on remarque que, il existe un entier py
tel que, Vp = po,
lup — 4] < ¢,
autrement dit
l—e<u, <l+e.
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Cependant, puisque e < £ — [£], { —e > [{], et comme e < [¢/] +1—/, on a
0] <up < [£]+1.

Or il est rigoureusement impossible d’avoir un entier compris strictement entre
deux entiers successifs.

On a donc forcément ¢ € N.

b. On a désormais lirll up = £ € N. D’apres la définition de limite appliquée a
p——+o00

1
€= 2 on récupere qu’il existe un pg € N tel que, pour tout p > po,
1
up, — L < =,
up— €1 <

autrement dit

1 1

Or comme u, € N, le seul entier possible est u, = £.
O

3. a. Sion note d, = dim(Ker(f?)), on peut remarquer que, puisque pour tout p € N,
Ker(fP) C Ker(fP™!), on a d, < dp1.
La suite (dp)pen est donc croissante. Elle est majorée par n (puisque dimension
d’un sous-espace de K" est forcément inférieure a celle de K").

La suite est donc convergente. D’apres la question précédente, il existe py € N tel
que, Vp 2> po, dp = dp,. [
b. On a donc Ker(fP°) C Ker(fP) ainsi que 1’égalité des dimensions, ce qui nous
donne que pour tout p > po, Ker(fP) = Ker(fPo). O
4. a. Appliquons le théoreme du rang a fP. On a alors dim(Ker(fP)) + rg(fP) =
dim(K™).
On a donc, dim(Im(fP)) = n — dim(Ker(fP)). Or comme pour tout p > py,
Ker(fP) = Ker(fP0), on a
dim(Im(f?)) = n — dim(Ker(f?)).
Et d’apres le théoréeme du rang appliqué a fP°, on a

dim(Im(f*°)) = n — dim(Ker(f*°)).

On a donc pour tout p > po, dim(Im(fP)) = dim(Im(fP0)). O

b. C’est la méme chose que précédemment. On a donc Im(fP) C Im(fP°) ainsi que
I’égalité des dimensions, ce qui nous donne que pour tout p > po, Im(fP) =
Im(fP°) O

5. Comme Ker(fP?) et Im(fP°) sont des sous-espaces vectoriels, il est clair que {0} C
Ker(fPo) N Im(fPo).
Soit y € Ker(fP°) NIm(fP0). Comme y € Im(fP0), il existe x € K" tel que y = fPo(x).

On a de plus fP°(y) = 0, donc f2P°(z) = 0. Autrement dit € Ker(f?P?). Cependant,
Ker(f2P0) = Ker(fP0) puisque 2pg = po. On a donc z € Ker(fP0), donc fP°(x) = 0. Or
comme y = fP9(z), on ay = 0, ce qui nous donne I'inclusionKer(fPo)NIm(fP°) C {0}.

On a donc démontré par double inclusion que Ker(fP°) NIm(fr°) = {0}. O
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21 Compléments sur les variables aléatoires finies

EX-Y)=
linéarité de 'espérance. Comme X et Y suivent la méme loi uniforme, on a E(Z

Exercice 1. Par linéarité de 'espérance, on a E(Z) =

Parce que X et Y sont indépendantes, on a

V(Z)=V(X-Y)=V(X)+V(-Y)=V(X

Ensuite, on a Z(Q) = [-n+1,n —1].

)+ V(Y) =

E(X) - E(Y)

)

par
0.

Ensuite, nous allons utiliser la formule des probabilités totales appliquée au systéeme

complet d’événements associé a Y, et on a, Vk € Z(Q),

[M]=

PX-Y=knY =20

—k+(nY =20

P(Z=k) = P(Z=kNnY ={)
(=1
(=1
= > P(X
(=1
Sik>0,0na
n—k
P(Z=k)= ZP(X
= ZP =k+ 0P
_ "2"“11
Zzlnn
n—=k
pu— n2 .
Sik<0,o0na
P(Z=k)= > P(
{=1—-k
= Y PX=k+0PY
(=1—k
!
=1 "
n—(1—-k)+1
n+k

En résumé, on a Vk € [-n+ 1,n — 1], P(Z = k)
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On a alors,

E(Z) = nf kP(Z = k)

k=—n+1
- Z -
n
k=—n+1
-1 n—1
n+k n—=k
D= D
n n
k=—n+1 k=0
Posons £ = —k dans la premiere, on a alors

n—0 "1 on—k

+> k

E(Z) = nf —
/=1

n?2 = n2
E(Z)= o.
Puis, on a V(Z) = E(Z?) comme E(Z) =0 et
n—1
E(Z*) = Y KP(Z=k)
k=—n+1
—1
n2
k=—n+1
-1 n—1
= D K+ K
k=—n+1 k=0
Posons ¢ = —k dans la premiere, on a alors Posons £ = —k dans la premiere, on a alors
n—1 n—1
2y _ an — |{] 2N — k
B(Z) = Y C—s= ) K
/=1 k=0
n—1 n—k
= 2 2
> K3
k=0

9 O n—1 n—1
= = ankQ—Zkfﬂ]
k=0 k=0
2 ln (n—1)n(2n—1) n(n— 1)2]

n? 6 4
_ (h=D@n-1) (n-1)
B 3 2
_ (4n® —6n+2) — (3n® — 6n + 3)
B 6
_ n?—1
= i
. n?—1
Donc on a bien V(Z) = . Ouf.

O]

Exercice 2. Comme souvent dans ce chapitre, la réponse est dans la formule des pro-
babilités totales. Appliquons la au systéme complet d’événements (Y = k) ke[0,n] -
On a alors :
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k=0

= > P(X=kNY =k)
k=0

= Z P(X =k)P(Y = k)car X et Y sont indépendantes
k=0

- EHEETEEE

Pour terminer de simplifier, on a besoin de la formule de Vandermonde dans un cas par-
ticulier. Cette formule de Vandermonde figure dans ’exercice sur la loi hypergéométrique
du chapitre des variables aléatoires. En voila une démonstration différente dans le cas
général (on prendra ensuite n = m et k = n pour son application).

m+n
Ona (14 x)™" = Z (m]jn)xk
k=0

Par ailleurs, (1 +2)™"™ = (1 +2)™(1 +2)" = i ( )m’ Z ( > /
7=0
Ainsi, (1 4+ 2)™" = ZZ( )() +,

=0 7=0

m n+1i
En posant k = i+7j, ona (1+z)™™" = Z Z < ) ( >xk En utilisant la convention
=0 k=1

habituelle que (Z) =0si k ¢ [0,n], on peut écrire

e (W) =B L)

L’unicité de I’écriture développée réduite d’un polynome assure 1’égalité de Vander-
monde.
Revenons-en a notre probléme. Nous avions

1 & (n n
roen= g2 (1))

1 (2
= ( n) d’apres la formule de Vandermonde.
22n\ n

2 1
Ainsi,ona P(X =Y) = ( n) —
n

22n :

Exercice 3. 1. Il est clair que X et Y suivent des lois uniformes sur [1,20] et sont
indépendantes.
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Ona E(Z)=E(X+Y)=EX)+ E(Y) par linéarité de l'espérance. Or E(X) =
E(Y) = %1 done E(Z) = 21.

De la méme fagon, on a E(T) = E(X —Y) = E(X) — E(Y) = 0 en utilisant la
linéarité.

Pour les variances, on a V(Z) = V(X +Y) = V(X) + V(Y) puisque X et Y sont

indépendantes. Or

400—1 399 133
VX =V === =1

1
Ainsi, V(Z) = %

Ensuite, V(T) = V(X —-Y) =V(X) + V(=Y) puisque X et —Y sont indépendantes.
1
Mais comme V(=Y) = V(Y), on trouve V(T') = V(Z) = %
O
2. Remarquons que Z(2) = [2,40] et T(2) = [-19,19] et Z > T car Y > 0.

Ainsi

(ZT =48) = (Z =8NT =6)U(Z =16NT =3)U(Z = 12NT =4)U(Z = 24NT = 2).

Réfléchissons un peu pour voir si chaque chose est possible.

c (Z=8)N(T=6)=(X+Y=8NX-Y=6=(X=7NY =1);

c (Z=12NT=4)=X+Y=12NX-Y =4 =(X=8NY =4);

e (Z=16NT=3)=X+Y=16NX-Y=3)=(X=2nY =2)=0;
« (Z=24NT=2)=(X+Y =24NX-Y =2)=(X=13nY =11).

Ainsi, P(ZT =48) = P((X =7NY = 1)UPU(X =8NY =4)U(X =13NY = 11)).

Par incompatibilité, on a
PZT =48) =P(X="TNY =1)40+P(X =8NnY =4)+ P(X =13NnY =11).
Par indépendance de X et Y, on a

P(ZT =48) = P(X = T)P(Y = 1)+ P(X = 8)P(Y = 4) + P(X = 13)P(Y =11).

3
E PZT =48) = — = —.
t donc, P( 8) 507 = 200
1
Exercice 4. 1. 1l est évident que X suit une loi de Bernoulli de parameétre 3

De plus, Y compte le nombre de succes a ’épreuve < obtenir face > de probabilité

1
— répétée 3 fois de fagon indépendante, donc Y suit une loi binomiale de parameétre

1
(5.1).0
2. Ona X(Q) = {0,1} et Y(Q) = {0,1,2,3).

Il est clair que P(X =0NY =0) =0 (on ne peut pas avoir eu un face en premier et
aucun face) et P(X =1NY = 3) aussi.

Calculons P(X =1NY =1). Notons F; I'’événement <« faire face au rang i >.
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Ona (X=1NY =1)=(FNFKNF;)U(FLNFNE;).
Ainsi,

PX=1nY =1)=P (A nBNF)U(FNFKNR)).
Par incompatibilité, on a

P(X=1NnY =1)=P(FiNF,NF;)+P(FiNFNF;).
Par indépendance des lancers, on a

P(X =1nY =1) = P(F)P(F,)P(F;) + P(F))P(Fy)P(F3).

Et donc 1 1 9 1
PX=1InY=1)=-+-==-=-.
( " ) 8+8 8 4
A ce stade 13, on a le tableau suivant.
X .
v 0] 1] PY=yj
1
0 0 -
8
2
1 2 3
8 8
9 3
8
1
3 0 -
8
1)1
PX=1i|=|=

La formule des probabilités totales qui se traduit par la somme de la ligne j donne
P(Y = j) et la somme sur la colonne ¢ donne P(X = i) nous permet de remplir toutes
les autres cases !

