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12 Polynômes 161
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1 Généralités
1. Un peu de logique

Exercice 1. 1. On sait que x ∈ Q, donc il existe (p, q) ∈ Z× N∗ tel que x = p

q
.

Si y ∈ Q, alors il existe (p′, q′) ∈ Z× N∗ tel que y = p′

q′
.

Ainsi, x+ y = p

q
+ p′

q′
= pq′ + p′q

qq′
où pq′ + p′q ∈ Z et qq′ ∈ N∗, donc x+ y ∈ Q.

Ça se fait directement.

2. Partir de x+ y ∈ Q, comme − ∈ Q, on a d’après la question précédente, x+ y − x =
y ∈ Q. On a donc démontré par contraposée que y /∈ Q⇒ x+ y /∈ Q.

3. C’est déjà fait : on a fait une disjonction de cas sur y ∈ Q ou y /∈ Q.

Exercice 2. Soit a, b ∈ Q tels que a+ b
√

2 = 0. Si b ̸= 0, on a
√

2 = −a
b
∈ Q, ce qui est

impossible. Ainsi, on a forcément b = 0. Il vient immédiatement alors que a = 0.
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Exercice 3. Raisonnons par contraposée. Soit x ̸= 0. On a bien |x| > ε, donc il existe
bien ε (on prend ε = |x|2 > 0) tel que |x| > ε.

Par contraposée, on a donc montré que ∀ε > 0, |x| ⩽ ε⇒ x = 0.
Et si on prend des inégalités strictes, ça ne change absolument rien, simplement il suffit
de prendre des inégalités larges dans la rédaction ci-dessus (mais attention, on continue
à prendre ε > 0.)

Exercice 4. C’est le théorème de la division euclidienne.
On procède par analyse-synthèse : à savoir que nous allons chercher quelles valeurs sont
susceptibles d’être valables, puis on essaiera de vérifier qu’elles fonctionnent bien. Nous
nous attaquerons à l’unicité ensuite.
Supposons que l’on a l’existence de (q, r) ∈ N×N avec 0 ⩽ r ⩽ b− 1 tel que a = bq+ r.
Alors on a

a

b
= q + r

b
.

Comme 0 ⩽
r

b
< 1, on a q ⩽ q + r

b
< q + 1. Ainsi, q = ⌊q + r

b
⌋ ∈ N, autrement dit

q = ⌊a
b
⌋.

Ensuite remarquons que r = a− bq = a− b⌊a
b
⌋ semble convenir.

Vérifions que cela fonctionne. Prenons q = ⌊a
b
⌋ et r = a− b⌊a

b
⌋. On a bien évidemment

bq + r = b⌊a
b
⌋+ a− b⌊a

b
⌋ = a.

De plus, q = ⌊a
b
⌋ ∈ N.

Enfin,
a

b
− 1 < ⌊a

b
⌋ ⩽ a

b

donc en multipliant par −b < 0 et en ajoutant a, on a

−a+ b+ a = b > r ⩾ −a+ a = 0

ce qui est équivalent à 0 ⩽ r < b− 1 car r est un entier. Autrement dit r = a− b⌊a
b
⌋ ∈

[[0, b− 1]].
Maintenant, démontrons l’unicité. Supposons qu’il existe deux couples (q, r) et (q′, r′)
qui satisfont ce résultat.
On a alors bq + r = bq′ + r. Ainsi, b(q − q′) = r′ − r.
Or, on a 0 ⩽ r′ < b, donc −r ⩽ r − r′ ⩽ b − r. Comme 0 ⩽ r < b, on a 0 ⩾ −r > −b,
donc

−b < r − r′ < 0.

Cependant, q − q′ ̸= 0, comme q − q′ ∈ Z, on a b(q − q′) ⩾ b ou b(q − q′) ⩽ −b. Il est
donc impossible que r − r′ = b(q − q′) sauf si q − q′ = 0. Ainsi, on a q = q′, donc r = r′.
Il y a donc bien unicité du couple.

2. Quelques résolutions d’équations pour voir si on a perdu la main
Exercice 5. (E1) x2 − 8x+ 11 = 4

L’équation x2−8x+11 = 4 est équivalente à l’équation x2−8x+7 = 0. On applique
la méthode vue en cours (et en terminale) pour résoudre celle-ci
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Le discriminant de cette équation vaut 64− 28 = 36 = 62. Puisque le discriminant
est positif, on sait que cette équation admet deux solutions réelles qui sont

8 + 6
2 = 7 et 8− 6

2 = 1

Ainsi l’ensemble des solutions de l’équation E1 est S1 = {1, 7}.
Remarque de rédaction : l’énoncé ne mentionne pas de coefficients a, b et c. Vous êtes

donc fortement priés de ne pas écrire de chose du style ∆ = b2−4ac, x1 = −b−
√

∆
2a

qui n’ont ici aucun sens puisque a,b, c, x1, x2 n’ont jamais été définis.

(E2) |x− 1| = 2x− 3

On a |x− 1| =
{
x− 1 si x ⩾ 1
−x+ 1 si x < 1

Pour le cas x < 1 l’équation devient −x + 1 = 2x − 3 ⇐⇒ 3x = 4 ⇐⇒ x = 4
3. Or

cette valeur n’est pas dans le cas qui nous intéresse. Ainsi, il n’y a pas de solution
sur ]−∞, 1[.
Pour le cas x ⩾ 1 l’équation devient x− 1 = 2x− 3⇐⇒ x = 2. Or cette valeur est
bien dans le cas qui nous intéresse.
Il n’y a donc qu’une seule solution, x = 2. Ainsi l’ensemble des solutions de
l’équation E2 est S2 = {2}.

(E3) |x− 5| = |4− x2| ⇐⇒


x− 5 = 4− x2

ou
x− 5 = x2 − 4

La première équation est x−5 = 4−x2, c’est-à-dire x2 +x−9 = 0. Le discriminant
de cette équation est 37, elle a donc deux solutions réelles qui sont −1+

√
37

2 et
−1−

√
37

2 .
La deuxième équation est x − 5 = x2 − 4, c’est-à-dire x2 − x + 1 = 0, dont le
discriminant est −3. Ainsi, elle n’a pas de solution réelle.
En conclusion l’ensemble des solutions de E3 est S3 =

{
−1−

√
37

2 , −1+
√

37
2

}
.

(E4)
√
x− 3 +

√
x = 3

On va raisonner ici par implication (ou par analyse-synthèse). Soit x une solution
de l’équation E4, remarquons que nécessairement x ⩾ 3. Alors

(
√
x− 3 +

√
x)2 = 9

i.e.
x− 3 + x+ 2

√
x2 − 3x = 9

Ainsi
2x− 12 = −2

√
x2 − 3x

Soit
x− 6 = −

√
x2 − 3x

Et, par suite
(x− 6)2 = (x2 − 3x)
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Ainsi, en développant et regroupant les termes, x vérifie

36x = 144

C’est-à-dire x = 4. Ainsi, si x est une solution de E4 alors x = 4
Vérifions maintenant que 4 est bien solution de l’équation E4. On a

√
4− 3+

√
4 =

1 + 2 = 3. 4 est bien solution de E4. L’ensemble des solutions de l’équation E4 est
donc S4 = {4}

(E5) x4 − 2x2 − 15 = 0
Soit x une solution de l’équation E5, et notons X = x2. X vérifie alors

X2 − 2X − 15 = 0

Le discriminant de cette équation est 4 + 60 = 64 = 82. Cette équation admet donc
deux solutions qui sont

2 + 8
2 = 5 et 2− 8

2 = −3

Ainsi, x est solution de l’équation E5 si et seulement si {x2 ∈ {−3, 5}. Comme
x2 ⩾ 0 on en déduit que x2 = 5, c’est-à-dire x ∈ {−

√
5,
√

5}
En conclusion l’ensemble des solutions de l’équation E5 est S5 = {−

√
5,
√

5}

Exercice 6. (I1)x2 − x > 2
L’inéquation x2 − x > 2 est équivalente à l’inéquation x2 − x− 2 > 0.
Les racines du polynôme x2 − x− 2 sont −1 et 2. Ainsi x2 − x− 2 = (x+ 1)(x− 2).
Notre inéquation est donc équivalente à

(x+ 1)(x− 2) > 0

On sait qu’un produit de deux termes est strictement positif si et seulement si les
termes sont non-nuls et de même signe. Ici on a donc

(x+ 1)(x− 2) > 0⇔ ((x > −1 et x > −2) ou (x < −1 et x < 2))

Ainsi l’ensemble des solutions de l’inéquation est S1 =]−∞,−1[∪]2,+∞[.

(I2)
√
x− 1 ⩾

√
4x− 1

Remarquons que si x est solution de cette inéquation alors x ⩾ 1. Mais, si x ⩾ 1 alors
4x > x, d’où 4x− 1 > x− 1 ⩾ 0 et, par suite,

√
x− 1 <

√
4x− 1.

Ainsi l’inéquation I2 n’a pas de solutions sur R. L’ensemble des solutions de I2 est
donc I2 = ∅.

(I3)
√
x+ 1
x+ 2 < 1

Remarquons que si x est solution de cette inéquation alors x ̸= −2 et x+ 1
x+ 2 ⩾ 0, i.e

x ⩾ −1 ou x < −2.
Comme tous les éléments sont positifs, comme la fonction carrée est strictement crois-
sante, on a

x+ 1
x+ 2 < 1⇐⇒ x+ 1

x+ 2 − 1 < 0⇐⇒ −1
x+ 2 < 0⇐⇒ x+ 2 > 0⇐⇒ x > −2.

L’ensemble des solutions de l’inéquation I3 est donc S3 =]− 1,+∞[.
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Exercice 7. 1. On commence par remarquer que pour que l’équation ait un sens, on
doit avoir x−2 ̸= 0, x+ 2 ̸= 0 et x2−4 ̸= 0. Ainsi, on doit avoir x ∈ D = R\{−2, 2}.
Une fois ceci remarqué, on peut tout multiplier par (x − 2)(x + 2) = x2 − 4 ̸= 0.
L’équation est donc équivalente à

(x+ 2)2 − (x− 2)2 = 8x.

Ce qui se simplifie en 0 = 0.
Tout x ∈ R \ {−2, 2} est solution.

2. Remarquons là encore qu’il faut que 3 + x ̸= 0, 2 + x ̸= 0 et 1 + x ̸= 0. Ainsi, on a
forcément x ∈ R \ {−1,−2,−3}.
Ensuite, le plus simple est encore une fois de faire disparaitre les dénominateurs en
multipliant tout par (1 + x)(2 + x)(3 + x) ̸= 0.
Ainsi, l’équation est équivalente à

(3−x)(2+x)(1+x)−(3+x)(2+x)(1+x) = (2−x)(1+x)(3+x)+(1−x)(2+x)(3+x).

En factorisant à gauche et à droite, on trouve l’équation équivalente

−2x(2 + x)(1 + x) = (3 + x)[(2 + x− x2) + (2− x− x2)]

soit
−2x(2 + 3x+ x2) = (3 + x)(4− 2x2).

En développant, on obtient l’équivalence avec

−4x− 6x2 − 2x3 = 12 + 4x− 6x2 − 2x3.

Après simplification, l’équation équivalente est

8x+ 12 = 0.

Seul −3
2 est solution.

3. Appelons (E) cette équation. Elle n’a de sens que si x − 1 ̸= 0, donc x ̸= 1 et si
1− x

x− 1 ̸= 0, c’est-à-dire si x

x− 1 ̸= 1 ce qui n’arrive jamais.

Ainsi, l’ensemble de définition est R \ {1}.
Ensuite, arrangeons un peu l’écriture. On a

(E)⇔ x− 1
x− 1− x + x = 0,

donc
(E)⇔ 1− x+ x = 0.

Pour finir (E)⇔ 1 = 0 donc l’équation n’admet aucune solution.

4. Notons (I) cette inéquation.
L’inéquation n’a de sens que lorsque x2−3x+2 ̸= 0. Comme x2−3x+2 = (x−1)(x−2)
(à détailler si besoin) c’est lorsque x /∈ {1, 2}.
Attention : l’idée catastrophique est de multiplier par x2−3x+2 pour faire
disparaitre le dénominateur, puisque le signe de cette quantité change en
fonction de x !
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On a (I)⇔ 3x+ 2
x2 − 3x+ 2 − 1 < 0.

Autrement dit
(I)⇔ 3x+ 2− (x2 − 3x+ 2)

x2 − 3x+ 2 < 0.

Ce qui s’arrange en

(I)⇔ −x2 + 6x
x2 − 3x+ 2 < 0.

En factorisant
(I)⇔ −x(x− 6)

(x− 1)(x− 2) < 0.

Le plus simple pour se convaincre de la fin est de faire un tableau de signe. On trouve
alors que l’ensemble solution est ]−∞, 0[∪]1, 2[∪]6,+∞[.

5. Il y a en réalité deux inéquations qui n’existent que si x− 5 ̸= 0, soit sur R \ {5}.

La première (I1) : 2 < x− 3
x− 5. On a

(I1)⇔ x− 3− 2(x− 5)
x− 5 > 0.

On simplifie en
(I1)⇔ 7− x

x− 5 > 0.

L’ensemble solution de (I1) est donc ]5, 7[ (faire un tableau de signe si vous avez le
moindre doute).

La deuxième (I2) : x− 3
x− 5 < 3. On a

(I2)⇔ x− 3− 3(x− 5)
x− 5 ⩽ 0.

On simplifie en
(I2)⇔ 2(6− x)

x− 5 ⩽ 0.

L’ensemble solution de (I2) est donc ]−∞, 5[∪[6,+∞[ (ici aussi, faire un tableau de
signe si vous avez le moindre doute).
Les deux doivent être vraies simultanément, donc l’ensemble solution est [6, 7[.

6. Notons (I) cette inéquation.
On peut distinguer les cas selon le signe de x2 − 5x+ 4 = (x− 1)(x− 4).
En effet, pour x ∈] −∞; 1] ∩ [4; +∞[, on a x2 − 5x + 4 ⩾ 0, donc l’équation devient
(I) : x2 − 3x ⩾ x2 − 5x+ 4 autrement dit 2x ⩾ 4 soit x ⩾ 2.
Ainsi, tout [4; +∞[ est solution.
Par ailleurs, pour le cas où x ∈]1, 4[, on a

x2 − 3x ⩾ −x2 + 5x− 4,

ce qui se traduit en
x2 − 4x+ 2 ⩾ 0.

Regardons le discriminant ∆ = 16− 4× 2 = 8. Les deux racines sont x1 = 2−
√

2 et
x2 = 2 +

√
2.

7 / 359



Donc l’inéquation est vérifiée si x ∈] −∞; 2 −
√

2] ∪ [2 +
√

2; +∞[. Mais n’oublions
pas que dans ce cas, x ∈]1, 4[. Ainsi tout x ∈ [2 +

√
2, 4[ est solution.

Le bilan est donc que [2 +
√

2,+∞[ est l’ensemble solution.

Exercice 8. 1. On peut penser à tout développer et à étudier le trinôme du second
degré obtenu. Ou alors, en nommant (Em) cette équation on peut remarquer que

(Em)⇔ (2mx− 3)2 − (x+m)2 = 0.
En reconnaissant une identité remarquable,

(Em)⇔ ((2m− 1)x− 3−m)((2m+ 1)x− 3 +m) = 0.

Ainsi,
(Em)⇔ (2m− 1)x = 3 +m ou (2m+ 1)x = 3−m.

Si m = 1
2, une solution 5

4. Si m = −1
2, une solution −5

4. Si m est différent de ces

deux valeurs, deux solutions 3 +m

2m− 1 et 3−m
2m+ 1.

2. Une bonne idée est de tout multiplier par (a− b)(a− c)(b− c) ̸= 0 (parce que les réels
a, b et c sont deux à deux distincts), ce qui nous donner l’équation équivalente :

[a(b− c)− b(a− c) + c(a− b)]x = (a− b)(a− c)(b− c).

Cela se simplifie en
0 = (a− b)(a− c)(b− c).

Comme dit précédemment, on a (a−b)(a−c)(b−c) ̸= 0, donc il n’y a pas de solutions.

3. Pas forcément besoin de factoriser pour une fois. En développant tout on obtient

2(m+ p)x+m2 − p2 = m+ p.

On arrange cette équation en

2(m+ p)x = (m+ p)(1−m+ p).

Si m = −p, tout x ∈ R est solution (c’est l’équation 0 = 0). Sinon, une seule solution
1 + p−m

2 .

Exercice 9. 1. Notons (Em) cette équation.
Il est déjà clair que si α ∈ {−2, 1}, alors l’équation n’a pas de sens, donc on ne peut
pas trouver de réel m tel que α soit solution.
En supposant x /∈ {−2, 1}, on a (Em)⇔ 2m(x− 1) = (m− 5)(x+ 2), soit

(Em)⇔ m(2x− 2− x− 2) = −5(x+ 2).

Autrement dit
(Em)⇔ m(x− 4) = −5(x+ 2).

Ainsi, 4 ne peut jamais être solution de cette équation, et si α /∈ {−2, 1, 4} alors α
peut-être solution de (Em). Pour être complet (même si ce n’est pas demandé), on
prend m = −5(α+ 2)

α− 4 .
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2. Pour obtenir deux racines réelles distinctes, il faut déjà que le discriminant de ce
trinôme soit strictement positif. Or ∆ = 25 − 4 × 3(m + 7) = −59 − 12m. Ainsi, on
doit avoir m < −59

12.