X
v 0|1]PY =)
1 1
0 0] = -
8 8
1 112 3
8|8 8
2|1 3 -
2) i z
8|8 8
1 1
3 ~lo -
8 8
1)1
PX=i)|=|-=
(X=49 |53

Exercice 5. 1. Pour que ce soit une probabilité, il faut que

N N
YD P(X=inY =j)=1

i=0 j=0

318 / [359



Calculons cette somme. On a

N N N N ) )
N PX=inY =j) =) ) Ap'¢N

i=0 j=0

Ainsi, il faut avoir

O

i=0 j=0

(5 (50)
. @:Op> (é&) avee k= N —

1 — pN+1 1 _ N+l

4 p q
I—p 1—-¢
_ A(l _pN+1)(1 _ qNJrl)
Pq
A= Pq

(1 _ pN+1)(1 _ qN—i-l)'

2. Utilisons la formule des probabilités totales appliquée au systéme complet d’événements

associé a Y.

On a alors, Vi € [0, NJ,

P(X =)

P(X =iNY =)

hE

j=0
N
Ap'gN I
j=0
Ap' Z ¢ =7 on reconnait une somme déja calculée
§=0
1= N+1
Ap' . S
l—gq

Apifl(l . qN+1)

pq i—1 N+1
(1_pN+1)(1_qN+l)pZ (I—¢")
qp’
1— qN+1

Utilisons la formule des probabilités totales appliquée au systéeme complet d’événements

associé a X.
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On a alors, Vi € [0, N],

pq N—j—1 N+1
T pra-—gm? TP
N—j

On remarque alors, que V(i,5) € [0, N]?, on a

P(X=iNnY =j)=P(X =i)P(Y =j).

Elles sont donc indépendantes. [

. On a évidemment, X + Y (Q) = [0,2N]. Ainsi, Yk € [0,2N], on a en utilisant la
formule des probabilités totales appliquée au systéme complet d’événements associés
ay,

PX+Y=k= S PX+Y=nnY =)

-

<
I
<)

PX=k—jnY =j).

I
.MZ

<
Il
=)

Il faut distinguer selon la position de k par rapport a N.
Pour k € [0,C], on a

k
PX+Y=k= > P(X=k—jnY =j)
=0
Jk
= 2 AN

Jj=0

k
= A¢"FS " (pg)t
j=0

k
= AgNF Z (pq)e avec f =k —j
=0
AqN—k: 1-— (pq)k+1 ]

1 —pq
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Pour k € [N +1,2N], on a

N
PX+Y=k= Y PX=k-jnY=j)
j=k—N
N
= > AN
j=k—N
al N
= AN > (pg)™
j=k—N
2N—k

= ApFN Z (pq)g avec =N —j
=0

2N—k+1

Apk’N 1-— (PQ)
1 —pq

Pour les deux expressions, on peut bien évidemment remplacer A par sa valeur, mais
je n’ai pas vu de belle simplification. [J

Exercice 6. Remarquons tout d’abord que si X () = [0, N], on a par contre Y (2) =
[0,2N].

Pour déterminer la premiére marginale, utilisons la formule des probabilités totales ap-
pliquée au systéme complet d’événements associé a Y, on a alors, pour tout i € [0, N],

2N
P(X=i)= Y P(X=inY =j)
§=0
i+N
= Z P(X =iNY =j) les autres termes sont nuls
j=i
- N+1)2
= (N +1)
1
N+1
On a donc X — U([0, N]).
Pour la seconde, on utilise la formule des probabilités totales appliquée au systéme
complet d’événements associé a X. On a, pour j € [0,2N],

N
PY =j)=> P(X=inY =j).
=0

Il faut distinguer différents cas.
Si k € [0, N],

|
~

Il
\M_;

Il
Mu

P(X =iNY = j) les autres termes sont nuls
0

.
Il

1
(N +1)2
+1

+1°

Il
M~

Il
o

i

= |~.

Si ke [N +1,2N],
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N
PlY =35 = Z P(X =iNY =j) les autres termes sont nuls
i=j—N
oy !
imgoN (N +1)2
2N —j+1
N+1
On a donc pour tout j € [0,2N],

J+1 sij< N
Py =j)=¢ N+l
IN—j+1
_— S1 .
N1 J

Elles ne sont pas indépendantes parce que P(X = 1NY = 0) = 0 alors que P(X =

1 1

Exercice 7. 1. On a X(Q) =Y (Q) = {0, 1,2}.
On peut poser mais ce n’est pas si simple que ca. Le plus simple est de faire du
dénombrement. On note 2 'ensemble des combinaisons a deux éléments de {01, 02, 11, 12,21, 22}
quon muni de la probabilité uniforme. Donc Card(Q) = (5) = 15.
L 3 6 2
On a P(X > 0) = 1 (évidemment), P(X > 1) = === = — = — (on compte le

15 15 )
nombre de combinaisons & deux éléments pris parmi {11, 12,21,22}) et pour finir,

B _
15 15°

Ensuite, on a P(X =0) = P(X > 0) - P(X > 1) =

P(X >2)

et P(X =1)=P(X >

1 1
)—-P(X>2) = 3 et pour terminer P(X =2) = P(X >2) = (T
1 3
Par symétrie, il est clair que P(Y =0) = —, P(Y =1) = 3’ P(Y =2) = 5 Et si ce
6 1
n’est pas clair, il faut déterminer P(Y <2)=1, P(Y <1) = 5 et P(Y <0) = 5

O]

2. Le plus simple est de remarquer que P((X =) N (Y = j)) = 0 lorsque i > j et de

dresser le désormais classique tableau & double entrée, et que P(X =iNY =i) = —

15
(une seule possibilité avoir pioché les deux boules de méme numéro).
X )
. 01| 2|Py=j)
0 ! 0 0 !
15 15
1 )
1 Bl 2
15 0 15
1
5 L
15 15
9 )
PX=4)|—|—|—
15| 15 | 15
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En remplagant ce qu’on peut par la formule des probabilités totales (somme sur une
ligne donne P(Y = j) et sur une colonne P(X = 1)), on se rend compte que

X .
v 0l 1|2 |Py=j
0 L1100 L

15 15

41
1 _ | = =

515" 15 =
) 4|4 |1 9

15 | 15 | 15 15

9 | 5 | 1
PX=i)|—|—=]|—

15 | 15 | 15

A noter qu’il faut bien réaliser que ¢a marche uniquement parce qu’on sait que 2 est
forcément le plus grande de deux jetons piochés! Si la question avait été < sachant
qu’un des jetons porte le numéro 2, quelle est la probabilité que I’autre porte le 0 7 > on
n’aurait pas pu se servir des variables X et Y. [J

Exercice 8. 1. Beaucoup de dénombrements dans cet exercice.

On considérera 2 I’ensemble des combinaisons a n éléments de [1, N| que 'on munira
de la probabilité uniforme. Comme (X > k) est ’ensemble des combinaisons a n
éléments de [k, N], on a

(ka+1)
P(X > k)= —F——sik<N-—n+1,0 sinon.
()
Et comme (Y < k) est I'ensemble des combinaisons & n éléments de [n, N], on a

k
P(ng):%sik>n,051non.D

n

2. En utilisant la question 1, on trouve

Vk € [1,N], P(X = k) = (N_fﬂ()N; ™ (]fo>~

Et pour Y :

Vk € [L,N],P(Y =k) = .\ n

Ca peut se simplifier avec la formule de Pascal. (I

3.0na X(Q)=[,N]=Y(Q).Sij—i<n—-1LP(X=9)n(Y =35)=0(lya
forcément une différence de n — 1 entre le plus petit et le plus grand puisqu’on pioche
b
oy
N

n boules). Sinon, P((X =i)N (Y =j)) = car (X =iNY = j) est 'ensemble

n
des combinaisons a n — 2 éléments pris entre ¢ 4+ 1 et j — 1 auxquelles on a ajouté ¢ et
j-
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Ainsi, ¥(i,7) € [1,N]? on a

()
2 sij-izn-1
P(X=)ny=3)=2 G
0 sinon.

O]

Exercice 9. 1. Il s’agit du nombre de boules dont le numéro correspond a numéro de
tirage. [J

2. a. Il s’agit d’une Bernoulli. Par symétrie du probleme, la probabilité de piocher une
boule donnée ne peut étre que la méme pour chaque boule. Ainsi, la probabilité

de piocher la boule numéro k au kéme tirage ne peut étre que —. Donc X}, suit
n
n—1

O

1 1
loi de Bernoulli de paramétre —, donc d’espérance — et de variance
n n

b. On trouve, par linéarité de I'espérance

O]

3. a. Pour exactement les mémes raisons, il s’agit aussi d’une Bernoulli de parametre
n—1
5 O
n

, 1 .
—, donc d’espérance — et de variance
n n

b. De la méme fagon, on trouve E(X) = 1. Attention, la variance ne sera pas la
méme puisque les variables aléatoires ne sont plus indépendantes. [

Exercice 10 (Attention a mener les calculs soigneusement). 1. a. C’est du cours! On
voit que X compte le nombre de succes a 'épreuve « répondre correctement a
la question > répétée n fois de fagon indépendante avec la méme probabilité de
succes. Ainsi, X — B(n,p).

O
b. On a donc E(X) =np et V(X) =np(1 —p). O

c. C’est un classique...

from random import random

def qcm(n,p):
X=0
for k in range(n):
if random () <=p:
X+=1
return X
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2. a. En refaisant tout depuis le début, on peut faire :

from random import random

def qcm2(n,p):
Z=0
for k in range(n):
if random () >p:
if random()<=p:
Z+=1
return Z

Ou en plus court et en se servant de ce qu’on vient de faire :

def qgcm2(n,p):
return qcm(n-qcm(n,p),p)

O
b. Remarquons que Z(2) = [0,n]. Pour ¢ € [0,n], on doit distinguer plusieurs cas.
o Sik+4¢>ncest-a-dire { >n—k, P(Z=10X =k)=0.

e Sif¢ <n—k,on compte le nombre de succes a une expérience répétée n — k
fois de fagon indépendante avec la méme probabilité p de succes. Ainsi

n—=k ke
P(Z:€|X:k):< ) )péqn k=t

O]

c. Dans ces conditions, on a

n—Fk\(n) (n—k)! n!
14 k) On—k—-0k(n— k)

n!
Ok (n—k—20)!
n! (n—20)!
H(n -0kl (n—Fk—2)!