Dans ce cas, les deux racines sont 5−
√

∆
6 et 5 +

√
∆

6 . Pour qu’elles soient toutes les
deux strictement positives, il faut en plus que

5−
√

∆ > 0

pour que la plus petite des deux le soit.
On a alors a avoir

√
∆ < 5, ce qui est équivalent à ∆ < 25 (puisque tous les termes

sont positifs).
Cela devient tout simplement −12(m+ 7) < 0 c’est-à-dire m > −7.
Ainsi, l’équation admet deux racines strictement positives si et seulement si m ∈]
− 7,−59

12

[
.

3. Si m = 3, on a une infinité de solutions, on peut donc exclure ce cas. Si m ̸= 3, c’est le
même principe en plus calculatoire que la question précédente. Le discriminant doit
être strictement positif, soit

∆ = (1− 2m)2 − 4(m− 3)(m+ 1) = 1− 4m+ 4m2 − 4(m2 − 2m− 3) = 4m+ 13.

On doit avoir m > −13
4 pour avoir deux racines réelles distinctes.

Ensuite, les deux racines sont 2m− 1−
√

∆
2(m− 3) et 2m− 1 +

√
∆

2(m− 3) .

Dans le cas où m > 3, la plus petite des deux est : 2m− 1−
√

∆
2(m− 3) , donc on doit avoir

2m− 1 +
√

∆ > 0, ce qui est toujours vrai (somme de termes strictement positifs).

Dans le cas où m < 3, la plus petite des deux est : 2m− 1 +
√

∆
2(m− 3) , donc on doit avoir

2m− 1 +
√

∆ < 0. Si 2m− 1 ⩾ 0, soit m ⩾
1
2, c’est impossible Dans le cas où m <

1
2,

multiplions par (2m − 1) −
√

∆ < 0 cette condition, ce qui transforme en condition
équivalente (2m− 1)2 −∆ > 0, soit

4m2 − 4m+ 1− 4m− 13 > 0

soit 4(m2 − 2m− 3) > 0, ce qui est vrai si m < −1 ou m > 3. Le deuxième cas étant
exclu, il ne reste que m < −1.

En conclusion, on trouve que m doit être dans
]
− 13

4 ,−1
[
∪
]
3,+∞

[
.

4. Pour que cette inéquation admette R comme solution, il faut avoir un trinôme du
second degré (donc m ̸= −3) il faut que le discriminant soit strictement négatif (pour
éviter l’annulation ou le changement de signe) et que le coefficient dominant soit
strictement positif (donc m > −3).
Regardons le discriminant : ∆ = 4(m + 1)2 + 4(m + 3)(m + 1) = 4(m2 + 2m + 1 +
m2 + 4m+ 3) = 8(m2 + 3m+ 2).
Les deux racines du discriminant sont −1 et −2, donc il est strictement négatif lorsque
−2 < m < −1.
En conclusion, on doit avoir −2 < m < −1.
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Exercice 10. 1. Pour que cette équation que nous appellerons (E) ait un sens, il faut
que x2 − 3x+ 8 ⩾ 0. Le discriminant de ce trinôme est ∆ = 9− 32 = −23 < 0, donc
cette quantité est toujours strictement positive. Ainsi, cette équation a un sens pour
tout x réel.
Elevons au carré, on a

(E)⇒ x2 − 3x+ 8 = (x− 4)2.

Donc
(E)⇒ x2 − 3x+ 8 = x2 − 8x+ 16.

Ainsi,
(E)⇒ 5x = 8.

Donc
(E)⇒ x = 8

5 .

Cependant, comme nous avons élevé cette équation au carré, nous avons
perdu l’équivalence. Nous devons donc vérifier cette solution.

On a 8
5 − 4 < 0 alors que

√(8
5

)2
− 3

(5
8

)
+ 8 > 0 : peu importe la valeur, ces deux

quantités ne peuvent pas être égales.
Cette équation n’a donc pas de solutions.

2. Remarquons que le discriminant de x2 + x + 4 est 1 − 4 × 4 = −15 < 0, donc cette
quantité est positive pour tout x réel. L’inéquation que nous noterons (I) est donc
bien définie sur R.
Ensuite, on remarque que (I)⇔

√
x2 + x+ 4− 3 > 0.

Multiplions tout ça par la quantité conjuguée
√
x2 + x+ 4 + 3 > 0 donc sans changer

le sens de l’inégalité.
On a alors, (I)⇔ x2 + x+ 4− 9 > 0. Autrement dit

(I)⇔ x2 + x− 5 > 0

Notons ∆ le discriminant de ce trinôme : on a ∆ = 21 donc il admet deux racines
−1−

√
21

2 et −1 +
√

21
2 . L’ensemble solution est

]
−∞, −1−

√
21

2

[
∪
]−1 +

√
21

2 ,+∞
[
.

Il faut faire attention à vérifier auparavant que tout est du même signe
si vous tenter d’appliquer la fonction carrée (et selon le cas, changer ou
non le sens de l’inégalité). L’avantage de la quantité conjuguée est que son
signe étant évident, il n’y a pas besoin de se poser de questions.

3. Notons (E) cette équation.
Elevons la au carré. On a

(E)⇐ 4 +
√
x4 + x2 = 4− 4x+ x2

puis
(E)⇐

√
x4 + x2 = x2 − 4x

que nous élevons une nouvelle fois au carré

(E)⇐ x4 + x2 = x4 − 8x3 + 16x2.
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(E)⇐ 8x3 − 15x2 = 0.
En factorisant, on a

(E)⇐ x2(8x− 15) = 0.

Ainsi, les solutions de (E) sont à chercher parmi les solutions de cette dernière
équation. On trouve 0 et 15

8 .

0 fonctionne bien dans (E), mais 2− 15
8 = 1

8, alors que

√√√√4 +
√(15

8

)4
+
(15

8

)2
> 2,

ainsi 15
8 n’est pas solution.

En conclusion, 0 est l’unique solution.

4. Notons (I) cette inéquation. Elle n’a de sens que si x+1 ⩾ 0 et x ⩾ 0, donc si x ∈ R+.
On a

(I)⇔ 2
√
x+ 1− 2

√
x− 1 ⩾ 0.

En multipliant tout ça par 2
√
x+ 1− 2

√
x+ 1 > 0, on obtient l’inéquation

(I)⇔ 4(x+ 1)− 8
√
x(x+ 1) + 4x− 1 ⩾ 0.

Soit
(I)⇔ 8x+ 3− 8

√
x(x+ 1) ⩾ 0.

En multipliant tout ça par 8x+ 3 + 8
√
x(x+ 1) > 0, on obtient l’inéquation

(I)⇔ 64x2 + 48x+ 9− 64x(x+ 1) ⩾ 0.

Autrement dit,
(I)⇔ −16x+ 9 ⩾ 0.

L’ensemble solution est
[
0; 9

16

]
.

5. Aucune difficulté là-dessous, juste un gros tableau de signe à faire après avoir factorisé
chaque terme du mieux de vos possibilités.

On a (x4 + 2x2 − 3)(x5 + x3 − 2x)
x4 + 3x2 − 10 = x

(x4 + 2x2 − 3)(x4 + x2 − 2)
x4 + 3x2 − 10 .

On pose X = x2, comme ça x4 + 2x2 − 3 = X2 + 2X − 3. On factorise ce terme en
utilisant les techniques habituelles.
On a alors X2 + 2X − 3 = (X − 1)(X + 3) donc x4 + 2x2 − 3 = (x2 − 1)(x2 + 3) =
(x− 1)(x+ 1)(x2 + 3).
De même, on trouve que x4 + x2 − 2 = (x2 − 1)(x2 + 2) = (x− 1)(x1)(x2 + 2).
Pour finir, on trouve que x4 +3x2−10 = (x2−2)(x2 +5) = (x−

√
2)(x+

√
2)(x2 +5).

Ainsi, on a

(x4 + 2x2 − 3)(x5 + x3 − 2x)
x4 + 3x2 − 10 = x

(x− 1)2(x+ 1)2(x2 + 2)(x2 + 3)
(x−

√
2)(x+

√
2)(x2 + 5)

.

Finalement, un rapide tableau de signe permettra de conclure, étant donné que pas
mal de termes sont positifs (attention à bien exclure 1 et −1 de l’ensemble solution
puisque la quantité s’annule pour ces valeurs).
L’ensemble solution est ]−

√
2, 0]∪]

√
2,+∞[∪{−1, 1}.
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Exercice 11. 1. Pour que l’équation ait un sens on doit avoir x(3x+5) > 0, soit x < −5
3

ou x > 0 ainsi que 2(x+ 3)(x− 7) > 0 soit x < −3 ou x > 7.
Ainsi, cette équation n’est définie que pour x ∈]−∞;−3[∪]7; +∞[.
Ensuite, on prend l’exponentielle, pour obtenir l’équation équivalente

x(3x+ 5) = 2(x+ 3)(x− 7).

On l’arrange en
x2 + 13x+ 42 = 0.

Posons l’encombrant discriminant ∆ = 169 − 4 × 42 = 1. On a donc deux solutions
−6 et −7 qui sont toutes deux dans l’intervalle de définition.

2. Poser X = x2, l’équation équivalente d’inconnue X

2X2 + 5X − 8 = X2 + 4X + 4.

Soit,
X2 +X − 12 = 0.

On trouve deux solutions X = 3 ou X = −4, ce qui devient x2 = 3 ou x2 = −4. La
deuxième est impossible, mais la première entraine deux solutions

√
3 et −

√
3.

3. Remarquons que cette équation n’est définie que pour x ∈ R∗+. Posons X = ln(x).
On trouve l’équation équivalente X2 − 4X + 3 = 0 qui a deux solutions 1 et 3. Ainsi,
on a ln(x) = 1 ou ln(x) = 3. En prenant l’exponentielle, on trouve deux solutions e
et e3.

4. Cette fois-ci, on pose X = ex pour obtenir

X2 − 2X − 8 = 0.

On trouve deux solutions X = 4 et X = −2, ce qui se transforme en

ex = 4 ou ex = −2.

Seule la première donne une solution, x = ln(4) = 2 ln(2).

5. Multiplions tout ça par ex pour obtenir

e2x − (e+ 1)ex + e = 0.

Posons X = ex, ce qui donne

X2 − (e+ 1)X + e = 0.

Le discriminant est ∆ = (e+ 1)2 − 4e = (e− 1)2. On trouve deux solutions, 1 et e.
On doit donc avoir

ex = 1 ou ex = e.

En prenant le logarithme de ces quantités, on trouve

x = 0 ou x = 1

qui sont les deux solutions de cette équation.
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6. Le cas x = 0 est bien solution.
Pour x > 0, passons en notation exponentielle, l’équation se réécrit

e
√

x ln(x) = ex ln(
√

x).

En prenant le logarithme de cette équation, on arrive à

√
x ln(x) = 1

2x ln(x).

Ce qui est équivalent à
1
2 ln(x)

√
x
(
2−
√
x
)

= 0.

Ce qui est équivalent à

ln(x) = 0 ou
√
x = 0 ou

√
x = 2.

La première donne x = 1, la seconde n’a pas de solution (puisque x > 0), la troisième
une seule x = 4 (car x > 0).
En n’oubliant pas la toute première, on trouve trois solutions : 0, 1 et 4.

3. Pour s’assurer qu’on maitrise bien les réels
Exercice 12. • 0 est un majorant de E.

∀x ∈ E, x ⩽ 0

Par exemple R− ou {−2}

• 1 n’est pas un minorant de E.

∃x ∈ E, x < 1

Par exemple R ou ]0, 2[

• π est le maximum de E.

π ∈ E, ∀x ∈ E, x ⩽ π

Par exemple ]−∞, π] ou {π}

• E est majoré.
∃M ∈ R, ∀x ∈ E, x ⩽M

Par exemple {0} ou { 2
n+1 , n ∈ N}

• E n’est pas minoré.
∀m ∈ R, ∃x ∈ E, x < m

Par exemple R ou {ln
(

1
n

)
, n ∈ N∗}

• E est borné.
∃R ∈ R+, ∀x ∈ E, |x| ⩽ R

Par exemple [0, 1] ou {1, 2, 1099}
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• E n’est pas borné.
∀R ∈ R+, ∃x ∈ E, |x| > R

Par exemple Q ou {(−1)n × n , n ∈ N}.

Exercice 13. On a 2 ⩽ y ⩽ 4, donc 2 + x ⩽ x+ y ⩽ 4 + x. Or comme −1 ⩽ x ⩽ 2, on
a 1 ⩽ 2 + x et 4 + x ⩽ 6, donc

1 ⩽ x+ y ⩽ .6

Ensuite, on a −1 ⩽ x ⩽ 2. Comme 2 ⩽ y ⩽ 4, on a y > 0 donc −y ⩽ xy ⩽ 2y. De plus
−y ⩾ −4 et 2y ⩽ 8, donc

−4 ⩽ xy ⩽ 8.

Attention à ne pas multiplier par x l’inégalité de y car x n’est pas de signe
constant. Par ailleurs, comme dit en cours, multiplier des inégalités terme à
terme est une énorme bêtise que vous ne commettrez bien entendu jamais.
Ensuite, on a −1 ⩽ x ⩽ 2. Comme 2 ⩽ y ⩽ 4, on a y > 0 donc 1

4 ⩽
1
y

⩽
1
2. Comme

1
y
> 0, on a −1

y
⩽
x

y
⩽

2
y

. Et comme −1
y
⩾ −1

2 et 2
y
⩽ 1, donc

−1
2 ⩽

x

y
⩽ 1.

Pour finir, on a −1 ⩽ x ⩽ 2, et x ̸= 0. On va diviser le problème en deux : si −1 ⩽ x < 0,
alors 1

x
⩽ −1, donc comme 2 ⩽ y ⩽ 4, on a 2

x
⩾
y

x
⩾

4
x

donc y

x
⩽ −2.

Si 0 < x ⩽ 2, on a 1
x

⩾
1
2. Et comme 2 ⩽ y ⩽ 4, on a 2

x
⩽
y

x
⩽

4
x

, on a simplement
y

x
⩾ 1.

Ainsi on a
y

x
⩽ −2 ou y

x
⩾ 1.

Pour les divisions aussi, la division terme à terme d’inégalité est une énormité 1.

Exercice 14. • A est majorée et minorée. sup(A) = max(A) = 10, inf(A) = 2 A
n’a pas de minimum.

• B n’est ni majorée, ni minorée. En effet si n ∈ N on a 4n cos
(4nπ

2

)
= 4n et

(4n+2) cos
((4n+ 2)π

2

)
= −(4n+2). D’où, pour tout n ∈ N 4n ∈ B et −(4n+2) ∈

B

• C est majorée et minorée. sup(C) = max(C) = 1
9, inf(C) = 0, C n’a pas de

minimum.

• D est minorée mais pas majorée. inf(D) = 0. D n’a pas de minimum.

• E est majorée et minoré. sup(E) = max(E) = 1√
2

, inf(E) = min(E) = −1.

• F est majoré et minoré. sup(F ) = 1
2, inf(F ) = 0. F n’a ni maximum, ni minimum.

1. On peut imaginer écrire des théorèmes là-dessus, mais comme évoqué en cours, il y a tellement de
règles qu’il est aussi simple de le faire directement.
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• G est majoré et minoré. sup(G) = max(G) = cos(1)
1 , inf(G) = min(G) = cos(3)

3 .

Exercice 15. Soit (a, b) ∈ R. On a, par définition

max(a, b) =
{
a si a ⩾ b

b si a < b

On va alors étudier 1
2(a+ b+ |a− b|) quand a ⩾ b et quand a < b.

• Si a ⩽ b

Alors a− b ⩽ 0 d’où |a− b| = b− a Ainsi

1
2(a+ b+ |a− b|) = 1

2(a+ b+ b− a) = b

• Si a > b

Alors a− b > 0 d’où |a− b| = a− b Ainsi

1
2(a+ b+ |a− b|) = 1

2(a+ b+ a− b) = a

On a donc bien
max(a, b) = 1

2(a+ b+ |a− b|)

Exercice 16. 1. On remarque qu’il va falloir distinguer selon la position de x par rap-
port à −8, 0 et 3 soit 4 cas.

On a alors A(x) =


−5− 3x si x < −8
11− x si − 8 ⩽ x < 0
11 + x si 0 ⩽ x < 3
3x+ 5 si 3 ⩽ x

2. a. Il faut résoudre cette équation dans chaque cas (x < −8, −8 ⩽ x < 0, 0 ⩽ x < 3
et 3 ⩽ x). On découvre alors que les solutions ne sont jamais dans l’intervalle sur
lequel on est placé.

b. C’est impossible, car ∀x ∈ R, A(x) ⩾ 0.
c. C’est aussi impossible, car pour que la somme de trois termes positifs soit nulle,

tous doivent être simultanément nuls, ce qui n’arrive que si x est en même temps
égal à −8, 0 et 3.

d. Comme pour le premier cas, il faut résoudre 4 équations.
(i) Dans le cas x < −8, cela revient à résoudre −5 − 3x = 4x − 20 soit x = 15

7
qui n’est pas dans l’intervalle considéré.

(ii) Dans le cas −8 ⩽ x < 0, cela revient à résoudre 11−x = 4x− 20 soit x = 31
5

qui n’est pas dans l’intervalle considéré.
(iii) Dans le cas 0 ⩽ x < 3, cela revient à résoudre 11 + x = 4x− 20 soit x = 31

3
qui n’est pas dans l’intervalle considéré.

(iv) Dans le cas 3 ⩽ x, cela revient à résoudre 3x + 5 = 4x − 20 soit x = 25 qui
est dans l’intervalle considéré.

L’unique solution est donc 25.
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Exercice 17. 1. C’est équivalent à deux équations

2x+ 7 = 1 ou 2x+ 7 = −1.

On trouve
x = −3 ou x = −4.

2. C’est équivalent à deux équations

3x− 9 = x− 1 ou 3x− 9 = −x+ 1.

On trouve
x = 4 ou x = 5

2 .

3. Soit on utilise la technique de l’exercice précédent (on divise ça en trois cas, x < 1,
1 ⩽ x < 4 et x ⩾ 4), soit on peut faire, en notant (E) l’équation

(E)⇒ 2x− 8 = 9− |x− 1| ou 2x− 8 = −9 + |x− 1| .

On perd l’équivalence car rien n’assure la positivité de 9− |x− 1|.
Ce qui s’arrange en

(E)⇒ |x− 1| = −2x+ 17 ou |x− 1| = −2x− 1.

Et donc

(E)⇒ x− 1 = −2x+ 17 ou x− 1 = 2x− 17 ou x− 1 = −2x− 1 ou x− 1 = 2x+ 1.

(E)⇒ x = 6 ou x = 16 ou x = 0 ou x = −2.

En vérifiant les 4 candidats précédents, on trouve que uniquement 0 et 6 sont solutions.
La technique utilisée dans l’exercice précédent nous aurait évité la vérification au pris
de réécrire proprement les équations avec leur domaine de validité.

Exercice 18 (A propos de la partie entière). 1. Revenons à la définition de croissance.
Soit x et y deux réels tels que x ⩽ y.
On a alors ⌊x⌋ ⩽ x et y < ⌊y⌋+ 1, autrement dit ⌊x⌋ ⩽ x ⩽ y < ⌊y⌋+ 1.
Ce qui nous intéresse est simplement ⌊x⌋ < ⌊y⌋+1. Comme ⌊x⌋ et ⌊y⌋ sont des entiers
relatifs, cette inégalité est équivalente à ⌊x⌋ ⩽ ⌊y⌋.
Attention, la dernière étape n’est vraie que parce qu’il s’agit d’entiers !

2. On pourrait croire que ça fait 0, d’ailleurs, si x ∈ Z, ⌊x⌋ = x donc ⌊x⌋ + ⌊−x⌋ = 0
car −x ∈ Z.
Si x /∈ Z, ⌊x⌋ est l’unique entier tel que ⌊x⌋ < x < ⌊x⌋+1, donc−⌊x⌋−1 < −x < −⌊x⌋.
Ainsi, si x /∈ Z, ⌊−x⌋ = −⌊x⌋ − 1, donc ⌊x⌋+ ⌊−x⌋ = −1.

On a donc ⌊x⌋+ ⌊−x⌋ =
{

0 si x ∈ Z
−1 si x /∈ Z.
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3. a. ⌊2x+ 7⌋ est l’unique entier relatif tel que ⌊2x+ 7⌋ ⩽ 2x+ 7 < ⌊2x+ 7⌋+ 1 ce qui
revient à

1 ⩽ 2x+ 7 < 2

soit
−3 ⩽ x < −5

2 .

L’ensemble solution est donc
[
−3;−5

2

[
.

b. ⌊−4x+ 2⌋ est l’unique entier relatif tel que ⌊−4x+ 2⌋ ⩽ −4x+ 2 < ⌊−4x+ 2⌋+ 1
ce qui revient à

10 ⩽ −4x+ 2 < 11

soit
−2 ⩾ x > −9

4 .

L’ensemble solution est donc
]
− 9

4;−2
]
.

4. Pour tout x ∈ R, ⌊x⌋ est l’unique entier relatif tel que ⌊x⌋ ⩽ x < ⌊x⌋ + 1, donc
2⌊x⌋ ⩽ 2x. Par ailleurs, ⌊2x⌋ ⩽ 2x < ⌊2x⌋+ 1.
Ainsi, on a ∀x ∈ R, 2⌊x⌋ ⩽ 2x < ⌊2x⌋+ 1, soit

2⌊x⌋ < ⌊2x⌋+ 1.

Comme il s’agit d’entiers, cette dernière inégalité est équivalente à

2⌊x⌋ ⩽ ⌊2x⌋+ 1.

Exercice 19. On a

n3

n+ 1 = n3 + n2 − n2

n+ 1

= n3 + n2

n+ 1 −
n2

n+ 1

= n2 − n2 + n− n− 1 + 1
n+ 1

= n2 − n2 + n

n+ 1 + n+ 1
n+ 1 −

1
n+ 1

= n2 − n+ 1− 1
n+ 1

Ainsi ⌊
n3

n+ 1

⌋
=
⌊
n2 − n+ 1− 1

n+ 1

⌋
= n2 − n+ 1 +

⌊
− 1
n+ 1

⌋
= n2 − n

Exercice 20. Soit (x, y) ∈ R2 et n ∈ N∗.
On a n⌊x⌋ ⩽ nx. Ainsi n⌊x⌋ est un entier inférieur à nx, d’où n⌊x⌋ ⩽ ⌊nx⌋.
De plus on sait que x < ⌊x⌋+ 1, d’où nx < n⌊x⌋+ n.
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Ainsi ⌊nx⌋−n⌊x⌋ < n. Or ⌊nx⌋−n⌊x⌋ est un entier et on rappelle que, si k est un entier
alors l’inégalité k < n est équivalente à k ⩽ n− 1. On a donc ⌊nx⌋ − n⌊x⌋ ⩽ n− 1.

Si ⌊x⌋ ⩽ x < ⌊x⌋+ 1
2 et ⌊y⌋ ⩽ y < ⌊y⌋+ 1

2 alors
⌊x+y⌋ = ⌊x⌋+⌊y⌋, ⌊2x⌋ = 2⌊x⌋ et ⌊2y⌋ = 2⌊y⌋. On en déduit alors l’inégalité recherchée
Si ⌊x⌋+ 1

2 ⩽ x < ⌊x⌋+ 1 et ⌊y⌋ ⩽ y < ⌊y⌋+ 1
2 alors

⌊x+ y⌋ ⩽ ⌊x⌋+ ⌊y⌋+ 1 ,⌊2x⌋ = 2⌊x⌋+ 1 et ⌊2y⌋ = 2⌊y⌋. On en déduit alors l’inégalité
recherchée
Si ⌊x⌋ ⩽ x < ⌊x⌋ + 1

2 et ⌊y⌋ + 1
2 ⩽ y < ⌊y⌋ + 1 on procède de manière similaire au cas

précédent
Enfin si ⌊x⌋+ 1

2 ⩽ x < ⌊x⌋+ 1 et ⌊y⌋+ 1
2 ⩽ y < ⌊y⌋+ 1 alors

⌊x+y⌋ = ⌊x⌋+ ⌊y⌋+2, ⌊2x⌋ = 2⌊x⌋+1 et ⌊2y⌋ = 2⌊y⌋+1 On en déduit alors l’inégalité
recherchée.
Dans tous les cas l’inégalité recherchée est vérifiée.

Exercice 21. 1. Ne serait-ce pas une identité remarquable ?

En effet, cette inégalité est équivalente à (a− b)2

2 = a2 − 2ab+ b2

2 ⩾ 0 qui est
évidemment toujours vraie.

2. Il faut remarque que comme x, y, z sont des réels positifs, xyz = √xyz2 = (
√
x
√
y)(
√
x
√
z)(√y

√
z)

puis appliquer le résultat précédent trois fois.
On a 2(

√
x
√
y) ⩽ (x+ y) donc 4(

√
x
√
y)(
√
x
√
z) ⩽ (x+ y)2(

√
x
√
z) ⩽ (x+ y)(x+ y)

et il suffit de refaire cette démarche avec le troisième terme.

4. Récurrences
Exercice 22 (Suite de Fibonacci). Pas de difficulté particulière... sauf dans l’énonciation !
L’idée est de poser P(n) : ≪ F2n+1 = F 2

n + F 2
n+1 et F2n+2 = Fn+1(Fn + Fn+2) ≫.

On calcule rapidement les premiers termes F2 = 1, F3 = 2, F4 = 3 et F5 = 5 d’après la
relation de récurrence.
On voit alors immédiatement que F 2

0 + F 2
1 = 1 = F1 et F1(F0 + F2) = F2 ce qui permet

de voir que P(0) est vraie.
Soit n ∈ N quelconque fixé. Supposons P(n) vraie.
On a alors F2(n+1)+1 = F2n+3 = F2n+2 + F2n+1.
En utilisant P(n), on a

F2n+3 = Fn+1(Fn + Fn+2) + F 2
n + F 2

n+1.

Or Fn = Fn+2 − Fn+1, donc

F2n+3 = Fn+1(2Fn+2 − Fn+1) + (Fn+2 − Fn+1)2 + F 2
n+1.

Autrement dit
F2n+3 = F 2

n+2 + F 2
n+1.

Ensuite, on a F2(n+1)+2 = F2n+4 = F2n+3 + F2n+2. En utilisant P(n) et ce qu’on vient
de démontrer, on a

F2n+4 = F 2
n+2 + F 2

n+1 + Fn+1(Fn + Fn+2).

Or Fn = Fn+2 − Fn+1, donc

F2n+4 = F 2
n+2 + F 2

n+1 + Fn+1(2Fn+2 − Fn+1).
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F2n+4 = Fn+2(Fn+2 + 2Fn+1).

Or Fn+2 + Fn+1 = Fn+3, donc

F2n+4 = Fn+2(Fn+3 + Fn+1).

Ainsi, P(n+ 1) est vraie.
On a donc démontré que, pour tout n ∈ N,

F2n+1 = F 2
n + F 2

n+1 et F2n+2 = Fn+1(Fn + Fn+2).

Exercice 23. Soit n ∈ N∗. Notons P(n) : ≪ un = (1 +
√

2)(2n) + (1−
√

2)(2n) ≫.
On a u1 = 6 et (1 +

√
2)(21) + (1−

√
2)(21) = 1 + 2

√
2 + 2 + 1− 2

√
2 + 2 = 6, donc P(1)

est vraie.
Soit n ∈ N∗ quelconque fixé. Supposons P(n) vraie.
On a un+1 = u2

n − 2. Donc d’après P(n), on a

un+1 =
(
(1 +

√
2)(2n) + (1−

√
2)(2n)

)2
− 2

=
(
(1 +

√
2)(2n)

)2
+ 2(1 +

√
2)(2n)(1−

√
2)(2n) +

(
(1−

√
2)(2n)

)2
− 2

= (1 +
√

2)(2n+1) + 2(1 +
√

2)(2n)(1−
√

2)(2n) + (1−
√

2)(2n+1) − 2

= (1 +
√

2)(2n+1) + 2
[
(1 +

√
2)(1−

√
2)
](2n)

+ (1−
√

2)(2n+1) − 2

= (1 +
√

2)(2n+1) + 2 [1](2
n) + (1−

√
2)(2n+1) − 2

= (1 +
√

2)(2n+1) + (1−
√

2)(2n+1).

Ainsi, P(n+ 1) est vraie.
On a donc démontré que, pour tout n ∈ N∗, un = (1 +

√
2)(2n) + (1−

√
2)(2n).

Exercice 24. 1. (a+ b)3 = a3 + 3a2b+ 3ab2 + b3.

2. Donc (n + 1)3 = n3 + 3n2 + 3n + 1. On se pose donc la question de démontrer que
3n2 + 3n+ 1 ⩽ 2n3.
Le plus agréable est encore de poser une fonction f définie sur [3; +∞[ définie par
f(x) = 2x3 − 3x2 − 3x − 1. Cette fonction f est un polynôme que l’on peut dériver
pour obtenir f ′(x) = 6x2 − 6x− 3 = 3(2x2 − 2x− 1).
Or le discriminant de 2x2−2x−1 est un trinôme du second degré dont le discriminant

est ∆ = 4 + 8 = 12. Il a donc deux racines 2− 2
√

3
4 = 1−

√
3

2 et 1 + 1
√

3
2 . Ces deux

racines sont inférieures à 3, donc ∀x ∈ [3,+∞[, f ′(x) > 0 donc f est strictement
croissante sur [3,+∞[.
On a alors f(3) = 54− 27− 9− 1 = 17, donc ∀x ∈ [3,+∞[, f(x) ⩾ f(3) = 17 > 0.
Ainsi, ∀n ⩾ 3, f(n) ⩾ 0 ce qui est équivalent à (n+ 1)3 ⩽ 3n3.

3. Soit n ∈ N. Notons P(n) : ≪ 3n ⩾ n3 ≫.
Remarquons que c’est évidemment vrai pour n = 3 (c’est la même chose de chaque
côté).
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Soit n ∈ N, n ⩾ 3 quelconque fixé. Supposons P(n) vraie.
On a, d’après la question précédente, (n+1)3 ⩽ 3n3. Or d’après P(n) (comme n ⩾ 3),
on a n3 ⩽ 3n, donc 3n3 ⩽ 3n+1. Ainsi, on a

(n+ 1)3 ⩽ 3n+1.

Ainsi, P(n+ 1) est vraie.
On a démontré que pour tout n ⩾ 3, 3n ⩾ n3

Il reste à voir si c’est vrai pour n = 0 (oui c’est 1 ⩾ 0), n = 1 (oui aussi, c’est 3 ⩾ 1)
et n = 2 (oui c’est 9 = 32 ⩾ 23 = 8).
Ainsi, la propriété est vraie pour tout n ∈ N.
On fait une récurrence en se servant de la question précédente pour démontrer
l’hérédité. Les étourdis oublieront de vérifier le domaine de validité de
l’inégalité qu’ils ont démontré à la question précédente qui n’était vraie
que pour n ⩾ 3, d’où le traitement à part de certains cas.

Exercice 25. Soit n ∈ N. Notons P(n) : ≪ il existe a et b tels que n = 9a+ 4b ≫.
Remarquons que 0 = 9× 0 + 4× 0, donc P(0) est vraie.
Soit n ∈ N, quelconque fixé. Supposons P(n) vraie. Il existe a et b tels que n = 9a+ 4b,
donc on a

n+ 1 = 9a+ 4b+ 1 = 9a+ 4b+ 9− 2× 4 = 9(a+ 1) + 4(b− 2).

Ainsi P(n+ 1) est vraie.
On a donc démontré que, pour tout n ∈ N, il existe deux entiers relatifs a et b tels que
n = 9a+ 4b.
On aurait pu remarquer que 1 = 9− 2× 4 et donc n = 9n− 4× 2n... Mais l’objectif est
de faire une récurrence.

Exercice 26. Commençons par montrer l’existence. On note P(n) la propriété ≪ ∃(p, q) ∈
N2, n = 2p(2q + 1) ≫.
Pour n = 1, on a 1 = 20(2× 0 + 1), donc P(1) est vraie.
Soit n ∈ N, quelconque fixé. Supposons ∀k ∈ [[1, n]], P(k) vraie.
Si n+ 1 est impair, il existe q ∈ N tel que n+ 1 = 2q + 1 = 20(2q + 1).
Si n + 1 est pair, alors n+ 1

2 est en entier inférieur ou égal à n car 1
2 ⩽

n

2 . Ainsi,

d’après P
(
n+ 1

2

)
, il existe deux entiers p et q tels que n+ 1

2 = 2p(2q + 1), donc
n+ 1 = 2p+1(2q + 1).
Donc P(n+ 1) est vraie.
Ainsi, on a démontré par récurrence forte que, pour tout n entier naturel non nul, il
existe deux entiers p et q tels que n = 2p(2q + 1).
Montrons désormais l’unicité.
Supposons qu’il existe deux couples d’entiers (p, q) et (p′, q′) tels que n = 2p(2q + 1) =
2p′(2q′ + 1). Supposons que p′ < p, alors on a

2p−p′(2q + 1) = 2q′ + 1.

Ainsi, 2p−p′(2q + 1) = 2q′ + 1 est pair puisque p− p′ > 0 mais pas 2q′ + 1. Ainsi, on ne
peut pas avoir p′ < p et de même p < p′. On a donc p = p′, et donc

2p(2q + 1) = 2p(2q′ + 1)

ce qui se simplifie immédiatement en 2q + 1 = 2q′ + 1 donc q = q′.
L’unicité est donc démontrée.
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2 Sommes et produits
Exercice 1. 1. Comme on a les résultats, on peut faire des récurrences pour chacune

de ces questions, mais ici ça peut se montrer directement.
En effet,

n∑
k=1

k · k! =
n∑

k=1
(k + 1− 1)k!

=
n∑

k=1
(k + 1) · k!−

n∑
k=1

k!

=
n∑

k=1
(k + 1)!−

n∑
k=1

k!