- ()

d. Il est temps d’utiliser la formule des probabilités totales appliquée au systéme
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complet d’événements associé a X. On a alors, pour tout ¢ € [0, n],

3

P(Z=0)= Y P(Z=(X=FkPX =k)

k=0
n—~0

= Z P(Z =4 X = k)P(X = k) les autres termes étant nuls

E <£>( q)" ;{)( L )pk(qz)”_k_g
- (Z)(pq)z(ﬁq?)”_e

On peut remarquer que

P+ =p+(1—p’=1-p+p°=1-p(l—p)=1-pq

o n e
Ainsi, P(Z =¢) = <£> (pQ)Z(l —pq) ‘
On a donc, Z < B(n,pq), et ensuite E(Z) = npq et V(Z) = npq(1 — pq). O

. Oui, Z compte le nombre de succes a ’épreuve < rater puis réussir sa réponse > répétée
n fois de maniére indépendante et de probabilité de succes gp (puisque les deux
passages sont indépendants). [J

. S représente le nombre de bonnes réponses a l'issue des deux passages du QCM.
O

. La beétise serait de renvoyer qcm(n,p)+qcm2(n,p) parce que les deux simulations
ne simulent pas simultanément la méme expérience : on pourrait tout a fait avoir
un résultat qui dépasse n.

Il faut donc refaire les choses.

La version longue

def qcm3(n,p):
S$=0
for k in range(n):
if random () >p:
if random () <=p:
S+=1
else:
S+=1
return S

La version courte :

def qcm3(n,p):
X=qcm(n,p)
Z=qcm(n-X,p)
return X+7Z
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O

c. On a S(22) = [0,n].
Et si on utilisait la formule des probabilités totales appliquée au systeme complet
d’événements associé a X ? Ainsi, V/ € [0,n], on a

Or, on a

Y P(S=(NX=k)

k=0

> P(X+Z=UNX=k)
k=0

> P(Z=(-kNX =k)
k=0

L
Z P(Z =¢—knN X = k) les autres termes étant nuls
k=0

l
> P(Z=(-k|X =k)P(X =k) car P(X =k) #0
k=0
i: (” - k>p€—kqn—k—€+k <n>pkqn—k
= 0—k k
n- k) <”> ¢ on—k—1
> P'q :
= (z —k)\k

n—k\(n) (n—k)! n!
(—k)\k)  (—K)!(n—-0kl(n—k)

n!
k(¢ —k)!(n—20)!
n! 4
O(n— 0K\ (0 —E)!

Ainsi, reprenons notre calcul :

Or,p(1+q)=(1—q)(14+q) =1—-¢%

Ainsi, P(S =

0)

(Z) (1- q2)€ ()"

Ainsi, S < B(n,1 — ¢?).
On a donc E(S) =n(1 —¢?) et V(S) =n(l — ¢*)¢>. O
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Exercice 11. 1.

d. Oui, S compte le nombre de succes a I’épreuve < on n’a pas raté deux fois la
question > répétée n fois de maniere indépendante et de probabilité de succes
1 — ¢? (puisque les deux passages sont indépendants). [J

from random import randint
def varY(m):
return randint (1, randint(1,n))

O

def espY(n):
N=10000
S$=0

for k in range(N):
S+=varY (n)
return S/N

3
5 4

On pourrait croire que ¢a vaut

1 21
. Il est clair que X — U([1,n]), donc E(X) = nt et V(X) = n .0

. OnaY(Q)=[1,n]. Soit ¢ € [1,n].

1
Sil >k, PY =0X =k)=0et pour tout ¢ <k, P(Y =/|X =2x) = T C’est une
U([1,k]) O

. On trouve Y(k, £) € [1,n]?,

P(X=knNY =0)=P(Y =/{|X =k)P(X =k).

Donc on a
1
— sil<k
P(X=knY =()={ nk
0 sinon.

Ensuite, on utilise la formule des probabilités totales appliquée au systéme complet
d’événements associé¢ a X et on a, V£ € [1,n],

PY=0)= > P(X=knY ={)
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6. On a

On a donc E(Y) = n;ll—?).

On va procéder de la méme fagon pour le calcul de E(Y?).

EY?) = Y PP =1
(=1
n n 1
= 2N —

1
= E,E,EQ*
o R
1
_ Z 2
o Ekn'

1<l<k<n
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Ainsi,

n k
1
E(Y?) = 2
(V)= > > ¢
k=1/=1
_ Z”: 1 k(k+1)(2k+1)
= kn 6
1 n
= & > (k+1)(2k+1)
k=1
1 & 1 & 1 &
= —> 2%+ —> 3k+_—> 1
61 k=1 6n k=1 6 k=1
_ 2n(n+1)(2n+1) n 3n(n+1) N 1
N 36n 12n 6
2(n+1)(2n+1) +9(n+1) 6
N 36 36 36
_ An?+15n+ 17
N 36 '
On utilise alors la formule de Koenig-Huygens pour avoir :
V(Y)=E(Y?) - E(Y)
soit
4n? 4+ 15m +17  [n+3\?
V(YY) = —
(¥) 36 ( 4 )
A+ 15n+ 17 nP46n+9
B 36 16
A+ 15n+ 17 P4 6n+9
B 36 16
_ 16n* +60n+68  9n® 4 54n 481
N 144 144
_ ™n? +6n — 13
N 144

On peut remarquer que la variance s’annule pour n = 1 (ce qui est logique) et donc

—1)(7 13
factoriser un peu le résultat. On trouve alors V(Y') = (n )1(42 ki )
O

Exercice 12. 1. Il est clair que X,, — U([1,n]), donc

_n+1 n?—1

E(Xn) et V(Xn) = 12

O
2. On a Y,,(Q) = [1,n].

Pour ¢ € [1,n], on va appliquer la formule des probabilités totales appliquée au
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systéeme complet d’événements associé a X,

P(Yu=0= Y P(Yy =X, = k)P(X, = k)
k=1
- ﬁ: n_ax_m
k=1
1

(Yo =X = k) + P(Y, = (| X = {)

>
12!
>

1 1 AR
n|=n n—i—€
Lie
1 Z”: 1 ¢
nlimnt+tk n+l
s ()
= —|an+——).
n\" n+/
O
3. Onaanzz =
LU
fonction continue sur [0, 1] z — . On a donc
x

O]

_ 15 & W
4. Notons S, = —Z = 5217 Ainsi,

On note I cette intégrale. Or

—1 1 1
_ [t dx:/ z—1+ dz.
1+:c +x 0 14z
1 ! 1
Ainsi, I = {xQ —z+1In(1+ x)} =1In(2) — .
2 0 2
On a donc,
I 1
N Dy A O 1
O
5. Ona E(Y, pr
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Ainsi, on a

- n n+/
= 2o Zﬁ . Z /
n o= n;n+
apn(n+1 1 & 2
= Gnlnt D 52
n 2 n® = n+ l
1
= (n + 1an + nSy,
2
O
6. On a,
Le plus simple est de déterminer
E(Y,
lim ( n)
n—-+o0o n
Or, on a
1
E(Yy) _ (14 2 )an LS,
n 2
. . . 1
Or on sait que Jim_a, = In(2) et Jim Sy, =1In(2) — 3
Donc d’apres les opérations habituelles, on a
E(Y, In(2 1 3In(2)—1
(TL) n()+ln(2)_7: Il() )
n n—00 2 2
3In(2) — 1
Et donc, E(Y,) ~ n(;n

O]

Exercice 13. 1. Notons, pour tout I’exercice, F; avoir obtenu face au lancer 3.
On a X3(Q2) = {0,1}.
Par ailleurs, (Xo = 1) = (Fy N Fy) U (F} N F), ainsi, on a

P(Xy=0)=P(FANFK)U((FNE)).
Par incompatibilité, on obtient,

P(X5=0) = P(F\NF)+ P(F;NF).
Par indépendance des lancers, on a

P(Xy = 0) = P(F1)P(F) + P(F1)P(F).

11 11 1
Et donc P(Xo=0)=-= 4+ -= = —.
one P2 =0)=55+5373
Comme (X3 = 0), (X2 = 1)) forme un systéme complet d’événements, on a et P(Xy =
1
1) =-.
) 2

Ensuite, on a X3(2) = {0,1,2}.
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De plus, (X3 =0) = (Fy N F> N F3) U (Fy N F, N F3), ainsi, on a
P(X3=0)=P((RNEKBNRB)UFNFHNT)).
Par incompatibilité, on obtient,
P(X3=0)=P(FiNFKNE)+ P(FiNFNE).

Par indépendance des lancers, on a

P(X3 =0) = P(Fy)P(F2)P(F3) + P(Fy)P(Fy)P(F3).

111 111 1
Et donc P(XSZO):§§§+§§§_Z

Ensuite, (X3 =2) = (Fy N F> N F3) U (Fy N F, N F3), ainsi, on a
P(X3=2)=P((ANHNRB)UFNRNT)).
Par incompatibilité, on obtient,
P(X3=2)= P(FiNFyNF3)+ P(F1 N FyNF3).
Par indépendance des lancers, on a
P(X3 = 2) = P(F1)P(Fy) P(F3) + P(F1)P(F2) P(F3).

111 111 1
Et donc P(X3:2):§§§+§§§:Z,
)

Comme ((X3 =0), (X3 =1),(X3 = 2)) forme un systéme complet d’événements, on

1
aP(Xz=1)= 3.0

. Soit n € N, n >2. On a X,,(Q2) = [0,n — 1].

Notons, en utilisant la formule des probabilités totales appliquée au systeme complet
d’événements associé a X,_1 , Vi € [0,n — 1], on a

n—2
P(Xp=1i)= Y P(X,=ilXy1=kP(Xn1=k)
k=0

= PX,=ilXp-1=i—1)P(Xp_1=1—1)+ P(X, =i|Xp_1 =1)P(Xp—1 =1)

car les autres termes sont nuls (on a forcément X,, = X,,_1 ou X,, = X,,_1 + 1). Par
ailleurs, on note bien que si i = 0, P(X,-1 = —1) =0etsii =n—1, P(X,—1 =
n—1)=0.

1
Enfin, on remarque que P(X,, =i|X,—1 =i—1) = 3= P(X,, =i|X,—1 = 1) puisqu’il

s’agit de la probabilité d’avoir un résultat différent de celui du lancer n — 1 pour le
premier, ou différent pour le second, comme la piéce est équilibrée.

Ainsi, on a pour tout i € [0,n — 1],

P(Xy =) = 5(P(Xym = i 1) 4 P(Xoy = 1))
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3. Remarquons que ¢,, est un polynéme donc est C*°(R).

Onay,(l) = Z P(Xy,, = k), or (X5, = k)pefo,n—1] st un systéme complet d’événements.

k=
Ainsi, @, (1) = 1.

Par ailleurs, on a ¢/, (x Z kP(X Rl

On a donc ¢),(1) = Z kEP(X, =k) = Z kP(X, = k) car le premier terme est nul

k=1
et on reconnait ¢} (1) = E(X)

Ensuite, on a ¢! ( Z = k)zF2.

On a donc cp;;(l):Zk(k—l) Xn =k) Zkk—l (X, = k) car les deux
k=2

premiers termes sont nuls et on reconnait ¢! (1) = E(X (X —1)).

U
n—1
4. On a p,(x) = Z P(X,, = k)z". Or, on a précédemment montré que
k=0
1
Vk e [0,n—1],P(X, =k) = i(P(Xn,l =k—1)+ P(X,—1=k)).
Ainsi,
n—1 1
pul@) = Y S(P(Xus =k~ 1) + P(X, 1 = K))a*
k=0
1 n—1 n—1 .
= 5ZP(XM_k;—l)a:+ Y P(Xp-1=k)
k=0 lc 0
1 n—1 n—2 .
= 3 P(Xp_1=k—1)z"+= ZP 1 =k)a".
k=1 2=

en enlevant les termes nuls. On pose £ = k—1 dans la premiere somme, et on reconnait
n—1 dans 'autre pour avoir

1n=2 1
2 P(Xn—l = K)wg—i_l + *Son—l(x)

on(z)

Ainsi, (pn(2)), ey est une suite géométrique de raison

Par ailleurs ¢1(x) = 1.

1 n—1
Ainsi, Vn € N*, pp(z) = ( i 3:) O

2
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n—1
2

—-1/1
5. On a donc ¢, (z) = n < R

2 2
n—1
5

n—2
) donc (1) =

Ainsi, E(X,,) =

n—1)(n— r\" 3 n—1)(n—
Ensuite, on a ¢! (z) = ( 1)( 2) (1 + ) , donc ¢’ (1) = M

4 2 4
(n—1)(n—2)
4
On a donc en utilisant la loi de Koenig-Huygens,

On a donc E(X(X —1)) = et B(X(X —1)) = B(X?) — B(X).

V(X,) = E(X2) — B(X,)? = B(Xp (X, — 1)) + BE(X,,) — B(X,,)2.

Autrement dit,

V(X,) = (n—lZn—2)+n;1_(n;1)2

= (n—=2)+2—-(n—1))

n—1
4

Exercice 14. 1. Si on note 2 'ensemble des k-listes de [1,n], alors (X} = 1) représente
I’ensemble des k-listes dont tous les termes sont égaux. Il y en a donc n.

.0

On a donc, V(X,,) =

Ainsi, en prenant P la probabilité uniforme sur €2, on a

P(Xp=1)= — = .

O]

2. Si k > n, c’est nul. Sinon, toujours dans le méme contexte de dénombrement, on a
(X = k) qui est 'ensemble des k-listes sans répétitions. On a donc

O]

3. On notera que pour tout k € N*, X;.(Q) = [1,n] (en réalité, c’est [1, min(k,n)])
quitte a prendre certaines probabilités nulles.

Pour tout i € [1,n], en appliquant la formule des probabilités totales au systéme
complet d’événements associé a X}, événements , on a

P(Xp41 =1) = P(Xpy1 =i| Xy = j)P(Xy, = J)

1

n

<

|
e

(X1 = 1| X =i = 1)P(Xp =i — 1) + P(Xpy1 = i[Xp = 9) P(Xy = 0).

Puisque les autres termes sont nuls (il n’est pas possible d’avoir que 0 ou 1 boules
distinctes de plus qu’au rang k au rang k + 1).
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. . , n—i+1 . o
Ensuite, P(X;41 = i|X; =i —1) = ——— puisque cela revient & avoir pioché une
n .

i

des boules qui n’ont pas été déja obtenues alors que P(X1 = i| Xy = i) = — puisque
n

la il faut avoir pioché une boule déja obtenue.

Ainsi, pour tout k£ € N* et pour tout i € [1,n]

. n—t+1 . { .
P(Xk+1 = Z) = TP(X]C =19 — 1) + ﬁP(Xk: = Z).
O
. On a
n
E(Xg1) = ) iP(Xpy1 =1)
121 n—i+1 7
= >i (P(Xk =i—1)+ —P(Xy = i))
i=1 n n
n o 1 n .
= ST =i 1)+ i P(X = ).
i=1 " =1 "
On pose alors j = ¢ — 1 dans la premiere somme, et on a
n—1 n _j n i
E(Xgi1) = 30+ 1)=——=P(Xy = j) + > i P(Xy = ).
§=0 i=1

On remarque que dans la premiére, le terme en j = 0 est nul (donc on l'isole) et on
peut ajouter le terme en j7 = n qui est nul aussi pour obtenir les mémes bornes dans
les deux sommes. En renommant j en ¢, on a

" (i4+1)(n—1i , " g2 ,
E(Xpy1) = Z ()TE)P(Xk =1)+ Z:gP(X;€ =1)
i=1 =1
n . 1 o .9
_ Z (i4+1)(n—1)+i P(Xp = i)
i=1 n
" (n—1)i+n
= Z —————P(Xx =1)
i—=1 n
n— 1 n n
= — ZZP(Xk =) +ZP(Xk = 7)
=1 =1
n—1
= E(Xy) + 1.
n
-1
Ainsi, on a bien pour tout k > 1, E(Xi41) = r E(Xy)+1. 0O

. On reconnait une suite arithético-géométrique. Ainsi, en posant ¢ tel que

n—1

(= (+1

n
on obtient ¢ = n.

On pose ensuite, pour tout k € N*, v, = E(Xj) — n.
On a alors, pour tout k € N*,

1 1
"Ry +1—n="
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n—1
et donc vg11 = —g.
n

n—1\+1
On a alors Vk € N*, v, = ( ) V1.
n

-1 k—1 -1 k
Orvle(Xl)—nzl—n.Ainsi,vk:(nn ) (1—n):—n<nn )

n—1

k
Or E(X}) = vk + n, ainsi, E(Xg) = —n ( ) + n, soit

n

E(Xp) =n l1 - <”; 1>k] .

[
—1 —1\*
6. Comme €] —1,1[, on a lim (n ) =0, donc
n k—o0 n
li E(Xg) =n.

Autrement, au bout d’un grand nombre de tirage, on aura en moyenne tiré toutes les
boules, ce qui n’est pas trés étonnant. [

Nk k
7.0na1—(n 1) :1—(1—1>.
n n

1
Or lim — =0et,en 0, 1 — (1 —2)F ~ kz.

n—oo n

- Nk 1
Ainsi,enn — 400, 1 — (1 — — | ~k—.
n n

On a donc, en n — 400

o[- ()]

On peut donc en conclure que lim E(Xj) = k.
n—+o00

Avec un treés grand nombre de boules différentes, on ne tirera en moyenne que des
boules différentes. [J

22 Etude locale de fonctions

1. Limites, équivalents, développements limités et asymptotiques
Exercice 1 (Exercice fondamental utilisant les développements limités). 1. On a, en 0,
sin(x) =z — :23 + o(z"). Nous aurions pu nous arréter 4 Uordre 3, mais avec sinus, le
4eme est gratuit.
Ainsi, en 0, pour x # 0, on a
2

flz)=1- 5 —i—o(acS).

Il est donc clair que f est prolongeable par continuité en 0 en posant f(0) = 1. Par

f(@) = f(0) — _% + o(z), donc f est dérivable en 0 et f/(0) = 0.

T

ailleurs, on a
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Par ailleurs, vu le développement limité obtenu, nous avons une tangente horizontale
en 0 d’équation y = 1 et la courbe est sous la tangente.

Remarquons que nous aurions pu nous contenter de garder le DL de sinus a l'ordre 3.

O]

2 3
2.0na,en0,In(l+z)=o0—-—+ Ty o(z®). Nous aurions pu nous arréter i I'ordre

2, pour avoir la dérivabilité et la tangente, mais il est indispensable d’avoir 'ordre
suivant pour la position relative.
Ainsi, en 0, pour = # 0, on a

2

Zy % + o(z?).

g(z)=1-5

11 est donc clair que g est prolongeable par continuité en 0 en posant g(0) = 1. Par

—g(0 1
ailleurs, on a 9(x) = 9(0) =3 % + o(z), donc g est dérivable en 0 et ¢'(0) = —3
x

Par ailleurs, vu le développement limité obtenu, nous avons une tangente en 0 d’équation

x
y=1-— 5 et la courbe est sur la tangente.
O

Exercice 2. 1. On a, In(1 + ) v et 2z + 222 — 0, donc on a par substitution,
z—
In(1 4 2z + 22?) ¥ 2z + 22?2 = 22(1 + z) v 2.

On peut donc en conclure que In(1 + 2x + 2z2) ot 2z. 0O

2. On voit bien que 1, donc on a tres envie d’utiliser In(1 + x) 7T a

1—2x z—0
condition de mettre ¢a sous la forme appropriée.
2 2
T+ l+z+=x
Comme c’est un quotient de polyndéme, on peut écrire % =1 % —
— 2z — 2z
et arranger la deuxieme partie.

=142z + o(z).

Mais utilisons les DL. On a 1
— 2z

1+ + 22

1~ or =(1+z+2%)(1+2z+0(r) =1+ 32+ ofz).

Ainsi, on a

14z +2?

T 9n ) =1In(1+ 3z + o(x)) F3a:+o(:c) r0v3:c.

On peut donc écrire, ln(
On trouve f(z) ¥ 3z. O

3. Le piege est d’essayer de faire des équivalents parce que ¢a pousse a ajouter des
équivalents (et je vous rappelle que c¢’est mal...).

Par contre, on sait que, en 0, e* =1+ x 4 o(x).