=
n+1∑
ℓ=2

ℓ!−
n∑

k=1
k! en posant dans la première ℓ = k + 1

=
n∑

ℓ=2
ℓ! + (n+ 1)!−

(
1! +

n∑
k=2

k!
)

= (n+ 1)!− 1.

2. Notons, pour n ∈ N∗, P(n) ≪

n∑
k=1

(−1)kk2 = (−1)n(n2 + n)
2 . ≫.

On a
1∑

k=1
(−1)kk2 = (−1)112 = −1 et (−1)1(12+1)

2 = −1 donc P(1) est vraie.

Soit n ∈ N∗ quelconque fixé. Supposons P(n) vraie.
On a

n+1∑
k=1

(−1)kk2 =
n∑

k=1
(−1)kk2 + (−1)n+1(n+ 1)2

= (−1)n(n2 + n)
2 + (−1)n+1(n+ 1)2 d’après P(n)

= (−1)n+1 (−n2 − n+ 2(n+ 1)2)
2

= (−1)n+1(n2 + 3n+ 2)
2 .

Or, on a (n+ 1)2 + n+ 1 = n2 + 3n+ 2, donc

n+1∑
k=1

(−1)kk2 = (−1)n+1((n+ 1)2 + n+ 1)
2 .

Ainsi, P(n+ 1) est vraie.
On a donc, ∀n ∈ N∗,

n∑
k=1

(−1)kk2 = (−1)n(n2 + n)
2 .
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3. Notons, pour n ∈ N∗, P(n) ≪

n∑
k=1

(−1)kk3 = (−1)n(4n3 + 6n2 − 1) + 1
8 . ≫.

On a
1∑

k=1
(−1)kk3 = (−1)113 = −1 et (−1)1(4×13+6×12−1)+1

8 = −1 donc P(1) est vraie.

Soit n ∈ N∗ quelconque fixé. Supposons P(n) vraie.
On a

n+1∑
k=1

(−1)kk3 =
n∑

k=1
(−1)kk3 + (−1)n+1(n+ 1)3

= (−1)n(4n3 + 6n2 − 1) + 1
8 + (−1)n+1(n+ 1)3 d’après P(n)

= (−1)n+1 (−4n3 − 6n2 + 1 + 8(n+ 1)3)+ 1
8

= (−1)n+1(−4n3 − 6n2 + 1 + 8(n3 + 3n2 + 3n+ 1)) + 1
8

= (−1)n+1(4n3 + 18n2 + 24n+ 9) + 1
8

Or, on a
4(n+1)3+6(n+1)2−1 = 4(n3+3n2+3n+1)+6(n2+2n+1)−1 = 4n3+18n2+24n+9

donc
n+1∑
k=1

(−1)kk3 = (−1)n+1(4(n+ 1)3 + 6(n+ 1)2 − 1) + 1
8 .

Ainsi, P(n+ 1) est vraie.
On a donc, ∀n ∈ N∗,

n∑
k=1

(−1)kk3 = (−1)n(4n3 + 6n2 − 1) + 1
8 .

4. Il s’agit d’une récurrence pénible à écrire (il faut faire des formules du binôme jusqu’au
degré 6, donc écrivez votre triangle de Pascal dans un coin, ça servira).

Notons, pour n ∈ N∗, P(n) ≪

n∑
k=1

(−1)k−1k6 = (−1)n−1n
6 + 3n5 − 5n3 + 3n

2 . ≫.

On a
1∑

k=1
(−1)k−1k6 = (−1)016 = 1 et (−1)0 16+3×15−5×13+3×1

2 = 1 donc P(1) est vraie.

Soit n ∈ N∗ quelconque fixé. Supposons P(n) vraie.
On a

n+1∑
k=1

(−1)k−1k6 =
n∑

k=1
(−1)k−1k6 + (−1)n(n+ 1)6

= (−1)n−1n
6 + 3n5 − 5n3 + 3n

2 + (−1)n(n+ 1)6 d’après P(n)

= (−1)n−n6 − 3n5 + 5n3 − 3n+ 2(n+ 1)6

2

= (−1)n−n6 − 3n5 + 5n3 − 3n+ 2(n6 + 6n5 + 15n4 + 20n3 + 15n2 + 6n+ 1)
2

= (−1)nn
6 + 9n5 + 30n4 + 45n3 + 30n2 + 9n+ 2

2
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Or, on a

(n+1)6 +3(n+1)5−5(n+1)3 +3(n+1) = (n6 +6n5 +15n4 +20n3 +15n2 +6n+1)
+ 3(n5 + 5n4 + 10n3 + 10n2 + 5n+ 1)− 5(n3 + 3n2 + 3n+ 1) + 3(n+ 1)

donc

(n+ 1)6 + 3(n+ 1)5− 5(n+ 1)3 + 3(n+ 1) = n6 + 9n5 + 30n4 + 45n3 + 30n2 + 9n+ 2.

On obtient alors :
n+1∑
k=1

(−1)k−1k6 = (−1)n (n+ 1)6 + 3(n+ 1)5 − 5(n+ 1)3 + 3(n+ 1)
2 .

Ainsi, P(n+ 1) est vraie.
On a donc, ∀n ∈ N∗,

n∑
k=1

(−1)k−1k6 = (−1)n−1n
6 + 3n5 − 5n3 + 3n

2 .

Exercice 2. Soit n ∈ N.

1. On a, pour n ∈ N,

Sn =
n∑

k=0
4k2

= 4
n∑

k=0
k2

= 4n(n+ 1)(2n+ 1)
6 .

On a, pour tout n ∈ N, Sn = 2n(n+ 1)(2n+ 1)
3 .

2. On a, pour n ∈ N,

Tn =
n∑

k=0

(
(2k)2 + 4k + 1

)
= Sn + 4

n∑
k=0

k +
n∑

k=0
1 par linéarité

= 2n(n+ 1)(2n+ 1)
3 + 4n(n+ 1)

2 + (n+ 1)

= 2n(n+ 1)(2n+ 1)
3 + 6n(n+ 1)

3 + 3(n+ 1))
3

= (n+ 1)[2n(2n+ 1) + 6n+ 3]
3

= (n+ 1)(4n2 + 8n+ 3)
3 .

Si on développe, on trouve Tn = 2n(n+ 1)(2n+ 1)
3 + 2n(n + 1) + (n + 1) qu’on

factorisera bien entendu par (n+ 1).
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3. On a, pour n ∈ N,

Sn + Tn = 2n(n+ 1)(2n+ 1)
3 + (n+ 1)(4n2 + 8n+ 3)

3

= (n+ 1)[2n(2n+ 1) + 4n2 + 8n+ 3]
3

= (n+ 1)(8n2 + 10n+ 3)
3 .

On aurait aussi pu remarquer que, Sn est la somme des carrés des entiers pairs et que
Tn est la somme des carrés des entiers impairs, ainsi

Sn + Tn =
2n+1∑
k=0

k2 = (2n+ 1)(2n+ 2)[2(2n+ 1) + 1]
6 = (2n+ 1)(n+ 1)(4n+ 3)

3 .

Comme (2n+ 1)(4n+ 3) = 8n2 + 10n+ 3, les valeurs cöıncident bien.

Exercice 3. 1. On a, pour n ∈ N∗,

n∑
k=0

(1
2

)k

=
1−

(
1
2

)n+1

1− 1
2

= 2− 1
2n
.

2. On a, pour n ∈ N∗,

n+1∑
k=1

(−3)k = −3
n+1∑
k=1

(−3)k−1

= −3
n∑

ℓ=0
(−3)ℓ en posant ℓ = k − 1

= −31− (−3)n+1

1− (−3)

= 3
4((−3)n+1 − 1).

3. On a, pour n ∈ N∗,

n+2∑
k=1

(1
2

)k

= 1
2

n+2∑
k=1

(1
2

)k−1

= 1
2

n+1∑
ℓ=0

(1
2

)ℓ

en posant ℓ = k − 1

= 1
2

1−
(

1
2

)n+2

1− 1
2

= 1− 1
2n+2
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4. On a, pour n ∈ N∗,

n+1∑
k=2

22k = 24
n+1∑
k=2

22k−4

= 24
n+1∑
k=2

(22)k−2

= 24
n−1∑
ℓ=0

(22)ℓ en posant ℓ = k − 2

= 24 1− (22)n

1− 22

= 24 (22n − 1)
3

= 22n+4 − 16
3 .

5. On a, pour n ∈ N∗,
n∑

k=0

2k

3k−1 = 3
n∑

k=0

(2
3

)k

= 3
1−

(
2
3

)n+1

1− 2
3

= 9
(

1−
(2

3

)n+1
)
.

6. Le but est ici de bien comprendre la technique qui marchera toujours quand on a
une somme dont l’indice de sommation apparait uniquement dans les puissances :
on factorise par le premier terme et, après un changement d’indice qui devrait être
relativement naturel, on obtiendra ensuite une somme classique. Il arrive que cette
technique aide dans d’autres cas, mais je ne le garantis pas.
On a, pour n ∈ N∗,

n+3∑
k=2

22k−1

5k+3 = 23

55

n+3∑
k=2

22(k−2)

5k−2

= 23

55

n+1∑
ℓ=0

22ℓ

5ℓ
en posant ℓ = k − 2

= 23

55

n+1∑
ℓ=0

(
22

5

)ℓ

= 23

55

1−
(

22

5

)n+2

1− 4
5

= 23

54

(
1−

(4
5

)n+2
)
.
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Exercice 4. 1. On a, pour n ∈ N∗,

n∑
k=0

k(k + 1) =
n∑

k=0
k2 +

n∑
k=0

k par linéarité

= n(n+ 1)(2n+ 1)
6 + n(n+ 1)

2

= n(n+ 1)[(2n+ 1) + 3]
6

= n(n+ 1)(2n+ 4)]
6

= n(n+ 1)(n+ 2)
3

2. On a, pour n ∈ N∗,

n∑
k=1

ln
(

1 + 1
k

)
=

n∑
k=1

ln
(
k + 1
k

)

=
n∑

k=1
(ln(k + 1)− ln(k))

=
n∑

k=1
ln(k + 1)−

n∑
k=1

ln(k) par linéarité

=
n+1∑
ℓ=2

ln(ℓ)−
n∑

k=1
ln(k) en posant ℓ = k + 1

=
n∑

ℓ=2
ln(ℓ) + ln(n+ 1)−

n∑
k=2

ln(k)− ln(1)

= ln(n+ 1).

3. On a, pour n ∈ N∗,

n∑
k=1

k

(k + 1)! =
n∑

k=1

k + 1− 1
(k + 1)!

=
n∑

k=1

( 1
k! −

1
(k + 1)!

)

=
n∑

k=1

1
k! −

n∑
k=1

1
(k + 1)! par linéarité

=
n∑

k=1

1
k! −

n+1∑
ℓ=2

1
ℓ! en posant ℓ = k + 1

= 1
1! +

n∑
k=2

1
k! −

n∑
ℓ=2

1
ℓ! −

1
(n+ 1)!

= 1− 1
(n+ 1)! .
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Exercice 5. A.On a, pour n ∈ N, n ⩾ 2,

A =
n∑

k=2

1
k(k − 1)

=
n∑

k=2

1− k + k

k(k − 1)

=
n∑

k=2

(
− k − 1
k(k − 1) + k

k(k − 1)

)

=
n∑

k=2

k

k(k − 1) −
n∑

k=2

k − 1
k(k − 1) par linéarité

=
n∑

k=2

1
k − 1 −

n∑
k=2

1
k

=
n−1∑
ℓ=1

1
ℓ
−

n∑
k=2

1
k

en posant dans la première ℓ = k − 1

= 1 +
n−1∑
ℓ=2

1
ℓ
−
(

n−1∑
k=2

1
k

+ 1
n

)

= 1− 1
n
.

B.On va essayer de faire apparaitre un télescopage, mais ça va être un peu plus com-
pliqué. Pour k ⩾ 2, cherchons a, b et c trois réels tels que

4k − 2
k(k2 − 1) = a

k − 1 + b

k
+ c

k + 1 .

En multipliant tout par k(k2 − 1), on a

4k − 2 = ak(k + 1) + b(k − 1)(k + 1) + ck(k − 1).

En faisant k = 1, on trouve 2 = 2a donc a = 1. En faisant k = 0, on trouve −2 = −b
donc b = 2. En faisant k = −1, on trouve −6 = 2c donc c = −3.
Ainsi, si ces trois réels existent, on a

4k − 2
k(k2 − 1) = 1

k − 1 + 2
k
− 3
k + 1 .

Vérifions-le :
1

k − 1 + 2
k
− 3
k + 1 = k(k + 1) + 2(k − 1)(k + 1)− 3k(k − 1)

k(k − 1)(k + 1) = 4k − 2
k(k2 − 1) .

Remarquons que d’autres méthodes sont possibles : en particulier, on aurait pu tout
développer et ≪ identifier ≫ les coefficients, ce qui nous aurait évité la vérification,
mais nous reviendrons là-dessus dans un chapitre ultérieur.
On a alors :

B =
n∑

k=2

4k − 2
k(k2 − 1)

=
n∑

k=2

( 1
k − 1 + 2

k
− 3
k + 1

)

=
n∑

k=2

1
k − 1 + 2

n∑
k=2

1
k
− 3

n∑
k=2

1
k + 1 par linéarité.
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On pose alors i = k − 1 dans la première somme et j = j + 1 dans la troisième.

B =
n−1∑
i=1

1
i

+ 2
n∑

k=2

1
k
− 3

n+1∑
j=3

1
j

= 1 + 1
2 +

n−1∑
i=3

1
i

+ 2
(

1
2 +

n−1∑
k=3

1
k

+ 1
n

)
− 3

n−1∑
j=3

1
j

+ 1
n

+ 1
n+ 1


= 5

2 −
1
n
− 3
n+ 1

Si on souhaite mettre la réponse sur le même dénominateur, on trouve

B = 5n(n+ 1)− 2(n+ 1)− 6n
2n(n+ 1) = 5n2 − 3n− 2

2n(n+ 1) .

C.On a pour n ⩾ 1,

C =
n∏

k=1

(
1 + 1

k

)

=
n∏

k=1

k + 1
k

=

n∏
k=1

(k + 1)
n∏

k=1
k

=

n+1∏
ℓ=2

ℓ

n∏
k=1

k
en posant au numérateur ℓ = k + 1

=

(
n∏

ℓ=2
ℓ

)
(n+ 1)

1×
n∏

k=2
k

= n+ 1
1

= n+ 1

Remarquons que nous aurions pu remarquer un peu avant de conclure que C =
(n+ 1)!
n! = n+ 1.
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D.On a pour n ⩾ 1,

D =
n∏

k=1

2k
2k + 1

=

n∏
k=1

2k
n∏

k=1
(2k + 1)

=

(
n∏

k=1
2k
)2

n∏
k=1

2k
n∏

k=1
(2k + 1)

=
22n

(
n∏

k=1
k

)2

2n+1∏
ℓ=2

ℓ

= 22n(n!)2

(2n+ 1)!

On peut encore écrire D = (2nn!)2

(2n+ 1)!

E.On a pour n ⩾ 1,

E =
n∑

i=1

n∑
j=i+1

(i+ j)

=
n∑

i=1

n∑
j=i+1

i+
n∑

i=1

n∑
j=i+1

j par linéarité

D’un côté, on a

n∑
i=1

n∑
j=i+1

i =
n∑

i=1
i

n∑
j=i+1

1

=
n∑

i=1
(n− i)i

= n
n∑

i=1
i−

n∑
i=1

i2

= n2(n+ 1)
2 − n(n+ 1)(2n+ 1)

6

= n(n+ 1)(3n− 2n− 1)
6

= n(n+ 1)(n− 1)
6
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D’un autre côté, on a

n∑
i=1

n∑
j=i+1

j =
n∑

i=1

 n∑
j=1

j −
i∑

j=1
j


=

n∑
i=1

(
n(n+ 1)

2 − i(i+ 1)
2

)
=

n∑
i=1

n(n+ 1)
2 − 1

2

n∑
i=1

i2 − 1
2

n∑
i=1

i par linéarité

= n2(n+ 1)
2 − n(n+ 1)(2n+ 1)

12 − n(n+ 1)
4

= n(n+ 1)(6n− 2n− 1− 3)
12

= n(n+ 1)(n− 1)
3

Autre façon de calculer ce terme :

n∑
i=1

n∑
j=i+1

j =
∑

1⩽i<j⩽n

j

=
n∑

j=2

j−1∑
i=1

j

=
n∑

j=2
(j2 − j)

=
n∑

j=1
j2 − j le terme en j = 1 est nul

=
n∑

j=1
j2 −

∑
j=1

nj par linéarité

= n(n+ 1)(2n+ 1)
6 − n(n+ 1)

2

= n(n+ 1)(2n+ 1− 3)
6

Ainsi, on a

E = n(n+ 1)(n− 1)
6 + n(n+ 1)(n− 1)

3

= n(n+ 1)(n− 1)
2

F.On a, pour n ⩾ 1,
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F =
n∑

i=1

n∑
j=i

i(n− j)

=
∑

1⩽i⩽j⩽n

i(n− j)

=
n∑

j=1

j∑
i=1

i(n− j)

=
n∑

j=1
(n− j)

j∑
i=1

i

=
n∑

j=1
(n− j)j(j + 1)

2

= 1
2

(n− 1)
n∑

j=1
j2 + n

n∑
j=1

j −
n∑

j=1
j3


= 1

2

(
n(n− 1)(n+ 1)(2n+ 1)

6 + n2(n+ 1)
2 − n2(n+ 1)2

4

)

= n(n+ 1)[2(n− 1)(2n+ 1) + 6n− 3n(n+ 1)]
24

= n(n+ 1)(n2 + n− 2)
24

= (n− 1)n(n+ 1)(n+ 2)
24 .

Exercice 6. 1. On a, pour n ∈ N∗, en posant k = i− j,

n∑
q=0

q∑
p=0

2p =
n∑

q=0

1− 2q+1

1− 2 car 2 ̸= 1

=
n∑

q=0
2q+1 −

n∑
q=0

1 par linéarité

= 2
n∑

q=0
2q − (n+ 1)

= 21− 2n+1

1− 2 − (n+ 1)

= 2n+2 − n− 3.

Ainsi, on a pour n ∈ N∗, Sn =
n∑

q=0

q∑
p=0

2p = 2n+2 − n− 3.
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2. On a, pour n ∈ N∗, en posant k = i− j,

n∑
j=0

n∑
i=j

2i−j =
n∑

j=0

n−j∑
k=0

2k

=
n∑

j=0

1− 2n−j+1

1− 2 car 2 ̸= 1

=
n∑

j=0
2n−j+1 −

n∑
j=0

1 par linéarité

=
n∑

ℓ=0
2ℓ+1 − (n+ 1) en posant dans la première ℓ = n− j

= 2
n∑

ℓ=0
2ℓ − n− 1

= 21− 2n+1

1− 2 − n− 1

= 2n+2 − n− 3.

Remarquons que vu la question d’avant, il aurait été plus direct de remarquer que

n∑
j=0

n∑
i=j

2i−j =
∑

0⩽j⩽i⩽n

2i−j

=
n∑

i=0

i∑
j=0

2i−j

=
n∑

i=0

i∑
k=0

2k en posant k = i− j

soit la même chose que la question précédente.

3. On a, pour n ∈ N∗,
n∑

i=1

n∑
j=i

1
j

=
n∑

j=1

j∑
i=1

1
j

=
n∑

j=1

j

j

=
n∑

j=1
1

= n.
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4. On a, pour n ∈ N∗,
n∑

i=1

n∑
j=i

i

j
=

n∑
j=1

j∑
i=1

i

j

=
n∑

j=1

1
j

j∑
i=1

i

=
n∑

j=1

1
j

j(j + 1)
2

=
n∑

j=1

j + 1
2

= 1
2

n∑
j=1

j + 1
2

n∑
j=1

1

= n(n+ 1)
4 + n

2

= n(n+ 1 + 2)
4

= n(n+ 3)
4

Exercice 7. Tout d’abord, remarquons que l’on doit avoir x ̸= −1 pour que cette
équation ait un sens.
Ensuite, on remarque que pour tout x ̸= −1, x

x+ 1 ̸= 1, donc l’équation est équivalente
à

1−
(

x
x+1

)8

1− x
x+1

= 0

et ainsi, toujours sans oublier que x ̸= −1, en(
x

x+ 1

)8
= 1.

Il reste à résoudre X8 = 1, ce que nous reverrons en détail plus tard, mais ici, on a

X8 = 1⇔ X8 − 1 = 0

⇔ (X4 − 1)(X4 + 1) = 0

⇔ (X2 − 1)(X2 + 1)(X4 + 1) = 0

⇔ (X − 1)(X + 1)(X2 + 1)(X4 + 1) = 0

Ainsi, les deux seules possibilités sont
x

x+ 1 = 1 ou x

x+ 1 = −1.

Mais comme le premier est exclu, il ne reste que x

x+ 1 = −1, ce qui est équivalent à

x = −x− 1

Donc x = −1
2 est la seule solution.
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Exercice 8. 1. Pour expliciter les choses, on a

S0 =
n∑

p=0

(
n

p

)
1p1n−p = (1 + 1)n = 2n.

On trouve S0 = 2n.

2. Un peu moins évident. On a pour n ∈ N∗, (le cas n = 0 donne S1 = 0)

S1 =
n∑

p=0
p

(
n

p

)

=
n∑

p=1
p

n!
p!(n− p)! le premier terme étant nul

=
n∑

p=1

n!
(p− 1)!(n− p)! car p ̸= 0

=
n∑

p=1

(n− 1)!n
(p− 1)!(n− p)!

= n
n∑

p=1

(
n− 1
p− 1

)

= n
n−1∑
k=0

(
n− 1
k

)
en posant k = p− 1

= n2n−1 d’après la question précédente.

Il est important d’évacuer le terme en p = 0 pour simplifier le coefficient binomial.
Remarquons que le résultat est cohérent avec celui obtenu lorsque n = 0

3. On a pour n ∈ N, n ⩾ 2, (les cas n = 0 ou n = 1 donnent S2 = 0)

S2 =
n∑

p=0
p(p− 1)

(
n

p

)

=
n∑

p=2
p(p− 1) n!

p!(n− p)! les deux premiers termes étant nuls

=
n∑

p=2
p(p− 1) n!

p(p− 1)(p− 2)!(n− p)! car p ̸= 0 et p− 1 ̸= 0

=
n∑

p=2

(n− 2)!n(n− 1)
p!(n− p)!

= n(n− 1)
n∑

p=2

(
n− 2
p− 2

)

= n(n− 1)
n−2∑
k=0

(
n− 2
k

)
en posant k = p− 2

= n(n− 1)2n−2 d’après la première question.

Il est important d’évacuer le terme en p = 0 et celui en p = 1 pour simplifier le
coefficient binomial.
Remarquons que le résultat est cohérent avec celui obtenu lorsque n = 0 et n = 1.
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4. Remarquons astucieusement que S1 +S2 = S3, ce qui nous donne S3 = n(n+ 1)2n−2.
Si nous ne l’avions pas fait, il aurait fallu écrire p2 = p(p − 1) + p puis développer
pour pouvoir faire des simplifications avec la factorielle du dénominateur.

5. On a pour n ∈ N,

S4 =
n∑

p=0

1
p+ 1

(
n

p

)

=
n∑

p=0

1
p+ 1

n!
p!(n− p)!

=
n∑

p=0

n!
(p+ 1)!(n− p)!

=
n∑

p=0

1
n+ 1

(n+ 1)!
(p+ 1)!(n− p)!

= 1
n+ 1

n∑
p=0

(
n+ 1
p+ 1

)

= 1
n+ 1

n+1∑
k=1

(
n+ 1
k

)
en posant k = p+ 1

= 1
n+ 1

(
n+1∑
k=0

(
n+ 1
k

)
− 1

)

= 1
n+ 1

(
2n+1 − 1

)
= 2n+1 − 1

n+ 1 .

6. On a pour n ∈ N,

S5 =
p∑

k=0

(
n

k

)(
n− k
p− k

)

=
p∑

k=0

n!
k!(n− k)!

(n− k)!
(p− k)!(n− p)!

= n!
(n− p)!

p∑
k=0

1
k!(p− k)!

= n!
(n− p)!p!

p∑
k=0

p!
k!(p− k)!

=
(
n

p

) p∑
k=0

(
p

k

)

=
(
n

p

)
2p.
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7. On a pour n ∈ N,

S6 =
k∑

p=0
(−1)p

(
n

n− p

)(
n− p
n− k

)

=
k∑

p=0
(−1)p n!

p!(n− p)!
(n− p)!

(n− k)!(k − p)!

= n!
(n− k)!

k∑
p=0

1
p!(k − p)! (−1)p

= n!
(n− k)!k!

k∑
p=0

k!
p!(k − p)! (−1)p

=
(
n

k

)
k∑

p=0

(
k

p

)
(−1)p

=
(
n

k

)
(−1 + 1)k.

Ainsi, on trouve S6 = 0 sauf si k = 0, auquel cas S6 = 1.

Exercice 9. Remarquons que Sn contient la somme de tous les termes entre 0 et 2n
dont la puissance est paire, alors que ceux de Tn sont ceux où la puissance est paire.

Ainsi, Sn +Tn =
2n∑

p=0

(
2n
p

)
xp = (1 +x)2n mais Sn−Tn =

2n∑
p=0

(
2n
p

)
(−1)pxp = (1−x)2n.

Ainsi, en ajoutant les deux et en divisant par deux, on trouve Sn = (1 + x)2n + (1− x)2n

2
et en les retranchant, on a Tn = (1 + x)2n − (1− x)2n

2 .

Exercice 10. Notons, pour n ∈ N, P(n) : ≪ 2n−1 ⩽ n! ⩽ nn.
On a 21−1 = 1 ⩽ 1! = 1 ⩽ 11. Ainsi P(1) est vraie.
Soit n ∈ N∗, quelconque fixé. Supposons P(n) vraie. On a alors

2n = 2× 2n−1 ⩽ 2n!

d’après P(n). Or 2 ⩽ n + 1 car 1 ⩽ n (d’où le démarrage à n = 1 pour la récurrence),
donc 2! ⩽ (n+ 1)!
Par ailleurs,

(n+ 1)! = n!(n+ 1) ⩽ nn(n+ 1)

d’après P(n). Par ailleurs, comme n ⩽ n+ 1, nn ⩽ (n+ 1)n.
Ainsi,

(n+ 1)! ⩽ (n+ 1)n(n+ 1) = (n+ 1)n+1.

Ainsi, P(n+ 1) est démontrée.
On a donc, ∀n ∈ N∗, 2n−1 ⩽ n! ⩽ nn.
De plus, on a bien 2−1 ⩽ 1 = 0! ⩽ 1 = 00, donc P(0) est vraie.
Ainsi, ∀n ∈ N, 2n−1 ⩽ n! ⩽ nn

Notons que cela implique que n! croit moins vite que nn mais plus que 2n.

Exercice 11. Notons, pour n ∈ N∗, P(n) : ≪ un = (n− 1)!.
On a u1 = 1 = (1− 1)! et u2 = 1 = (2− 1)!, donc P(1) et P(2) sont vraies.
Soit n ∈ N∗, quelconque fixé. Supposons P(n) et P(n+ 1) vraies. On a alors

un+2 = n(un+1 + un).
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D’après P(n) et P(n+ 1), on a

un+2 = n[(n+ 1− 1)! + (n− 1)!] = n[n! + (n− 1)!] = n[(n− 1)!(n+ 1)] = (n+ 1)!

Ainsi, P(n+ 2) est démontrée.
On a donc, ∀n ∈ N∗, un = (n− 1)!.

Exercice 12. Notons, pour n ∈ N, P(n) : n
5

5 + n4

2 + n3

3 −
n

30 est un entier naturel ≫.
C’est évidemment vrai pour n = 0.
Soit n ∈ N, quelconque fixé. Supposons P(n) vraie. Notons

un+1 = (n+ 1)5

5 + (n+ 1)4

2 + (n+ 1)3

3 − n+ 1
30 .

Montrons que un+1 ∈ N en développant les termes à l’aide de la formule du binôme. On
a

un+1 = (n5 + 5n4 + 10n3 + 10n2 + 5n+ 1)5

5 +n4 + 4n3 + 6n2 + 4n+ 1
2 +n3 + 3n2 + 3n+ 1

3 −n+ 1
30 .

Ainsi

un+1 = n5

5 +n4 +2n3 +2n2 +n+ 1
5 + n4

2 +2n3 +3n2 +2n+ 1
2 + n3

3 +n2 +n+ 1
3−

n

30−
1
30 .

En arrangeant un peu

un+1 = n5

5 + n4

2 + n3

3 −
n

30 + n4 + 4n3 + 6n2 + 4n+ 1
5 + 1

2 + 1
3 −

1
30 .

Or, d’après P(n), on a n5

5 + n4

2 + n3

3 −
n

30 ∈ N.
De plus, n4 + 4n3 + 6n2 + 4n ∈ N.
Et pour finir 1

5 + 1
2 + 1

3 −
1
30 = 6 + 15 + 10− 1

30 = 1 ∈ N.
Ainsi, on a bien un+1 ∈ N, soit P(n+ 1) vraie.

Donc, pour tout n ∈ N, n
5

5 + n4

2 + n3

3 −
n

30 ∈ N.

3 Trigonométrie
Exercice 1. Donner les valeurs exactes des quantités suivantes : L’idée est de se ramener
entre 0 et 2π, ou −π et π grâce à la 2π-périodicité puis entre 0 et π2 grâce aux symétries.

1. cos
(2π

3

)
= cos

(
π − π

3

)
= − cos

(
π

3

)
= −1

2.

2. sin
(7π

6

)
= sin

(
π + π

6

)
= − sin

(
π

6

)
= −1

2.

3. cos
(11π

6

)
= cos

(
2π − π

6

)
= cos

(
−π6

)
= cos

(
π

6

)
=
√

3
2 .

4. cos
(13π

6

)
= cos

(
2π + π

6

)
= cos

(
π

6

)
=
√

3
2 .

5. sin
(3π

4

)
= sin

(
π − π

4

)
= sin

(
π

4

)
=
√

2
2 .
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6. cos
(4π

3

)
= cos

(
π + π

3

)
= − cos

(
π

3

)
= −1

2.

7. cos
(13π

4

)
= cos

(
4π − 3π

4

)
= cos

(
−3π

4

)
= cos

(3π
4

)
= cos

(
π − π

4

)
= − cos

(
π

4

)
=

−
√

2
2 .

8. tan
(4π

3

)
= tan

(
π + π

3

)
= tan

(
π

3

)
=
√

3.

9. tan
(5π

6

)
. tan

(5π
6

)
= tan

(
π − π

6

)
= − tan

(
π

6

)
= −
√

3
3 .

Exercice 2. 1. Cette équation est équivalente à cos(x) = cos
(
π

4

)
.

Elle est donc équivalente à ce qu’une des équations suivante soit vraie
x = π

4 + 2kπ, k ∈ Z,

x = −π4 + 2kπ, k ∈ Z

L’ensemble solution est donc
{
−π4 + 2kπ, π4 + 2kπ/k ∈ Z

}
.

2. Cette équation est équivalente à sin(x) = sin
(
−π6

)
.

Elle est donc équivalente à ce qu’une des équations suivante soit vraie
x = −π6 + 2kπ, k ∈ Z,

x = −5π
6 + 2kπ, k ∈ Z

L’ensemble solution est donc
{
−π6 + 2kπ,−5π

6 + 2kπ/k ∈ Z
}

.

3. Cette équation est équivalente à cos(3x) = cos
(5π

6

)
.

Elle est donc équivalente à ce qu’une des équations suivante soit vraie
3x = 5π

6 + 2kπ, k ∈ Z,

3x = −5π
6 + 2kπ, k ∈ Z

Ce qui se reformule en 
x = 5π

18 + k
2π
3 , k ∈ Z,

x = −5π
18 + k

2π
3 , k ∈ Z

L’ensemble solution est donc
{5π

18 + 2kπ
3 ,−5π

18 + 2kπ
3 /k ∈ Z

}
.
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4. Cette équation est équivalente à sin(2x) = sin
(
π

4

)
.

Elle est donc équivalente à ce qu’une des équations suivante soit vraie
2x = π

4 + 2kπ, k ∈ Z,

2x = π − π

4 + 2kπ, k ∈ Z

Ce qui se reformule en 
x = π

8 + kπ, k ∈ Z,

x = 3π
8 + kπ, k ∈ Z

L’ensemble solution est donc
{
π

8 + kπ,
3π
8 + kπ/k ∈ Z

}
.

5. Cette équation est équivalente à ce qu’une des équations suivante soit vraie
2x = x+ 2kπ, k ∈ Z,

2x = −x+ 2kπ, k ∈ Z

Ce qui se reformule en 
x = 2kπ, k ∈ Z,

x = k
2π
3 , k ∈ Z

L’ensemble solution est donc
{

2kπ, 2kπ
3 /k ∈ Z

}
=
{2kπ

3 /k ∈ Z
}

.

6. Cette équation est équivalente à sin(3x) = − sin
(
π

2 − x
)

.

Ce qui est là encore équivalent à sin(3x) = sin
(
x− π

2

)
Elle est donc équivalente à ce qu’une des équations suivante soit vraie

3x = x− π

2 + 2kπ, k ∈ Z,

3x = π − x+ π

2 + 2kπ, k ∈ Z

⇐⇒


2x = −π2 + 2kπ, k ∈ Z,

4x = 3π
2 + 2kπ, k ∈ Z

Ce qui se reformule en 
x = −π4 + kπ, k ∈ Z,

x = 3π
8 + kπ

2 , k ∈ Z

L’ensemble solution est donc
{
−π4 + kπ,

3π
8 + kπ

2 /k ∈ Z
}

.
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7. Cette équation est équivalente à ce qu’une des équations suivante soit vraie au système


cos(x) =

√
3

2 = cos
(
π

6

)
cos(x) = −

√
3

2 = cos
(5π

6

)
Ce qui est équivalent à 

x = π

6 + 2kπ, k ∈ Z,

x = −π6 + 2kπ, k ∈ Z

x = 5π
6 + 2kπ, k ∈ Z

x = −5π
6 + 2kπ, k ∈ Z

L’ensemble solution est donc
{
−5π

6 + 2kπ,−π6 + 2kπ, π6 + 2kπ, 5π
6 + 2kπ/k ∈ Z

}
.