Ainsi, e3* — 14222 =14 32 — 1 4 222 + o(z) = 3z + o(x). On trouve f(x) v 3z. O

3
4. On a, In(1 + ) 7 et — —— 0, donc on a par substitution,

€T xT—>+oo
ln(l + 3> ~ §
xr) +oco x
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z+1 L
3 —— 0, donc on a par substitution,
x4 —1 z—4o00

( x—i—l) z+1
In(1— ~ — .
:ZZ2—1 +00 51:2—1

5. On a, ln(1+x)3xet —

rz+1 1

Or, on a 'habitude de montrer que — .
22 -1 40 =z

1
On trouve f(z) Fodias O
o T

——— 0. Ainsi, on a par substitution,

6. Onae® —1~x, or
0 x+1 z—+oo

< 1 > 1 1
expl—— | —1 ~ ~ =,
r+1 too x+1 +oo

On trouve f(x) ~ O

1
oo
1
7. Un peu plus difficile, posons X = — et essayons de faire un DL a l'ordre 2 de f lorsque

x
X tend vers 0. Pourquoi 27 Au cas ou les termes d’ordre 1 s’annulent.

On a
( T ) z+1 X1 X141 ( X ) 1+ X
ex — = eX — = eX — .
PAleTT) 252 P lx—251) X142 P X251/  132x

=X — X34+ 0o(X?) = X +o(X?).

1 X
Or on a Trxe = 1— X2+ 0(X?), donc SEN]
Ainsi,
X
exp <X2+1> = exp(X +o(X?))

1
= 1+X+§X2+0(X2)

1
Et T ax =1-2X +4X? + 0o(X?), donc
1+X 2 2 2 2
oy = (X)L 2X +4X7 +0(X?) = 1 X +2X7 (7).
Ainsi,

X 1+X 3, o 2 3 1

SN

On trouve f(z) ~ —. O

“+o0o
22
Exercice 3. 1. Ona,en 0, e* =1+ x+ > + o(x?), donc la courbe représentative de f

admet la droite d’équation y = x+ 1 comme tangente en 0 et la courbe est localement
au-dessus de la tangente. [
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2. Posons X = z — 2. On a, lorsque X tend vers 0, e* = eXt2 = e2eX = 2(1 + X +
2

X7 + o(X?)).

(z —2)

2
Autrement dit, e* = 2 +e?(z—2)+¢? +o((x—2)?). La courbe représentative
de f admet la droite d’équation y = €? + e?(z — 2) = e?x — €2 comme tangente en 2

et la courbe est localement au-dessus de la tangente. [

2
3.0na,en0,In(1+2)=x-— % + o(z?). Donc la courbe représentative de f admet la

droite d’équation y = x comme tangente en 0 et la courbe est localement au-dessous
de la tangente. [

X2
4. Posons X = x — 1. On a alors, lorsque X tend vers 0, In(z) =In(1+X) = X — - +
o(X?).
—1)2
Soit In(x) = —14 2 — (962) +o((z —1)%).

Ainsi, la courbe représentative de f admet la droite d’équation y = z — 1 comme
tangente en 1 et la courbe est localement au-dessous de la tangente. [

5. On a pas franchement besoin d’aller chercher toutes nos nouvelles connaissances
2

x
pour répondre & cette question, mais on a cos(z) = 1 — = + o(z?), donc la courbe

représentative de cos admet une tangente horizontale d’équation y = 1 en 0 et elle est
localement dessous (en fait toujours). [J

3
x
6. On a sin(x) = 2— —+o(x?), donc la courbe représentative de sin admet une tangente

d’équation y = x en 0 et la courbe est localement dessus si x < 0, au dessous si x > 0.
O

X2
7. Posons X =x —27. On a f(z) =cos(X +27) — 1 =cos(X) — 1= — + o(X?).
. (z —2m)? ) , .
Ainsi, f(z) = - + o((z — 2m)7). Et donc la courbe représentative de f

admet la droite d’équation y = 0 comme tangente en 27 et la courbe est localement
au-dessous de la tangente. [

8. Ona f(x) = ze® = z(1+x+0(x)) = v+x2+0(x?). Ainsi, en 0, la courbe représentative
de f admet la droite d’équation y = x comme tangente et la courbe est localement
au-dessus de la tangente. [

2 1.3

9.Commee“”:l—l—x%—%—kg—i—o(x:}),ona
I+z+2% +2 o) —1 r 22
fw) = PR )Tl o),

x
Ainsi, en 0, la courbe représentative de f admet la droite d’équation y = 1+ 5 comme

tangente et la courbe est localement au-dessus de la tangente. [J

1
Exercice 4. 1. On a, en remarquant que — ——— 0, et le fait que, en 0, (1 + x)P =
n n—+oo
1+ pz + o(x),
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(+1p = -1 = o (14 2) = (1-2)]

n n

1 1 1
sl () (1))
n n n
1 1
- (i)
n n
~ 2pnP~ L.
O]

2. Commencons par factoriser par le terme le plus gros. On a

e(nJrl)p - e(nfl)p _ 6(n+1)p(1 o e(nfl)pf(nJrl)p)'

Or, on a vu que (n + 1)? — (n — 1)P ~ 2pnP~ 1

donc si p > 1, on a
n—1f—-(n+1)f —— —o0,

n—-+o0o
donc
U R
n—-+o0o
Ainsi,
Sip=1,ona(n—1)—(n+1)= -2, donc, on ne peut pas dire bien mieux que

et _ o=l — 1] _e72) = (e — e~ 1)e™

Enfin,sip<1l,ona (n+1)?—(n—1)» —— 0.
n—+oo

Ore*—1 7T donc

1 — = DP=(nt1)? fodie (n—=1P = (n+1)?) I 2pnP L

Ainsi, dans ce dernier cas, et — (=17  oppp—le(ntl)?

1
Exercice 5. 1. Ona — ——— 0 et In(1 4+ x) ~ z, donc par substitution,
€r x—+oo 0
1 1
In (1 + ) ~ —.
Tr) too x
1
On a donc zIn <1 + ) ~ 1.
x ) +oo

1
Ou encore lim zln (1 + ) =1.0
T

T—r+00

2. En fait, on I'a déja faite, car

r(ln(z +1) — In(x)) = zln (x—i— 1) =zln <1 + i)

X

et on retrouve une question précédente. On a donc lim z(In(z+1) —In(z)) =1. O

T—+00
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10.

11.

. On rappelle simplement que x~

On a e® — 22 = (1 — 2%e™%) ~ ¢ par croissances comparées car r2e~% —— 0.
400 T—+00
On a donc, lim €* — 2% = 400. O
T—>+00

T —zIn(z)

On rappelle simplement que z~ et que ¢a ne pose plus aucun probléme.

Par composition, on obtient lim z~% = 0. [
T—+00

=€

T zIn(x)

et ensuite que par croissance comparées,
xIn(x) —0> xIn(xz) = 0. Par composition, avec exponentielle qui est continue en 0,
T—r

= e

on obtient limz™* =1. O
z—0

>0
In(z) . , ln(m)
On aln(z) —z = —x (1 — T) . Or par croissances comparées, ——~ —— 0.
xT r—+00
Ainsi, In(z) —2 ~ —z et on en conclue lim In(z) — 2z = —o0. O
“+o00 T—+00
On a

1n(1+a;)—x:_x(1_1n<1+$)> . <1_1n(x) _ln(1+i)>_

x x x
In(x In(1+ %
Or par croissances comparées, (z) — 0 et par quotient ( g”) 0.
T—+00 x T—+00
In(1 —
Ainsi, In(1 + ) —z ~ —=x, et donc lim n(l+o) -z =-1.0
[e%¢] x——+00 x
En 0, on a In(1 + z) = = + o(z). Ainsi, W = %z) = o(1). Autrement dit,
In(1 —
lim RO =T
z—0 x
Sans trop de détails, parce que vous connaissez, on a

e —1—=x e’
T +oo 4 z—+00
par croissance comparées.
xX
. e —1—=x
Ainsi, lim ———— = 4o00. [
T—r+00 :p2

2
Ona,en0, e’ =14z + % + o(x?). Ainsi

*—1-—z 1+z+%+o0@)—-1—2 Z 402 1

— = = = + (0] 1 .
x2 x2 x2 2 (1)
. er—1—z 1
On adonc lm —— =—-.[
T—+00 T2 2
Sans trop de détails, parce que vous connaissez, on a
e —1—=zx x 1
2 e 2 T 0.
x “+o00 x €r xT—+oo
. eL—1—=x
lim ———=0.01
T——00 x
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12.

13.

14.

15.

En voila une encombrante. Le plus simple est peut-étre de poser X = x — 1. Auquel

cas, on a

2 2 2
eT T _ 62:6 6(X-f—l) +X+1 _ €2X+2 €X +3X _ 62X

et tl _ gda—2 eX+2 _ oAX+2 T X _oix

en simplifiant par e2. Ensuite, comme X — 0, on peut faire des développements
limités d’ordre 1. On a

XHHX 22X 113X —1-2X +0(X)  1+0(1)

eX —etX 14+ X-1-4X+0(X) —-3+o0(1)
2
. . . 6$+$_62$ 1
Ainsi, on a iﬂm =3 O

On a,en 0, ¥ =1+ z + o(x). Ainsi,

In(e” +2) _ In(l+ 22+ o(x))

T x

Mais comme, en 0, In(1 + z) =z + o(x), on a

In(e® + x) _ 2z 4 o(z)

=2+ o(1).
. . +o(1)

On a donc lim M
x—0 x

=20

On peut s’en sortir avec une quantité conjuguée et une factorisation habile, mais
utilisons nos connaissances nouvellement acquises. On a, comme z < 0

3 2
Va2 +3z+2+x=—x\/1+ -+ 5 +z.
T x

1
Ainsi, en posant X = —, on trouve
T

1
\/:n2+3:c+2+a::—(1—\/1+3X—|—2X2).

X

Faisons un développement limité a ’ordre 1 avec /1 4+ 2 =1+ %x + o(x), ce qui nous

donne ) 5 5
2 2 :<1—1—X X)Z— 1).
Va2 +3z+2+w e 5 + o(X) 24—0()

3
Ainsi,on a lim V22+3z+2+2=—=.0
T——00 2

Faisons un développement limité de chaque fonction du numérateur a ’ordre 2. En 0,
on a

2
In(14z) —sin(z) x—% —x+o(x?) 1
2 S R Lo,

X

In(1 —si
Ainsi, lim 2EF ) —sin(@)
x—0

O]

1
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16.