Exercice 3. 1. On a cos
(
π

12

)
= cos

(
π

3 −
π

4

)
.

Or cos
(
π

3 −
π

4

)
= cos

(
π

3

)
cos

(
π

4

)
+ sin

(
π

3

)
sin
(
π

4

)
.

Ainsi, on a cos
(
π

12

)
= 1

2

√
2

2 +
√

3
2

√
2

2 , autrement dit

cos
(
π

12

)
=
√

2 +
√

6
4 .

2. On peut faire la même technique, On a sin
(
π

12

)
= sin

(
π

3 −
π

4

)
.

Or sin
(
π

3 −
π

4

)
= sin

(
π

3

)
cos

(
π

4

)
− cos

(
π

3

)
sin
(
π

4

)
.

Ainsi, on a sin
(
π

12

)
=
√

3
2

√
2

2 −
1
2

√
2

2 , autrement dit

sin
(
π

12

)
=
√

6−
√

2
4 .

Exercice 4. 1. On a cos
(
π

4

)
= cos

(
2π8

)
.

Or cos
(

2π8

)
= 2 cos2

(
π

8

)
− 1.

Ainsi, on a
√

2
2 = 2 cos2

(
π

8

)
− 1, autrement dit

cos2
(
π

8

)
=
√

2 + 2
4 .
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Ainsi, ∣∣∣∣cos
(
π

8

)∣∣∣∣ =

√√
2 + 2
2 .

Comme π

8 ∈
[
0, π2

]
, cos

(
π

8

)
⩾ 0.

On peut donc affirmer,

cos
(
π

8

)
=

√√
2 + 2
2 .

2. On peut soit faire la même technique, soit remarquer que

sin2
(
π

8

)
= 1− cos2

(
π

8

)
.

Ainsi,

sin2
(
π

8

)
= 1−

√
2 + 2
4 = 2−

√
2

4 .

Ainsi, on a ∣∣∣∣sin(π8
)∣∣∣∣ =

√
2−
√

2
2 .

Comme π

8 ∈
[
0, π2

]
, sin

(
π

8

)
⩾ 0.

On peut donc affirmer,

sin
(
π

8

)
=

√
2−
√

2
2 .

Une remarque en passant, cette technique est moins élégante dans l’exercice précédent
car on obtient une écriture exacte de sin

(
π

12

)
moins élégante (sauf à réussir à sim-

plifier élégamment un terme un peu encombrant).

Exercice 5. 1. On a b = cos
(2π

5

)
= 2 cos2

(
π

5

)
− 1. On peut donc écrire

b = 2a2 − 1.

2. a. On a c = cos
(4π

5

)
= cos

(
π − π

5

)
= − cos

(
π

5

)
= −a.

b. On a c = cos
(4π

5

)
= cos

(
22π

5

)
= 2 cos2

(2π
5

)
− 1 = 2b2 − 1.

c. On a alors tout simplement
−a = 2b2 − 1.
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3. On a, en utilisant les deux relations précédentes,

a+ b = (1− 2b2) + (2a2 − 1) = 2(a2 − b2).

Or, en simplifiant, on a
a+ b = 2(a+ b)(a− b).

De plus, comme π

5 ∈
]
0, π2

[
et 2π

5 ∈
]
0, π2

[
, on a a > 0 et b > 0.

Ainsi, a+ b ̸= 0. On peut donc simplifier et on obtient 1 = 2(a− b), autrement dit

a− b = 1
2 .

4. On a b = 2a2 − 1 et b = a− 1
2, ainsi,

a− 1
2 = 2a2 − 1.

Cette équation est équivalente à

4a2 − 2a− 1 = 0.

Il s’agit d’un trinôme du second degré dont le discriminant est

∆ = (−2)2 − 4× 4× (−1) = 20.

On a donc a = 2−
√

20
8 = 1−

√
5

4 ou a = 2 +
√

20
8 = 1+

√
5

4 .

Cependant π5 ∈
]
0, π2

[
, donc a > 0.

Ainsi
cos

(
π

5

)
= 1 +

√
5

4 .

5. On a
sin2

(
π

5

)
= 1− cos2

(
π

5

)
.

Ainsi,

sin2
(
π

5

)
= 1−

(
1 +
√

5
4

)2

= 1− 6 + 2
√

5
16 = 10− 2

√
5

16 .

Ainsi, on a ∣∣∣∣sin(π5
)∣∣∣∣ =

√
10− 2

√
5

4 .

Comme π

5 ∈
[
0, π2

]
, sin

(
π

5

)
⩾ 0.

On peut donc affirmer,

sin
(
π

5

)
=

√
10− 2

√
5

4 .
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Exercice 6. 1. On a tan
(
π

2 − a
)

=
sin
(

π
2 − a

)
cos

(
π
2 − a

) = cos(a)
sin(a) = 1

tan(a) .

On note parfois cotan(a) = cos(a)
sin(a) .

2. a. Soient de tels réels a et b, cela implique, entre autres, que cos(a) et cos(b) sont
tous deux non nuls.
On a alors

tan(a+ b) = sin(a+ b)
cos(a+ b)

= sin(a) cos(b) + cos(a) sin(b)
cos(a) cos(b)− sin(a) sin(b)

=
cos(a) cos(b)

(
sin(a)
cos(a) + sin(b)

cos(b)

)
cos(a) cos(b)

(
1− sin(a)

cos(a)
sin(b)
cos(b)

)
= tan(a) + tan(b)

1− tan(a) tan(b) .

b. Notons D = R \
{
π

2 + kπ/k ∈ Z
}

.

On doit avoir a ∈ D, b ∈ D et a+ b ∈ D.
Si tan(a) tan(b) = 1, d’après la question précédente, cela veut dire que, lorsque
tan(a) ̸= 0, tan(b) = 1

tan(a) = tan
(
π

2 − a
)

, autrement dit b /∈
{
π

2 − a+ kπ/k ∈ Z
}

ce qui revient à a+ b ∈ D. Si tan(a) = 0, il faut simplement que tan(b) existe, soit
b ∈ D.

c. En déduire tan
(
π

12

)
(sans chercher les valeurs correspondantes pour le sinus et

le cosinus). On a

tan
(
π

12

)
= tan

(
π

3 −
π

4

)
=

tan
(

π
3
)

+ tan
(
−π

4
)

1− tan
(

π
3
)

tan
(
−π

4
) .

Souvenons nous que, tan(−a) = − tan(a) et donc que

tan
(
π

12

)
=

tan
(

π
3
)
− tan

(
π
4
)

1 + tan
(

π
3
)

tan
(

π
4
) .

Ainsi,

tan
(
π

12

)
=
√

3− 1
1 +
√

3
= (

√
3− 1)2

(
√

3 + 1)(
√

3− 1)
= 1− 2

√
3 + 3

3− 1 = 2−
√

3.

3. a. On a, en utilisant la formule de la question précédente,

tan(2a) = 2 tan(a)
1− tan2(a) .
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b. On a alors
tan

(
2π8

)
=

2 tan
(

π
8
)

1− tan2 (π
8
) .

Or, comme tan
(
π

4

)
= 1, on retrouve

1− tan2
(
π

8

)
= 2 tan

(
π

8

)
.

tan
(
π

8

)
est donc solution de l’équation d’inconnue X :

1−X2 = 2X ⇐⇒ X2 + 2X − 1 = 0.

Ce trinôme du second degré admet comme discriminant ∆ = 22 − 4 × (−1) = 8.
Elle admet donc deux solutions

X1 = −2−
√

8
2 = −1−

√
2 et X2 = −1 +

√
2.

Comme π

8 ∈
]
0, π2

[
, tan

(
π

8

)
> 0.

Ainsi, on a
tan

(
π

8

)
=
√

2− 1.

4 Ensembles et dénombrement
1. Théorie des ensembles
Exercice 1. En essayant de faire un dessin, on se rend vite compte que l’on doit avoir
A = B.
On le montre ensuite car A ⊂ A ∪B = A ∩B ⊂ B, ainsi, A ⊂ B.
De la même façon, on a B ⊂ A.
Par double inclusion, on a donc A = B.

Exercice 2. 1. a. On trouve A = X ∩ (Y ∪ Y ) (on ≪ factorise ≫ par X).
Mais comme Y ∪ Y = E et que X ∩ E = X, on a

A = X.

b. On trouve B = X ∪ (Y ∩ Y ).
Mais comme Y ∩ Y = ∅ et que X ∪ ∅ = X, on a

B = X.

c. D’après la première question, (X ∩Y )∪ (X ∩Y ) = X et de même, (X ∩Y )∪ (X ∩
Y ) = X.
Ainsi,

C = X ∪X = E .
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d. D’après la deuxième question, (X ∪ Y ) ∩ (X ∪ Y ) = X et de même, (X ∪ Y ) ∩
(X ∪ Y ) = X.
Ainsi,

D = X ∩X = ∅.

2. a. Pour la première implication. Soit x ∈ X. Comme X ⊂ Y , on a x ∈ Y donc
x ∈ X ∩ Y . Ainsi, X ⊂ X ∩ Y .
On a toujours X ∩ Y ⊂ X. Donc X ⊂ Y =⇒ X = X ∩ Y .
Concernant l’implication réciproque, si X = X∩Y , alors si x ∈ X, alors x ∈ X∩Y ,
car X = X ∩ Y , donc x ∈ Y .
Ainsi, X = X ∩ Y =⇒ X ⊂ Y .
Par double implication, on a démontré que

X ⊂ Y ⇐⇒ X = X ∩ Y.

b. On a X ∩ Y = (X ∩ Y ) ∩ (Z ∪ Z).
En développant, on a

X ∩ Y = (X ∩ Y ∩ Z) ∪ (X ∩ Y ∩ Z).

Or X ∩ Y ∩ Z ⊂ Y ∩ Z et X ∩ Y ∩ Z ⊂ X ∩ Z.
Ainsi,

X ∩ Y ⊂ (X ∩ Z) ∪ (Y ∩ Z).

c. On a
(X ∪ Z) ∩ (Y ∪ Z) = (X ∩ (Y ∪ Z)) ∪ (Z ∩ (Y ∪ Z))

= (X ∩ Y ) ∪ (X ∩ Z) ∪ (Y ∩ Z).

Or (X ∩ Y ) ⊂ (X ∩ Z) ∪ (Y ∩ Z) d’après la question précédente, donc d’après la
première question, (X ∩ Y ) ∪ (X ∩ Z) ∪ (Y ∩ Z) = (X ∩ Z) ∪ (Y ∩ Z).
Ainsi, (X ∪ Z) ∩ (Y ∪ Z) = (X ∩ Z) ∪ (Y ∩ Z).

d. D’après le 2b. appliqué à X et Y , on a

X ∩ Y ⊂ (X ∩ Z) ∪ (Y ∩ Z)

En prenant le complémentaire, on obtient

(X ∩ Z) ∪ (Y ∩ Z) ⊂ X ∩ Y .

En utilisant les lois de Morgan, on a

(X ∩ Z) ∩ (Y ∩ Z) ⊂ X ∪ Y.

Que l’on continue à simplifier en

(X ∪ Z) ∩ (Y ∪ Z) ⊂ X ∪ Y.

Ainsi, d’après la 2a., on a

(X ∪ Z) ∩ (Y ∪ Z) ∩ (X ∪ Y ) = (X ∪ Z) ∩ (Y ∩ Z).
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Autre solution, plus directe : on a, d’après la question précédente (X ∪Z) ∩ (Y ∪
Z) = (X ∩ Z) ∪ (Y ∩ Z). Or

(X ∩ Z) ∪ (Y ∩ Z) = (X ∪ (Y ∩ Z)) ∩ (Z ∪ (Y ∩ Z)).

Ce qui donne

(X ∩ Z) ∪ (Y ∩ Z) = (X ∪ Y ) ∩ (X ∪ Z) ∩ (Z ∪ Y ) ∩ (Z ∪ Z).

Ainsi,
(X ∩ Z) ∪ (Y ∩ Z) = (X ∪ Y ) ∩ (X ∪ Z) ∩ (Z ∪ Y ).

Or, rappelons nous que nous avions (X ∪Z)∩ (Y ∪Z) = (X ∩Z)∪ (Y ∩Z), on a
donc,

(X ∪ Z) ∩ (Y ∪ Z) = (X ∪ Y ) ∩ (X ∪ Z) ∩ (Z ∪ Y ).

Exercice 3. 1. On a A ⊂ (B ∩ C) ⊂ B, donc A ⊂ B.
De plus on a B ⊂ B ∪ C ⊂ A, donc B ⊂ A.
Par double inclusion, on a démontré que A = B.
De la même façon, en échangeant les rôles de B et C on a A = C, ainsi A = B = C.

2. On a B = B ∩ (A ∪A) = (B ∩A) ∪ (B ∩A).
Or B ∩A = A ∩ C.
De plus, B ∪A = C ∪A, donc (B ∪A) ∩A = (C ∪A) ∩A.
Ainsi, (B ∩A) ∪ (A ∩A) = (C ∩A) ∪ (A ∩A).
Mais comme A ∩A = ∅, on a B ∩A = C ∩A.
Ainsi, B = (C ∩A) ∪ (C ∩A) = C ∩ (A ∪A).
Mais comme A ∪A = E , on a C ∩ (A ∪A) = C.
On a donc démontré que B = C.

Exercice 4. 1. Soit X ∈ P(A ∩ B). On a alors X ⊂ A ∩ B. Comme A ∩ B ⊂ A, on a
X ⊂ A, et de même X ⊂ B. Ainsi, X ∈ P(A) ∩ P(B).
On a donc P(A ∩B) ⊂ P(A) ∩ P(B).
Réciproquement, si X ∈ P(A) ∩ P(B), alors X ⊂ A et X ⊂ B, donc X ⊂ A ∩ B.
Ainsi, X ∈ P(A ∩B).
On a donc P(A) ∩ P(B) ⊂ P(A ∩B).
On a donc montré par double inclusion que P(A ∩B) = P(A) ∩ P(B).

2. Soit X ∈ P(A) ∪ P(B), alors on a X ∈ P(A) ou X ∈ P(B).
Autrement dit X ⊂ A ou X ⊂ B, donc X ⊂ A ∪B. On a ainsi X ∈ P(A ∪B).
On a donc P(A) ∪ P(B) ⊂ P(A ∪B).
Cependant, si on a ni A ⊂ B, ni B ⊂ A, alors A∪B ∈ P(A∪B), mais A∪B /∈ P(A)
et A ∪B /∈ P(B).. Donc A ∪B /∈ P(A) ∩ P(B).
Ainsi on a toujours P(A) ∪ P(B) ⊂ P(A ∪ B), mais l’inverse n’est vrai que si A est
inclus dans B ou B dans A (auquel cas A ∪B = A ou B selon le cas et tout devient
trivial).
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2. Les dénombrements classiques
Exercice 5. 1. L’expérience se modélise par une 10-liste de réponses prises dans l’en-

semble {oui, non}, donc il y a 210 façons de répondre.

2. L’expérience se modélise par une 10-liste de réponses prises dans l’ensemble {oui, non,
ne se prononce pas}, donc il y a 310 façons de répondre.

Exercice 6. Considérons que les élèves sont numérotés de 1 à 48. Plusieurs façons de
voir les choses :

• On peut se dire qu’une poignée de main est représentée par une paire d’éléments

de [[1, 48]]. Auquel cas, il y en a
(

48
2

)
.

• On peut se dire qu’il y a autant de poignées de main qu’il y a de couples de [[1, 48]]
en n’oubliant pas de diviser par 2 (en comptant les couples, on compte deux fois

chaque poignée de main selon quel est le premier). On en a donc 48× 47
2 =

(
48
2

)
.

• Plus compliqué : on peut dire que l’élève 1 serre 47 mains, le deuxième en serre 46
(on enlève le premier), le troisième 45, etc. Autrement dit, formellement, l’ensemble

des poignées de mains est
47⋃

k=1
{(k, ℓ)/ℓ ∈ [[k + 1, 48]]}.

Comme il s’agit d’une union disjointe,

Card
( 47⋃

k=1
{(k, ℓ)/ℓ ∈ [[k + 1, 48]]}

)
=

47∑
k=1

Card({(k, ℓ)/ℓ ∈ [[k+1, 48]]}) =
47∑

k=1
(48−k).

En posant i = 48− k, on obtient

Card
( 47⋃

k=1
{(k, ℓ)/ℓ ∈ [[k + 1, 48]]}

)
=

47∑
i=1

i = 47× 48
2 .

Quelque soit le point de vue, il y en a
(

48
2

)
.

Exercice 7. Les déplacements sont représentés par la position des déplacements vers la
droite (les autres sont vers le haut). Autrement dit, un déplacement est caractérisé par
le sous-ensemble des positions où on se déplace vers la droite.

Il y a exactement 7 déplacements à faire dont 3 sont vers la droite. Donc il y
(

7
3

)
chemins

possibles autant que de façons de fixer le sous-ensemble constitué par les 3 déplacements
vers la droite sur les 7 au total.

Exercice 8. 1. Les podiums sont des 3−listes sans répétition (ou des arrangements)
prises parmi les 8 coureurs. Il y en a 8!

5! = 8× 7× 6 = 336.