17.

18.

1 1
Méme esprit, mais il faut aller & 'ordre 4. En 0, ona v1+x =1+ 5%~ éa:z +o(z?),

et donc

— /1 = 2 1
On a donc lim cos(z) 1 A —.
x—0 X 6

Omn a
1
(2% + 3% — 57)Y/7 = exp ( In(2% 4+ 3% — 5“:)) .
x

Or 27437 —5% = 2 n(2) 4 e=In(3) _ezIn(5) donc en utilisant le classique développement
limité d’exponentielle a 'ordre 1, on obtient

2x3
2243 5" =1+2zIn(2)+1+2In3) —1—zIn(5) +o(x) = 1+1In (;)x+0(33).

In(1+z) =z + o(x), donc In (1 +1In (2;3) x + 0(:1:)) =In (2 - 3) x + o(x).
Ainsi,

%m(zw 137 5% =In <2 ; 3) +o(1).
On a donc

2x3
(293 + 3% — 575)1/1 = exp <ln (;) + 0(1)) .
Comme la fonction exponentielle est continue, on a

z—0

) )
2x3
li 9T r _ mx\l/z _ )
lim (2" +37 - 5%) 5
Je sais bien que % = g, mais je les ai laissés pour bien faire apparaitre les chiffres

qui composaient la fonction de 1’énoncé... [J
In(1 + 2)\* " In(1 + z)
- g 1 1 —_— .
( In(z) ) P (a: n(z) n( In(z) ))

n z)\ " @) n(z n 1
<1 (1+ )) = exp (xln(x)ln (1 ( )—li_nl(:z:()l—i_x)))

On a

Soit encore

Ce qu’on arrange en
(14 2)\"™@ n(1+1)
<h’1(x>> =exp | T ln(x) In(1 =+ W .
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19.

In(1+21)

Or, 4o — 0, et comme In(1+z) Y@, ona

T—+00
In(1+ 1) In(1+1)
n(1 552 & M

Ainsi,

zIn(z)In (1 + W) ol xIn(1+ %)

1 A L
Et comme — —— 0, le méme équivalent permet de récupérer,

€r xT—+oo
In(1+1)
1 In{14+ —% ] ~ 1.
zln(z) n( + In(x) +00

Ainsi, on avait

In(1+z)\"™"
(m(;@) — exp (1 +0(1)).

Ce qui nous donne, par composition avec exponentielle continue en 1,

zIn(z)

z—+oo\ In(x)
O
Posons X = —. Ainsi, on pourra faire des développements limités en 0, et on a
x
(e (53))) = % oo (3 (5%))
xeexpxn1+x _XeeXanl—i—X .
Or
1 2 2 s (X —X?)? 2 Lo 2
In{——= ) =h(1-X+X"+0(X?)) = - X+X*"——F——40(X*) = —X+-X"F0(X").
1+ X 2 2
Donc ) ) x
—In({——|=-1+— X).
Xn<1+X> + 35 FolX)
On a donc

b -on () & (- (1 o 0)).

1
Factorisons par — pour faire apparaitre un développement limité bien connu
e

(o () 2 (- (5 0).
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2

(2o () = (- (5 o)

X X
Or exp (2 + 0(X)) =1+ — 4+ o(X), ce qui donne

Et enfin, en version simplifiée :

(o) = (o)

Et pour revenir a ’expression de départ :

x (Z — exp (xln(lf_x>>> = —% +o(1).

1 1
On en conclue donc lim = ( — exp (:c In < * >)> =——.[0
T——+00 e 1+

2. Suites implicites

Exercice 6. 1. Remarquons que f est la somme de deux fonctions dérivables sur R*
donc dérivable et que

1
Vz € RY, f’(w):1+;>0.
Ainsi f est strictement croissante. Par ailleurs,

lim f(z) = —coet lim f(z)=+oo.

x—0 r——+00

Ainsi, f est une fonction strictement croissante et continue, donc établit une bijection
de R% dans R. Ainsi, f ~1 sa réciproque est une fonction strictement croissante avec

lim f'z)=0et lim f!(z)=4oc.

T——00 r——+00

A partir de 13 tout devient beaucoup plus simple : en effet, Vn € N, u, = f~1(n) € R%
ce qui assure ’existence et 'unicité de wu,,.

O]

2. Comme f~! est strictement croissante, n < n+ 1 implique f~1(n) < f~1(n+1) donc
Up < Up41 ainsi (uy)pen est strictement croissante. [

3.0Onau, =f1(n) —— +oo0. O
n—-+o0o

1 1
4. On a, en +o0, z+1In(z) ~x, car x +1n(z) =z <1 + n(m)) avec lim n(z)

= 0 par
x Tz—>+o00 I

croissances comparées. Or lim wu, = +o00, donc
n—-+00

U, 4 In(up) ~ Uy,

Mais comme u,, 4+ In(u,) = n, on a en fait démontré que u,, ~ n. [J

aun—n_—ln(un) r u, =n — In(u,) donc
5. On n(n) ~ In(n) . Or u, In(uy,) d
Un — 1 _ ~In(n —In(un))
In(n) In(n)
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Ainsi, en factorisant par n, on a

Up — N In(n) + In(1 — 1m(u"))

In(1 — nun)

—_ — = = _1 -
ln(n) ln(n) T ].n(n)
Or In(uy,) _n—Un :1_@ — 0 car uy ~ n.
n n n n—+4oo

In(1 — nln)y

n

Ainsi, on a donc, 0, ce qui assure enfin que

In(n) n—+00

Uy — N
li =—1.
nﬁn}rloo In(n)

O]

Exercice 7. 1. a. f, est une fonction polynéme donc dérivable. On a alors

fi(z) = (n+1Da" —na™ ' =2"(n+ 1)z —n).
Ainsi, sur Ry, f,, est du signe de (n + 1)z — n, donc on en déduit le tableau de
variation suivant avec de la monotonie stricte lorsque f, est monotone, la dérivée
ne s’annulant qu’en un point.

X 0 nil +00

() — 0 +
Ful) \ "

fu ()

La limite en 400 n’étant pas bien compliquée puisque

ful(z) = 2™t (1 - 1) ~ "t

T ) +oo

b. Sur [0, }, fn est décroissante et f,,(0) = 0, donc

n
<0<1.
fn<n+1> <

Ainsi, ’équation ne peut pas admettre de solution sur cet intervalle.

n
n—+1

n
Sur {,—Foo {, fn est strictement croissante, avec f, () <0< 1let
n+1 n+1
ll)gl fn(x) = +00. Comme f,, est continue, d’apres le corollaire du théoréme des
xX (o]

valeurs intermédiaires, 1 admet un unique antécédent par f,, que ’on note «,.

Ainsi, f,(z) =1 admet une unique solution «,, sur R .
O
c. Ona f,(1) =0et f,(2) =27t — 2" =27(2 — 1) = 2",
Ainsi, comme f,, est continue sur [1, 2], il existe un antécédent a 1 sur [1, 2]. Comme
il n’en existait qu'un sur R4, on a Vn € N*, o, € [1,2]. O
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2. a. On aVn € N* et Vo € Ry,
frg1(x) = folz) = 22 — gL — (2" — ™) = 2"(2? — 224+ 1) = 2" (z —1)2 > 0.
Ainsi, en appliquant cette inégalité a a,, on a

fn+1 (an) = fn(an)'

Or fu(an) =1= fay1(ant1), donc

Jnr1(an) = far1(ony).

Or, sur [1,2], fn,+1 est croissante, et comme «,, et a,4+1 sont dans cet intervalle,
on a forcément o417 < .

La suite (o, )nen+ est donc décroissante.

OJ

b. La suite (au,)nen+ est une suite décroissante minorée par 1 donc elle converge vers
une limite ¢ € [1,2]. O

c. Supposons £ # 1, donc £ > 1 puisque ¢ € [1,2].

On a fp(ay) =a(a, —1). Ainsi,ona o, —1 ——— £ —1>0 et
n—-+00

n

n— enln(an) — 40

n—-+4o0o

(67

par produit puis composition.
Ainsi, on a fp,(ap) —+> +00. Or fn(ay) =1, ce qui pose probléme...
n—-+0oo

Ainsi, on a forcément lim «a, =1. 0
n—-+00

3. a. On a Vn € N*, f,(ay,) = 1, ce qui se réécrit en factorisant en
ay(an —1) =1
On a a,, = u, + 1 ce qui transforme les choses en

(14 up)"upy, = 1.

O
b. Ona (14u,)"” = e*™0+un) or (14u,)"u, = 1, ce qui se transforme immédiatement
en
Uy = e—nln(l—i-un)'
L]
c. Ona lim w, =0, donc en prenant le logarithme, on a lim In(u,) = —oc.
n—-+o0o n—-+0o0o
Or In(uy,) = —nIn(1+wuy,). Or u, ——— 0 et In(1+x) ~ x donc In(1 4 uy) ~ up.
n—+4o00 0
Ainsi, on a In(uy,) = —nIn(l + uy) ~ —nuy,.
On a donc lim —nu, = —o0, autrement dit
n—-+00
lim nu, = +oo.
n—-+00
O
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d. On a vu que —nu,, ~ In(uy,), donc nu, ~ —In(uy,), soit encore

ln(un)‘

n

Up ~ —

O

e. A partir d’un certain rang, les suites sont forcément toutes deux strictement po-
sitives, donc on peut bien prendre les logarithmes. On sait qu’il existe (z;,) une

suite telle que lim =z, =1 et v, = T w,.
n—+0o00

Ainsi, In(v,) = In(zy,) + In(w,) = In(w,,) (1 + ln(xn)> .

In(wy,)
Or lim () = 0, donc on a bien In(v,) ~ In(w,). O
n—+oo In(wy,) ’ " "
—In(uy) . . - N
f.Onan ~ - Or d’apres la question précédente, cela veut implique
n

In(n) ~ In (—ln(un)> .

Unp,

In (—ln(un)> = In(—In(uy)) — In(u,) = —In(uy,) (1 - W) .

n

1
Or —In(u,) —— 4oo et lim n() =0, donc
n—+o0o

Tr—400 X
lim In(—In(uy,))
n—+oo  In(uy)

=0.

Ainsi, on a In (—ln(un)> ~ —In(uy).
—In(up,)

n

n

Or on avait In(n) ~ In < ) , ce qui donne

In(n) ~ —In(uy).

In(uy,)

En reprenant u, ~ — , on récupere

O]

g. Onau, ~—= < u, —
n n n

Or u, = a,, — 1, ce qui se transforme en

In(n) In(n) _, (ln(n)> ‘

O
Exercice 8. 1. f,, est dérivable sur R, on a f’ (z) = 2nz?*~! + 322 = 22(2n2?" 3 + 3).

3\ 1/(2n—3) 3\ 1/(2n—3)
Si on note z,, = (—) ,on a f est décroissante sur ] — 00, (_271> }

2n
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puis croissante sur [(—2 , +00 { Par ailleurs, en 400 et —oo, f tend vers

n
+o0 car f(z) ~ zm.
x —00 Tn +00
n(2) - 0 +
+00 +o00
ful@) ~
fn(zn)

O

3 1/(2n-3)
2. 11 suffit de remarquer que f, <(—2) ) < fn(0) = —1 car f, est croissante
n

entre les deux.

3 1/(2n-3)
On peut appliquer le théoreme de la bijection sur } — 00, (—2> } puis sur
n

3 1/(2n-3)
[( ) ,—l—oo[ a f, qui est strictement monotone et continue sur chacun de

“2n
ces intervalles pour assurer que f, s’annule au plus une fois sur chaque intervalle.
Ensuite, comme f,(0) = —1 et comme en +o0o0 et —o0, f, tend vers 400, on peut

en conclure, toujours avec le théoreme des valeurs intermédiaires, qu'une solution est
positive et 'autre négative []

3. a. Ona f,(0) = —1et f,(1) =1, et comme f, est continue sur [0, 1], f,, s’annule sur
10,1[ d’apres le théoreme des valeurs intermédiaires, donc oy, €]0,1[. O

b. Tout simplement :

def alpha(n):
a=0
b=1
while b-a>10**x(-9):
c=(a+b) /2
if (ax*x(2*n)+a*x*3-1)*(c**(2*n)+c**x3-1) <=0:
b=c
else:
a=c
return c

O

c. Soit n € N, comme o, €]0,1[, a2"2 < a2", et donc
22 a3 1< +ad —1=0.
Autrement dit,

fn+1(an) <0=fo11 (an+1)'

Comme f,,41 est croissante sur |0, 1], on doit avoir ay, < a1 pour que I'inégalité
précédente soit vraie.

La suite (o) est croissante.

De plus, (a;,) est majorée par 1 donc convergente vers ¢ € [0, 1].
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Si elle convergeait vers ¢ < 1, comme f, (o) = e2nin(an) 4 o} — 1 on aurait par

composition, lirf folan) =0 —1#0.0rVYn > 2, fu(an) = 0, donc cette limite
n—-+0o0
est impossible. Ainsi, la seule limite envisageable est 1.

On a donc lim o, =1.0
n—-+o0o

. A partir d’'un certain rang, les suites sont forcément toutes deux strictement po-
sitives, donc on peut bien prendre les logarithmes. On sait qu'il existe (z,) une

suite telle que lim x, =1 et v, = xw,.
n——+o00

Ainsi, In(v,) = In(xy,) + In(w,) = In(w,) (1 +

Or lim In(zn)
n—+oo In(wy,)

.Onaa?=1-a} =(1—ay)(1+a,+a).

In(z,) > '

In(wy,)

= 0, donc on a bien In(v,) ~ In(wy,). O

En utilisant 1’écriture u,, on a

(1 — up)®™ = up(2 — up + (1 —uy)?).
En prenant le logarithme de cette quantité, on trouve

2n1In(1 — up,) = In(uy) + In(3 — 3u, +u2) ~ In(uy,)

car In(3 — 3u, + u2) —— In(3) alors que In(u,) —— +oo.

n—-400 n—400o
Comme In(1 — uy,) ~ —u, car lim wu, =0, on a

n—-+o0o
—2nuy, ~ In(uy).

O

. Puis en prenant le logarithme d’apres la question précédente, on a
In(2) + In(n) + In(uy) ~ In(—In(uy,)).

En divisant tout par In(u,), on a

In(2) In(n) N In(—In(uy,))

In(uy,)  In(uy,) In(uy,)
In(—1 1
Or lim 7n( n(un)) = 0 par composition car, lim n(@) = 0 (croissances
n—+oo  In(uy) T—4o0 I
comparées) et lim In(u,) = —oo.
n—-+00

Ainsi, lim In(2) In(n)
n—+oo ln(un) ln(un)
In(n)
n—+o0 In(uy,)
On a donc In(n) ~ —In(uy,).

4+ 1 =0, autrement dit

In(2
= —1 puisque lim n(2) = 0.

n—-+oo In(uy,)

Or, on avait démontré que —2nu,, ~ In(u,), on a donc —2nu, ~ —In(n).
En combinant ces deux résultats, on a donc

In(n) .
2n

Uy, ~
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4. a. Ona fp,(=2)=22"—-7>0carn > 2et fo(—1) = —1 donc, d’apres le théoréme
des valeurs intermédiaires appliqué a f continue, on obtient que f s’annule sur
] —2,—1], donc By, €] —2,—1[. O
b. Soit n € N, n > 2.
Comme (2 > 1, 0n a
an < ﬁ2n+2

donc

B4 B3 1< BTl 1.

Autrement dit, fn(ﬁn) < fn-i-l (,Bn)

Puis on remarque que f,,(8,) = 0= fut1(Bnt1) < far1(Bn).-

Or comme f, est décroissante sur cet intervalle, cela implique que 5,11 > 3, donc
(Bn)n>2 est croissante. [J

c. Comme (/3 )n>2 est croissante et majorée par —1, elle converge vers un réel £ < —1.

Si ¢ < —1, on aurait f,(8,) —— 400 par composition.
n—-+o0o

On a donc lim B, =-1.0
n—-+00

23 Fonctions réelles de deux variables réelles

Exercice 1. Remarquons que f est C!(R?). On a

of 3 of 3

g7 — 443 — 2z — l — 493 4 2(x — y).

5 (DY) =427 —2(z —y) et 9y (z,y) =4y° +2(z — y)
On a donc %(0,0) = g‘z];((), 0) =0, donc (0,0) est un point critique.

Par ailleurs, on a f(x,z) = 22*. Ainsi, Vo € R, f(z,2) > f(0,0), donc f n’atteint pas
de maximum en (0, 0).

De plus, f(z,0) = 2* — 2% = 22(2® — 1). Ainsi, Vo € [-1,1], f(2,0) <0 = £(0,0). Ainsi,
f n’atteint pas de minimum en (0,0). C’est un point critique, mais ni un maximum, ni
un minimum. [J

Exercice 2. 1. f est un polynéme donc C*(R?), et on a

of

0
5 (T9) =327 = 3y” et O (1) = —6ay.

0y
O

2. Soit (x,y) un tel couple. Les conditions sont alors équivalentes a

322 —=3y2 = 0
—6xy= 0

C’est équivalent a

zy= 0

{ (z-y)(z+y)= 0

Ainsi, soit x soit y est nul mais x = —y ou x = y. Ainsi, le seul couple qui vérifie ces
conditions est (0,0). O

3. On a, pour tout x € R,f(x,z) = —2x3. Ainsi, f(z,z) change de signe autour de
£(0,0) = 0. Donc il ne s’agit ni d’'un maximum, ni d’'un minimum. [
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4. Ca ressemble a une selle, mais une bien particuliere.

100

-1

4 3 —2

Est-ce qu'un singe tiendrait confortablement sur une selle destinée a un étre humain ?
Ce qui explique les trois < trous > et trois < montées >. [

Exercice 3. 1. f est bien C!'(R?) puisqu’il s’agit du produit entre un polynoéme et une
exponentielle composée avec un polynéme.

On trouve ?(ﬂc, y) = (1+2(y? +1))e” @+ et g(x, y) = 22%ye” W Ainsi, (x,y)
x v

est un point critique si et seulement si

of B
%( 7y) 0
g_i(xvy)_ 0

ce qui revient a
{ (14 z(y2+1))er@ ) = 0
21,2yeac(y2+1) —
Ce qui se simplifie en
l+ay’+z= 0
zy= 0

Et donc :
1+z= 0
zy= 0
Ce qui nous permet d’assurer que le seul point critique est (—1,0). [J

2. La fonction est assez simple pour qu’on puisse le démontrer en faisant la différence
et qu’'on distingue selon le signe de x. Mais la méthode classique est d’étudier, a x
fixé, la fonction h : y — 2e®@* 1) Elle est bien C!(R), puisque c’est une application
partielle de f qui I’était.

Ensuite, on a h/(y) = 222ye”11°) | Ainsi h est décroissante sur R_ et croissante sur
R4, donc minimale en 0.

Ainsi, Vo € R, Vy € R, on a f(x,y) > h(0) = ze*. O
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3. Cette fonction g est bien C'(R) par produit, et on a
g (x) =e® +xe® = (v +1)e”.
Ainsi, g est décroissante sur | — 0o, —1] et croissante sur [—1, +00[. On a donc Vz € R,
g(x) = g(-1) = - 1. O
4. On a démontré que Y(x,y) € R?, f(z,y) > g(z) = —e ' = f(—1,0). f est donc

minorée par —e~! et elle I'atteint. f atteint bien un minimum global en (—1,0). OJ

0
Exercice 4. 1. f est un polynéme donc C!(R?). On a a—f(x,y) =2z — 3y +4 et
T
of

a—y(w,y) =—-3r+4y—2.0

2. (x,y) est un point critique si et seulement si

0
)= 0
0
L) = 0

ce qui revient a

20 —3y= —4
—3xr+4y= 2

En faisant Lo < 2L9 + 3L, on a

20 —3y= —4

Ce qui pour finir,

Le seul point critique est donc (10,8). [
3. On a f(10,8) = 15, puis f(z,y) — £(10,8) = 2? — 3zy + 2> + 42 — 2y — 12.

Ensuite, soit on part du résultat et on développe, soit on utilise une forme canonique.

On a alors

f(z,y) — £(10,8) = (ﬂv - gy+2>2 - (—;’y+2>2 +2y% — 2y — 12.

En développant on trouve

2
flx,y) — f(10,8) = (;1:— 2y+2) — iy2+4y— 16.