2. Les podiums sont des 3−listes sans répétition (ou des arrangements) prises parmi les
3 coureurs Kényans. Il y en a 3! = 6.

3. Il est plus simple de comptabiliser les podiums ne contenant aucun coureur Kényan. En
effet, il s’agit des 3−listes sans répétition prises dans les coureurs non-Kényans, donc
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il y en a 5!
2! . Ainsi, comme l’ensemble des podiums est l’union disjointe des podiums

sans Kényans et de ceux avec au moins un Kényan, il y en a 8!
5!−

5!
2! = 336−60 = 276.

4. Commençons par dénombrer le nombre de composition possibles de podiums. Il s’agit
du nombre de sous-ensembles étant la réunion d’un singleton pris parmi les 3 Kényans

(il y en a
(

3
1

)
= 3) et le nombre de paires prises parmi les autres, (il y en a

(
5
2

)
= 10).

Il y a donc 30 compositions possibles.
Ensuite, chaque composition donne à 3! = 6 (le nombre de permutation) podiums.

Il y a donc
(

3
1

)
×
(

5
2

)
× 3! = 3× 10× 6 = 180.

5. On peut faire la même chose que précédemment, compter le nombre de compositions
possibles (donc cette fois-ci compter le nombre de paires de Kényans puis le nombre

de singletons des autres, soit
(

3
2

)
×
(

5
1

)
= 3 × 5 = 15). Puis on multiplie ça par le

nombre de permutation 3! = 6.

Ainsi, il y en a
(

3
2

)
×
(

5
1

)
× 3! = 3× 5× 6 = 90.

Mais plus simplement, les podiums contenant au moins un Kényans sont l’union dis-
jointe des podiums contenant 3 Kényans (il y en a 6) ceux contenant exactement 2
Kényans (ceux qu’on cherche à dénombrer) et ceux en contenant exactement 1 (il y
en 180).
Ainsi, d’après la propriété sur les cardinaux d’union disjointe, on a

276− 6− 180 = 90.

On retrouve le même résultat.

Exercice 9. 1. On peut modéliser le résultat par une liste sans répétition des 7 amis
(les fauteuils de gauche à droite), c’est-à-dire de permutations. Ainsi, il y a 7! façons
de s’asseoir.

2. Exactement autant (on part du fauteuil et on remplit vers la gauche).

3. Il faut remarquer que c’est la même chose que la question précédente, sauf qu’à chaque
table correspond 7 possibilités de placer un fauteuil. Il y a donc un rapport de 7 entre
les deux résultats. On a donc 7!

7 = 6!.

Exercice 10. 1. On modélise la situation en numérotant les personnes. Les p représentants

sont un sous-ensemble de [[1, n]], donc il y a
(
n

p

)
. Il y a ensuite

(
p

1

)
façon de choisir

le président. Au total, il y a donc
(
n

p

)(
p

1

)
façons de choisir les représentants puis le

président parmi eux.

2. Si on commence par déterminer le président, il y a
(
n

1

)
façons de le choisir. Il reste

à déterminer le choix des p − 1 représentants, soit le nombre de façons de choisir un
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sous-ensemble à p− 1 éléments pris parmi les n− 1 éléments restants. Il y en a donc(
n− 1
p− 1

)
.

Au total, il y a donc
(
n

1

)(
n− 1
p− 1

)
façons de choisir un président puis p−1 représentants.

3. Et bien comme ça fait la même chose, on a(
n

p

)(
p

1

)
=
(
n

1

)(
n− 1
p− 1

)
⇐⇒ p

(
n

p

)
= n

(
n− 1
p− 1

)
.

4. On a
p

(
n

p

)
= p

n!
p!(n− p)! = n!

(p− 1)!(n− p)!

et ce car p ⩾ 1. Ensuite, on remarque que, comme n ⩾ 1, n! = (n− 1)!n, donc

n!
(p− 1)!(n− p)! = (n− 1)!n

(p− 1)!(n− p)! = n

(
n− 1
p− 1

)
.

On a donc bien pour tous p, n entiers naturels non nuls avec p ⩽ n,

p

(
n

p

)
= n

(
n− 1
p− 1

)
.

Exercice 11. 1. Une question très simple : les tirages sont les sous-ensembles de [[1, n]]

à p éléments. Il y en a donc
(
n

p

)
.

2. Tout d’abord, remarquons que si k < p, il n’y a aucune solution.
Ensuite, deux façons de voir les choses :

• On remarque que les tirages satisfaisants cette condition sont les sous-ensembles
de [[1, k− 1]] à p− 1 éléments que l’on a réuni avec le singleton {k}. Dans ce cas,

on remarque qu’il y en a donc
(
k − 1
p− 1

)
.

• On considère l’ensemble des tirages dont le plus grand numéro est inférieur ou

égal à k. Il y en a
(
k

p

)
. Cependant, cet ensemble est la réunion disjointe des

tirages dont le plus grand numéro est inférieur ou égal à k−1 (il y en a
(
k − 1
p

)
,

en prenant l’habituelle convention de nullité si p < k−1) et de ceux donc le plus
grand numéro est égal à k, ce que l’on cherche.

Ainsi, on en a
(
k

p

)
−
(
k − 1
p

)
=
(
k − 1
p− 1

)
d’après la formule de Pascal.

Un petit commentaire : la première façon de voir les choses semble peut-être plus
simple mais est moins robuste que la seconde, vous en aurez l’illustration dès la fin
de l’exercice.
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3. L’ensemble des tirages est la réunion disjointe de l’ensemble des tirages dont le plus
grand numéro est égal à k pour k allant de p à n. Ainsi, on a

n∑
k=p

(
k − 1
p− 1

)
=
(
n

p

)
.

On appelle cette formule la formule de Pascal itérée.

4. Reprendre les deux premières questions dans le cadre d’un tirage avec remise. Il s’agit
désormais des listes de [[1, n]] à p éléments. Il y en a donc np.
Ensuite, on utilise la deuxième façon de voir les choses de la question ci-dessus. On
considère l’ensemble des tirages dont le plus grand numéro est inférieur ou égal à k.
Il y en a kp (ce sont les listes de [[1, k]] à p éléments). Cependant, cet ensemble est la
réunion disjointe des tirages dont le plus grand numéro est inférieur ou égal à k − 1
(il y en a (k − 1)p) et de ceux donc le plus grand numéro est égal à k, ce que l’on
cherche.
Ainsi, on en a kp − (k − 1)p.
La question analogue à la formule de Pascal itérée n’a que peu d’intérêt puisqu’il
s’agit tout simplement d’une somme télescopique.

Exercice 12. 1. En distinguant selon les triples, doubles ou ceux où tous les numéros
sont différents, on pourra ajouter tous les résultats puisque qu’il s’agit d’une union
disjointe.

• Il y a 6 triples.
• Un double peut-être représenté par une 2−liste sans répétition (le premier élément

donnant la valeur du double, l’autre celui du terme simple). Il y a donc 6×5 = 30
doubles.

• Les simples peuvent être représentés par des sous-ensembles à 3 éléments de

[[1, 6]]. Il y en a donc
(

6
3

)
= 6× 5× 4× 3× 2× 1

(3× 2× 1)2 = 20.

Il y a donc 6 + 30 + 20 = 56 résultats possibles. A noter (et nous reverrons ça en
probabilités) qu’ils n’ont pas du tout la même probabilité d’apparaitre !

2. a. On représente les résultats par des 3−listes de de [[1, 6]]. C’est le nombre de 3-listes
de [[1, 6]] donc 63 = 216.

b. C’est le nombre de 3-arrangements (ou listes sans répétition) de [[1, 6]], donc 6 ×
5× 4 = 120.

c. Il est nettement plus rapide de dénombrer ceux n’ayant pas de 1, il y en a 53 (des
3−listes sans répétition de [[2, 6]]), donc il y a 63 − 53 = 216 − 125 = 91 résultats
avec au moins une fois le chiffre 1.

d. Il faut remarquer qu’un tel résultat peut se représenter sous la forme d’un couple
(a, b) où a décrit le numéro du dé n’ayant pas fait 3 (donc 3 choix possibles) et b
donne la valeur de ce dé (donc 5 choix possibles). Il y a donc 3× 5 = 15 résultats
possibles.

3. Pour aller plus loin
Exercice 13. On représente un héritage par une 5−liste d’éléments de [[1, 3]] où le ième
élément de la liste désigne le numéro de l’enfant qui hérite du champ ci.
Ainsi, il y a 35 façons de distribuer ses champs.
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Il y a 3 héritages qui spolient deux enfants (tout à l’un des trois).
Etant donné un enfant, il y a 25 héritages qui le spolient (une 5−liste des deux autres
enfants). Il y a donc 25−2 héritages qui ne spolient que lui (on enlève les deux qui spolient
un autre enfant). Ainsi, il y a 25 − 2 héritages qui spolient uniquement un enfant fixé,
donc 3(25 − 2) qui spolient exactement un enfant.
Pour finir, il ne reste qu’à retirer le nombre d’héritages qui ne satisfont pas les conditions
au nombre total. Ainsi, le nombre d’héritages satisfaisants est :

35 − 3− 3(25 − 2) = 243− 3− 3(32− 2) = 150.

Exercice 14. Si on numérote les lots, cela ressemble étrangement à l’exercice sur les
champs...
En numérotant les 3 lots (et les couleurs par simplicité), une répartition est représentée
par une 6−liste d’éléments de [[1, 3]] où le ième élément de la liste désigne le numéro de
lot qui contient la boule i.
Ainsi, il y a 36 façons de distribuer les boules.
Il y a 3 répartitions qui donnent deux lots vides..
Etant donné un lot, il y a 26 répartitions qui le laissent vide (une 6−liste des deux autres
numéros de lot). Il y a donc 26−2 répartition qui ne laissent que ce lot vide (on enlève les
deux qui en laisse un autre vide). Ainsi, il y a 26−2 répartitions qui laissent uniquement
un lot fixé vide, donc 3(26 − 2) qui laissent exactement un lot vide.
Pour finir, il ne reste qu’à retirer le nombre de répartitions incorrectes qui ne satisfont
pas les conditions au nombre total. Ainsi, le nombre de répartitions satisfaisantes est :
36 − 3− 3(26 − 2).
Cependant, les lots ne sont en réalité pas numérotés. Il faut donc diviser par le nombre
de permutations que l’on peut faire entre ces lots.
Le nombre de répartitions acceptables est donc :

36 − 3− 3(26 − 2)
3! = 35 − 1− (26 − 2)

2 = 243− 1− (64− 2)
2 = 90.

Exercice 15. 1. Si A est fixé avec Card(A) = k, il y a 2n−k façons de choisir un B

satisfaisant (le nombre de sous-ensembles de E \ A). Il y a
(
n

k

)
sous-ensembles de

E à k éléments, donc
(
n

k

)
2n−k couples satisfaisants les conditions dont le premier

élément a k éléments.
Par union disjointe en distinguant selon le cardinal du premier élément du couple, on
trouve

n∑
k=0

(
n

k

)
2n−k = (1 + 2)n = 3n.

2. Soit on procède de la même façon : Si A est fixé avec Card(A) = k, il y a 2k façons
de choisir un B satisfaisant (le nombre de sous-ensembles de A que l’on réunit avec

A). Il y a
(
n

k

)
sous-ensembles de E à k éléments, donc

(
n

k

)
2k couples satisfaisants

les conditions dont le premier élément a k éléments.
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Par union disjointe en distinguant selon le cardinal du premier élément du couple, on
trouve

n∑
k=0

(
n

k

)
2k = (2 + 1)n = 3n.

L’autre solution est de remarquer que les couples (A,B) sont tels que A∪B = E sont
les couples tels que A ∪B = ∅, autrement dit se sont des couples tels que A ∩B = ∅.
Il y a 3n façons de choisir le couple (A,B) d’après la question précédente.
On trouve 3n couples.

3. On peut essayer de faire la même chose, fixer A, puis réfléchir à la façon d’obtenir
(B,C) qui satisfont le problème, etc. C’est un peu long et il y a beaucoup de formules
du binôme. On va essayer de trouver une autre solution.
Remarquons qu’une telle répartition est définie par l’appartenance de chaque élément
de E, à A, B, C, A∪B, A∪C, B ∪C ou A∪B ∪C. Ainsi, on peut associer à chaque
élément de E un numéro entre 1 et 7 pour désigner à quel(s) ensemble(s) il appartient
(l’un des 7 cas évoqués).
On peut donc modéliser un tel triplet par une n-liste d’éléments de [[1, 7]]. Il y a donc
7n triplets satisfaisants.

Exercice 16. 1. On va représenter ça par une liste dont le premier élément donne le
numéro de l’urne accueillant la première boule, le deuxième celui de la deuxième, et
le troisième celui de la troisième.
On a (1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2).

2. Une répartition est caractérisée par la r−liste des éléments de [[1, n]] où le ième terme
donne le numéro de l’urne où se situe la ième boule.

3. Nous allons représenter chaque possibilité à l’aide de ⃝ et |.

• On commence par placer autant de ⃝ qu’il y de boules dans la première urne.
• On place un |.
• On place autant de ⃝ qu’il y de boules dans la deuxième urne 2.
• On place un |.
• On recommence jusqu’à placer les ⃝ correspondant au nombre de boules dans

l’urne n.

Une répartition est donc représentée par un ≪ mot ≫ de r ⃝ et de n − 1 |. Il y en a
autant que de possibilités pour choisir le sous-ensemble de [[1, n+p−1]] qui correspond

aux emplacements des r ◦, donc
(
n+ r − 1

r

)
=
(
n+ r − 1
n− 1

)
.

4. Toujours dans le cas où les r boules sont indiscernables, combien y a-t-il de répartition
sans urne vide ? Si r < n, c’est impossible.
Dans le cas contraire, une fois que chaque urne contient une boule, il reste r−n boules à

placer dans les n urnes... on retrouve le problème précédent, donc
(
n+ (r − n)− 1

r − n

)
=(

r − 1
r − n

)
=
(
r − 1
n− 1

)
possibilités.
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Exercice 17. 1. Il y en a autant que de façons de choisir l’élément invariant ou autant

que de choisir la paire qui sera échangée, donc
(

3
2

)
= 3.

2. 1 peut être envoyé sur 2 ou 3, et l’image de 1 ne peut pas être envoyée sur elle-même
(elle serait invariante) ou sur 1 (l’autre serait invariant). Ainsi, il n’y en a que 2.

3. Il n’y en a pas : on peut remarquer qu’il y a 6 permutations, dont 5 ont déjà été
évoquées plus l’identité.
Ou alors on peut remarquer que si deux éléments sont invariants, alors le troisième
ne peut pas avoir d’autre image que lui-même.

Exercice 18. 1. Une question faussement compliquée. Si on considère l’application

(x1, x2, x3, . . . , xp) 7−→ (x1, x1 + x2, x1 + x2 + x3, . . . , x1 + . . .+ xp)

elle transforme un p−uplet qui satisfait la première condition en un p−uplet qui
satisfait la deuxième.
De plus, elle est bijective : sa réciproque est évidemment

(y1, y2, y3, . . . , yp) 7−→ (y1, y2 − y1, y3 − y2, . . . , yp − yp−1).

Il ya donc autant de p−uplet de chaque sorte.

2. Ça, c’est facile : a(0, p) = 1 car le seul convenable est (0, 0, . . . , 0) et a(n, 1) = 1 car
le seul est (n).

3. Les p−uplets qui satisfont à la contraintes se divisent en deux (union disjointe) :

• ceux donc le dernier terme est non nul : il y a a(n− p, p) puisqu’on peut retirer
1 à la dernière composante pour arriver à un total de n− p ;

• et les autres dont le dernier terme est nul : ils sont au nombre de a(n, p − 1)
puisque on arrive à n en seulement p− 1 composantes.

Ainsi, on a bien a(n, p) = a(n− p, p) + a(n, p− 1).

5 Nombres complexes
1. Exercices de base

Exercice 1. On rappellera que si on a z = ρeiθ avec ρ > 0, alors le module de z est ρ
et un de ses arguments est θ.

1. On a 3
2 i = 3

2e
iπ/2.

2. −3 = 3eiπ.

3. −1
2 +
√

3
2 i = e2iπ/3.

4. −2i = 2eiπeiπ/2 = 2e3iπ/2 = 2e−iπ/2.

5. 1 + i

1− i =
√

2
(√

2
2 +

√
2

2 i
)

√
2
(√

2
2 −

√
2

2 i
) = eiπ/4

e−iπ/4 = eiπ/2.
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6.
(

i

1 + i

)4
=

 eiπ/2
√

2
(√

2
2 +

√
2

2 i
)
4

= 1
4

(
eiπ/2

eiπ/4

)4

= eiπ

4 = −1
4.

7. −3(cos(θ) + i sin(θ)) = 3eiπeiθ = 3ei(θ+π).

8. 2(cos(2θ)− i sin(2θ)) = 2e−2iθ.

Exercice 2. Résoudre les équations suivantes d’inconnues x ∈ R :

1. La première étape est de trouver une équation équivalente plus simple. On va donc
chercher r, φ tels que, ∀x ∈ R,

cos(x) + sin(x) = r cos(x+ φ).

En utilisant les techniques présentées en cours, (ici on remarque que cos(x) + sin(x)
est la partie réelle de (1− i)eix =

√
2ei(x−π

4 )) on trouve

∀x ∈ R, cos(x) + sin(x) =
√

2 cos
(
x− π

4

)
.