On reconnait enfin une identité remarquable.

O
4. Non, car on a Vr € R, on a f(z,8) > f(10,8) donc il ne s’agit pas d’'un maximum.
3
Par ailleurs, on a Vy € R, f (2y - 2,y) < f(10,8) en remarquant que, si y = 8 on a

oY 2 = 10. Ainsi, on n’a pas de minimum en (10, 8).

Il s’agit d’un point selle ou un point col. [J
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Exercice 5. 1. a. g est bien une fonction dérivable comme il s’agit d’un polynéme. On
ag(y)=2y—2r—2=2(y—x—1). Ainsi, g est décroissante sur | — oo,z + 1] et
croissante sur [z + 1, +o0].

On a donc g minimale en x + 1. Ainsi, Vy € R, g(y) > g(z + 1).
On a donc t(z) =z +1. O

b. Pas de miracle, il faut développer. On a f(x,t(z)) = 222 + (z + 1)? = 2x(x + 1) +
8z —2(z + 1) + 8, ce qui donne

Ve €R, f(x,t(x)) =ax>+62+7.

O
c. Remarquons que, pour tout € R, on a f(z,t(x)) = (z + 3)? — 2 qui est minimal
en r = —3.

On a donc montré que Vz,y,

f(a:,y) = f(IE,.T+1) = f(_37_2) =-2.

f atteint un minimum en (-3, —2) qui est —2. O

2. a. f est un polyndéme donc C'(R?). On a ﬁ(ac,y) =4xr — 2y + 8 et g(x,y) =

Oz y
2y — 2z — 2.
b. (x,y) est un point critique si et seulement si
of
—(z,y)= 0
B & Y)
of
L (z,y)= 0
3y (z,y)
ce qui revient a
4o — 2y = -8
—2r+2y= 2
On le simplifie en
2t —y= —4
—r+y= 1
En faisant Le <— Lo 4+ L1, on récupere x = —3 puis y = —2. Ainsi, le seul point

critique est (o, 8) = (—3,-2). O
c. On a f(—3,—2) = —2 (on I'a calculé ci-dessus). On a donc, pour tout (x,y) € R%
f(@,y) = fla, B) = 20" + y* — 22y + 8z — 2y + 8 + 2.
Ainsi, on a
flz,y) — fla, )= (y—x—1)* — (. +1)* +22% + 8z + 8 + 2.

Et donc
fl@,y) = fla,f) = (y —z — 1) + 2% + 62 4 9.
On a donc, pour tout (z,y) € R?,

f@y) = f(=3,-2)=(y—z -1+ (z+3)> > 0.

Autrement dit, pour tout (z,y) € R?,
flx,y) = f(=3,-2).

f atteint bien un minimum en (-3, —-2). O
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Exercice 6. 1. La premiere égalité permet d’affirmer qu’il existe une fonction g qui ne
dépend que de y telle que pour tout (z,y) € R?,

flz,y) = %x?yz +9(y).

En dérivant cette égalité par rapport a y, on obtient

gjyc(:c, y) = 2%y + ¢ (y).

Ainsi, on doit avoir ¢'(y) = 0, soit g constante.

Ainsi, on voit que si f satisfait les deux égalités, on doit avoir, 'existence d’un k € R
tel que V(z,y) € R?, f(z,y) = %3:23/2 + k.

On vérifie alors que ces fonctions satisfont évidemment les égalités demandées. [

2. La premiere égalité permet d’affirmer qu’il existe une fonction g qui ne dépend que
de y telle que, pour tout (z,y) € (R%)?, f(z,y) = Va2 + y2 + g(y).
En dérivant cette égalité par rapport a y, on obtient

of Y /
(ny(x,y) = \/TTW +9'(y)-

Ainsi, on doit avoir ¢’'(y) = 0, soit g constante.

Ainsi, on voit que si f satisfait les deux égalités, on doit avoir, 'existence d’un k € R
tel que V(x,y) € R?, f(z,y) = /22 + y2 + k. A noter que I'on peut en réalité élargir
les conditions & R? \ {(0,0)}. O

3. La premiere égalité permet d’affirmer qu’il existe une fonction g qui ne dépend que
de y telle que, pour tout (z,y) € (R%})?, f(z,y) = Va2 + 32 + g(y).
En dérivant cette égalité par rapport a y, on obtient

of Y
ay (w,y) = $2+y2 +g/(y)
o . .y 2y . ,
Ainsi, on doit avoir ¢'(y) = ———=———=, mais ¢a dépend de x.
$2 + y2

Ainsi, une telle fonction n’existe pas! [

Exercice 7. On considére un nuage de points (x;, y;)1<i<n tels qu’il existe (7, 7) € [1,n]
tel que z; # xj. (On veut que le nuage ne soit pas sur une droite verticale, auquel cas
tout ¢a n’a aucun intérét.)

On notera f: R — R, z — ax + b.

Le but de cet exercice est de déterminer a et b pour que la somme des carrés des distances
entre (x;,y;) et (x4, f(z;)) soit minimale. On appelle I'ajustement affine par la méthode
des moindres carrés ou droite de régression linéaire la courbe représentative de f pour
les choix de a et b qui minimisent la quantité :

n

d(a,) = -((az; +b) ).

n
On notera = = (z1,...,2y,), T = in, la moyenne de (z1,...,x,).
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1 n
De plus, on notera y = (y1,...,Yn), — Z ; la moyenne de (y1,...,yn).

3

1 n
De plus, on notera cov(zx,y) = — Z(mz —T)(y;i —7) et V(x)
n “
=1
dit la covariance empirique et la variance empirique.

n
Z —7)?, autrement

1. Commencons par quelques considérations pour simplifier nos futurs calculs.

1 n
a. Ona V(zx) = — Z(l’l —7)2. Or V(z) ne peut étre nul que si si Vi € [1,n], z; = T,
n -
=1
ce qui implique que tous les x; sont égaux, ce qui est exclu d’apres les hypothéses.
Ainsi, on a V(z) > 0. O

b. On a
1 n
V(z) = " Z(xz -7
i=1
1 n
= = Z(xf — 2Fx; +T7)
s
1 & 1 & 1
= —fo —QT—ZQUH- —nz?
iz iz n
1 n
= — Z x? — 277 + T2
n =1
" \iz1
O
c. On a
1 n
cov(z,y) = " Z(fﬂi —7)(yi —Y)
) ZTLl
= - Z(flfiyi — TY; — TY; + TY)
nia
1 & 1 &
= *Z TilYi — T— Zyz *Z$z+ nxy
iz g
1 n
= - (Z xi%) Ty — YT + TY
" \iz1
1 n
= - (Z Izyz> - Ty
" \iz1
O

2. On remarque tout simplement que d est un polyndéme en ses variables a et b, donc
Cl(R?).
Ainsi, on a 2%(a,8) = 3" 2e4(azs + b — )
insi, on a —(a,b) = xi(az; —Yi).
9a 2 i i Yi

On arrange ¢a un peu en développant pour obtenir

od

n n n
6—(a,b) = 2aZx? + 2b2xi — 22:&%
a i=1 i=1 i=1
En utilisant les notations de 1’énoncé, on a
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@(a, b) = 2(nV (z) + nz%)a + 2nTb — 2n(cov(x, y) + 7).

da
Et on a @(a b) = zn:2(ax~ +b—y).
8b 9 Pt 3 (2
On a alors
od - -
%(a,b) = 2a;xi + 2nb — Q;yi.

On peut ainsi, le réécrire en

d
gb(a, b) = 2nTa + 2nb — 2nj.

Ainsi, (ag,bp) est un point critique si et seulement si on a
2(nV () +nZ*)a + 2nTb — 2n(cov(x,y) +77) = 0
2nTa + 2nb — 2ny = 0.
En simplifiant un peu

(V(z)+ fQ)a +zb= cov(z,y)+ Ty

Ta+b= 7.
En faisant Ly < L1 — TLo, on récupére
V(z)a= cov(z,y)
Ta+b= 7.

Le systéme est échelonné (donc on a un unique couple solution) si et seulement si
V(x) # 0 ce qui est bien le cas d’aprés la toute premiére question.

O]

. C’est exactement la deuxieme égalité! [

cov(zx, ,
. Montrer que le coefficient directeur de cette droite est ag = ‘\;(()y) C’est exacte-
x
ment la premiere égalité! [
cov(zx, ,
. C’est la droite passant par (Z,7) et de coefficient directeur ‘\;((:c)y) C’est donc la
x
o cov(z,y)
droite d’équation y = ——"(z — = )
q VS V0 (z—-7)+y
cov(z,y) _ cov(z,y)_
Ouencore y = ———2+9§ — ——7.
T Ve YT Ve
Pour votre culture, le coefficient de corrélation dont vous cherchez s’il est proche de
e COv(T,y)
1, est en réalité ——————.
Vi(z)V(y)
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6. Désormais, il faut voir si on n’arrive bien a un minimum.
A a fixé, cherchons pour quelle valeur de b on minimise d(a,b).

Notons ainsi, f : b+ d(a,b). Il s’agit d’un polynéme en b et on a

od
f(b) = %(a, b) =2n(Ta+b—7).
Ainsi, f est décroissante sur | — 0o,y — aZ], puis croissante sur [ — aT, +00].
Ainsi, f est minimale en by(a) =7 — aT.
Notons alors g la fonction a — d(a,y — aZ).

On a ainsi,

g(a) = Z((axi +7 — aT) — y;)°

=1
= a®) (2 -2 =22 (i —D)(y —Y) + > (5 —7)°
=1 =1 =1

= nV(z)a® — 2an cov(z,y) + nV(y)
= n(V(z)a® — 2acov(z,y) + V(y)).

Il s’agit d’un trinéme du second degré dont le coefficient dominant est strictement

positif. Donc cette quantité est minimale pour ag = (w
x

Et I __ cov(z,y)_

onaby=y—axT =9 — —————
O]

7. On vient de démontrer que la fonction d admet un minimum global en (ag, by) avec
cov(z,y) _ . cov(z,y)_
a@p=——"""Letby=7T—aT =7 —
0 V() 0=1Y 0 Y V(z)

Or il s’agissait du point critique trouvé ci-dessus. Et cela nous donne I’équation de la
droite de régression linéaire.

Allons voir le cours d’informatique pour savoir comment implémenter cette méthode.

O]
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