L’équation de départ est donc équivalente à

√
2 cos

(
x− π

4

)
= 1

Autrement dit cos
(
x− π

4

)
=
√

2
2 .

Cette équation est équivalente à cos
(
x− π

4
)

= cos
(
π

4

)
.

Elle est donc équivalente à ce qu’une des équations suivante soit vraie
x− π

4 = π

4 + 2kπ, k ∈ Z,

x− π

4 = −π4 + 2kπ, k ∈ Z

Ce qui se reformule en 
x = π

2 + 2kπ, k ∈ Z,

x = 2kπ, k ∈ Z

L’ensemble solution est donc
{
π

2 + 2kπ, 2kπ/k ∈ Z
}

.

2. La première étape est de trouver une équation équivalente plus simple. On va donc
chercher r, φ tels que, ∀x ∈ R,

cos(x)− sin(x) = r cos(x+ φ).

En utilisant les techniques présentées en cours (ici on remarque que cos(x) − sin(x)
est la partie réelle de (1 + i)eix =

√
2ei(x+ π

4 )), on trouve
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∀x ∈ R, cos(x)− sin(x) =
√

2 cos
(
x+ π

4

)
.

L’équation de départ est donc équivalente à

√
2 cos

(
x+ π

4

)
=
√

6
2 .

Autrement dit cos
(
x+ π

4

)
=
√

3
2 .

Cette équation est équivalente à cos
(
x+ π

4

)
= cos

(
π

6

)
.

Elle est donc équivalente à ce qu’une des équations suivante soit vraie
x+ π

4 = π

6 + 2kπ, k ∈ Z,

x+ π

4 = −π6 + 2kπ, k ∈ Z

Ce qui se reformule en 
x = − π

12 + 2kπ, k ∈ Z,

x = −5π
12 + 2kπ, k ∈ Z

L’ensemble solution est donc
{
−5π

12 + 2kπ,− π

12 + 2kπ/k ∈ Z
}

.

Exercice 3. 1. On a
∣∣∣∣1 + 4i
2− 2i

∣∣∣∣ = |1 + 4i|
|2− 2i| =

√
17
8 =

√
34
4 .

2. En multipliant par la quantité conjuguée et en simplifiant, on trouve

1− i
√

3
−1− i

√
3

= (1− i
√

3)(−1 + i
√

3)
1 + 3 = 2 + 2i

√
3

4 = 1
2 + i

√
3

2 .

3. On a
1− i

1 + i
√

3
= (1− i)(1− i

√
3)

1 + 3 = (1−
√

3) + (−1−
√

3)i
4 .

4. On a
∣∣∣∣∣
(√

2
2 − i

√
2

2

)
(1− i)

∣∣∣∣∣ =
∣∣∣∣∣
√

2
2 − i

√
2

2

∣∣∣∣∣ |1− i| = √2.

5. On a
1− i

√
3

−1− i
√

3
=

2
(

1
2 − i

√
3

2

)
2
(
−1

2 −
i
√

3
2

) = e−iπ/3

e4iπ/3 = e−5iπ/3 = eiπ/3

donc le module est 1 et un argument est π3 .

A noter que c’est aussi très efficace pour trouver l’expression algébrique, presque plus
que la quantité conjuguée.

55 / 359



6. On a
√

2− i
√

2
1− i

√
3

= 2e−iπ/4

2e−iπ/3 = eiπ/12 donc module 1 et argument π

12.

7. On a √
2 + i

√
2

3 + i
√

3
= 2eiπ/4

2
√

3
(√

3
2 + 1

2 i
) =

√
3

3
eiπ/4

eiπ/6 =
√

3
3 eiπ/12

donc module
√

3
3 et un argument est π

12
Exercice 4. 1. L’astuce, comme dans tout l’exercice, est de factoriser par l’angle moitié.

On a 1 + eiθ = eiθ/2
(
e−iθ/2 + eiθ/2

)
= 2 cos(θ/2)eiθ/2.

Comme θ ∈ [0, π[, θ2 ∈
[
0, π2

[
, donc 2 cos(θ/2) ⩾ 0.

Ainsi, on découvre que 1 + eiθ a pour module 2 cos(θ/2) et pour argument θ2.

2. On a 1− eiθ = eiθ/2
(
e−iθ/2 − eiθ/2

)
= −2i sin(θ/2)eiθ/2 = 2 sin(θ/2)ei(θ−π)/2.

Comme θ ∈ [0, π[, θ2 ∈
[
0, π2

[
, donc 2 sin(θ/2) ⩾ 0.

Ainsi, on découvre que 1− eiθ a pour module 2 sin(θ/2) et pour argument θ − π2 .

3. Le fait que θ−φ /∈ {2kπ/k ∈ Z} implique la non-nullité du dénominateur. Procédons.
On a

eiθ + eiφ

eiθ − eiφ
= ei(θ+φ)/2

ei(θ+φ)/2
ei(θ−φ)/2 + e−i(θ−φ)/2

ei(θ−φ)/2 − e−i(θ−φ)/2 .

En simplifiant et en utilisant les formules d’Euler, on a

eiθ + eiφ

eiθ − eiφ
= 2 cos((θ − φ)/2)

2i sin((θ − φ)/2) .

Autrement dit,
eiθ + eiφ

eiθ − eiφ
= −icos((θ − φ)/2)

sin((θ − φ)/2) .

Il s’agit donc d’un imaginaire pur dont la partie imaginaire vaut

−cos((θ − φ)/2)
sin((θ − φ)/2) = cos((φ− θ)/2)

sin((φ− θ)/2) .

Exercice 5. eeiθ = ecos(θ)+i sin(θ) = ecos(θ)ei sin(θ). Donc le module est ecos(θ) et un argu-
ment est sin(θ).

Exercice 6. Pour toutes les questions, on utilise les formules d’Euler, on développe
avec le binôme de Newton, puis on regroupe les termes ensemble de façon à réutiliser les
formes d’Euler.
On peut s’en sortir en utilisant des formules de trigonométrie si on n’a pas peur de
méthodes laborieuses.
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1. On a, d’après la formule d’Euler,

A(x) =
(
eix + e−ix

2

)4

= e4ix + 4e3ixe−ix + 6e2ixe−2ix + 4eixe−3ix + e−4ix

16

= e4ix + 4e2ix + 6 + 4e−2ix + e−4ix

16

= e4ix + e−4ix + 4(e2ix + e−2ix) + 6
16

= 2 cos(4x) + 8 cos(2x) + 6
16 en utilisant à nouveau la formule d’Euler

= cos(4x) + 4 cos(2x) + 3
8

2. De la même façon, en accélérant un peu

B(x) =
(
eix + e−ix

2

)3(
eix − e−ix

2i

)2

= (e3ix + 3eix + 3e−ix + e−3ix)(e2ix − 2 + e−2ix)
8× (−4)

= −e
5ix + e3ix − 2eix − 2e−ix + e−3ix + e−5ix

32

= −2 cos(5x) + 2 cos(3x)− 4 cos(x)
32 en utilisant à nouveau la formule d’Euler

= − cos(5x)− cos(3x) + 2 cos(x)
16 .

3. Encore une fois, on trouve

C(x) =
(
eix − e−ix

2i

)5

= e5ix − 5e4ixe−ix + 10e3ixe−2ix − 10e2ixe−3ix + 5eixe−4ix − e−5ix

32i

= e5ix − 5e3ix + 10eix − 10e−ix + 5e−3ix − e−5ix

32i

= 2i sin(5x)− 10i sin(3x) + 20i sin(x)
32i en utilisant à nouveau la formule d’Euler

= sin(5x)− 5 sin(3x) + 10 sin(x)
16

Contre toute attente, on trouve C(x) = sin(5x)− 5 sin(3x) + 10 sin(x)
16 .

On a donc sin(5x)−5 sin(3x)+10 sin(x) = 0 si et seulement si 16C(x) = 0, autrement
dit sin5(x) = 0.
L’équation est donc simplement équivalente à sin(x) = 0, donc l’ensemble solution est
{kπ/k ∈ Z}.
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Exercice 7. C’est exactement le contraire de l’exercice précédent. On peut soit re-
marquer que A(x) = Re(e4ix) et remarquer que e4ix = (cos(x) + i sin(x))4 (Moivre),
développer et garder la partie réelle.

1. On a

A(x) = Re(e4ix)

Or

e4ix = (eix)4

= (cos(x) + i sin(x))4

= cos4(x) + 4i cos3(x) sin(x)− 6 cos2(x) sin2(x)− 4i cos(x) sin3(x) + sin4(x).

Ainsi,

A(x) = cos4(x)− 6 cos2(x) sin2(x) + sin4(x)

= cos4(x)− 6 cos2(x)(1− cos2(x)) + (1− cos2(x))2

= cos4(x)− 6 cos2(x) + 6 cos4(x) + 1− 2 cos2(x) + cos4(x)

= 8 cos4(x)− 8 cos2(x) + 1

2. On a

cos(3x) = Re(e3ix)

= Re((eix)3)

= Re((cos(x) + i sin(x))3)

= Re(cos3(x) + 3i cos2(x) sin(x)− 3 cos(x) sin2(x)− i sin3(x))

= cos3(x)− 3 cos(x) sin2(x)

= cos3(x)− 3 cos(x)(1− cos2(x))

= 4 cos3(x)− 3 cos(x).

Ainsi,

B(x) = cos(3x) sin(x)

= (4 cos3(x)− 3 cos(x)) sin(x)

= 4 cos3(x) sin(x)− 3 cos(x) sin(x).
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3. On a

C(x) = Im(e5ix)

Or

e5ix = (eix)5

= (cos(x) + i sin(x))5

= cos5(x) + 5i cos4(x) sin(x)− 10 cos3(x) sin2(x)− 10i cos2(x) sin3(x) + 5 cos(x) sin4(x) + i sin5(x).

Ainsi,

C(x) = 5 cos4(x) sin(x)− 10 cos2(x) sin3(x) + sin5(x)

= 5(1− sin2(x))2 sin(x)− 10(1− sin2(x)) sin3(x) + sin5(x)

= 6 sin5(x)− 20 sin3(x) + 5 sin(x).

On trouve C(x) = 6 sin5(x)− 20 sin3(x) + 5 sin(x).

Exercice 8. Il faut passer en notation polaire pour calculer facilement la puissance !
On a

(
√

3− i)17 =
[
2
(√

3
2 − i

1
2

)]17

= 217
(
e−iπ/6

)17

= 217e−17iπ/6

= 217e−5iπ/6

= 217
(
−
√

3
2 − i12

)

= −216√3− i216

La partie réelle est −216√3 et la partie imaginaire −216.
De la même façon, on a

(1− i
√

3)−23 =
[
2
(

1
2 − i

√
3

2

)]−23

= 2−23
(
e−iπ/3

)−23

= 2−23e23iπ/3

= 2−23e−iπ/3

= 2−23
(

1
2 − i

√
3

2

)

= 2−24 − i
√

3× 2−24
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La partie réelle est 2−24 et la partie imaginaire −i
√

32−24.
Et le dernier, on a (

1− i
√

3√
2 + i

√
2

)24

=
(

2e−iπ/3

2eiπ/4

)24

=
(
e−7iπ/12

)24

= e−14iπ

= 1.

Ai-je vraiment besoin de préciser partie réelle et imaginaire ?

2. Equations du second degré
Exercice 9. Je ne détaille la rédaction que d’un, vous y rapporter pour les autres.

1. Deux solutions, 3i et −3i.

2. Notons ∆ le discriminant associé. On a ∆ = (−1)2 − 4 = −3 = (i
√

3)2.

On a donc deux solutions conjuguées, z1 = 1− i
√

3
2 et z2 = 1 + i

√
3

2

3. Deux solutions, −1− i
√

15
2 et −1 + i

√
15

2 .

4. Deux solutions, 1− i et 1 + i.

5. Deux solutions, −
√

3− i
2 et −

√
3 + i

2 .

6. Posons Z = z2. On tombe sur l’équation Z2 + Z + 1 = 0. Son discriminant est

−3 = (i
√

3)2. Ainsi, on trouve deux solutions Z1 = −1− i
√

3
2 = e4iπ/3 et Z2 =

−1 + i
√

3
2 = e2iπ/3.

On a donc deux équations possibles,

z2 = e4iπ/3 et z2 = e2iπ/3.

Cherchons les solutions sous forme polaire (0 n’est pas solution), donc z = ρeiθ.
On a alors

ρ2e2iθ = e4iπ/3 et ρ2e2iθ = e2iπ/3.

Ce qui donne pour la première
ρ2 = 1

2θ = 4π
3 + 2kπ, k ∈ Z
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Ce qui est équivalent à, comme ρ > 0,
ρ = 1

θ = 2π
3 + kπ, k ∈ Z

On trouve deux solutions distinctes, e2iπ/3, −e2iπ/3 = e−iπ/3

Pour la deuxième, c’est le même principe


ρ2 = 1

2θ = 2π
3 + 2kπ, k ∈ Z

Ce qui est équivalent à, comme ρ > 0,
ρ = 1

θ = π

3 + kπ, k ∈ Z

On trouve deux solutions distinctes, eiπ/3, −eiπ/3 = e−2iπ/3.
On a exactement 4 solutions pour z, e2iπ/3, −e2iπ/3 = e−iπ/3, eiπ/3, −eiπ/3 = e−2iπ/3.

3. Equations diverses
Exercice 10. 1. Ça marche comme d’habitude, sauf que le discriminant est ∆ = −4 +

4(2− 2i) = −12 + 16i = (2 + 4i)2. Ainsi, on peut trouver les deux racines : 1 + 3i et
−1− i.

2. N’oublions pas que z3 − i = z3 − (−i)3 = (z + i)(z2 − iz − 1).
Donc l’équation devient (z + i)(z2 − iz − 1) = 6(z + i), autrement dit

(z + i)(z2 − iz − 7) = 0.

Donc −i est solution mais aussi (à détailler) i− 3
√

3
2 et i+ 3

√
3

2 .

3. Le plus urgent, mettre le membre de gauche sous forme polaire.

On a 1 − i =
√

2e− iπ
4 et

√
3 − i = 2e− iπ

6 , donc 1− i√
3− i

=
√

2
2 e−

iπ
12 . L’équation est

équivalente à :
z8 = 2−1/2e−iπ/12.

Comme 0 n’est pas solution, on peut chercher z sous la forme ρeiθ, avec ρ > 0. On
trouve que c’est équivalent à

ρ8 = 2−1/2

8θ = − π

12 + 2kπ, k ∈ Z
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Ce qui est équivalent à, comme ρ > 0,
ρ = 2−1/16

θ = − π

96 + k
π

4 , k ∈ Z

On trouve donc 8 solutions, en ne gardant que les expressions dont l’argument est
dans [0, 2π[ (les autres ne sont que des expressions de celles dont l’argument est dans
[0, 2π[).

{e
π
96 +k π

4 /k ∈ [[1; 8]]}.

4. On pose Z = z2. Z est solution de

Z2 − (3− 2i)Z + (8 + 6i) = 0.

Le discriminant de ce trinôme est ∆ = (3− 2i)2 − 4(8 + 6i) = −27− 36i = (3− 6i)2.

On trouve donc deux solutions pour Z : 3− 2i− (3− 6i)
2 = 2i et 3− 2i+ (3− 6i)

2 =
3− 4i
On a alors z2 = 2i ou z2 = 3− 4i.

Or, si on se souvient que 2i =
(√

2eiπ/4
)2

= (1 + i)2, on trouve que la première
équation donne deux racines, 1 + i et −1− i.
Quant à la seconde, grâce à l’indication donnée, on a deux solution 2− i et −2 + i.

5. Posons z = a+ ib où a et b sont deux réels.
L’équation devient

5(a+ ib)− 2
√
a2 + b2 = 5 + 20i.

Soit
−2a2 − 2b2 + 5a+ 5ib = 5 + 20i.

En égalisant parties réelle et imaginaire, on obtient le système équivalent suivant :{
5a− 2

√
a2 + b2 = 5

5b = 20

Soit, en injectant la valeur de b obtenue,{
5a− 2

√
a2 + 16 = 5

b = 4

Intéressons-nous maintenant à la première équation.
Elle est équivalente à

2
√
a2 + 16 = 5(a− 1).

Ce qui implique
4a2 + 64 = 25(a2 − 2a+ 1).
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Soit
21a2 − 50a− 39 = 0.

Le discriminant est

∆ = 502 − 4× 21× (−39) = 5776 = 762.

Ainsi, on a deux solutions envisageables 50− 76
42 = −13

21 et 50 + 76
42 = 3.

On peut vérifier, que 3 fonctionne bien, mais −13
21 non car, pour avoir 2

√
a2 + 16 =

5(a− 1), on doit avoir a > 1.
Ainsi, il n’y a qu’une solution au problème 3 + 4i.

Exercice 11. En prenant le module de cette équation, on trouve |z|9 = 1
|z|3

, soit

|z|12 = 1. Comme |z| est un réel positif, la seule possibilité est |z| = 1. Ainsi, il existe
θ ∈ R tel que z = eiθ.

L’équation devient e9iθ = 1
e−3iθ

, soit e6iθ = 1.

Ainsi, il existe k ∈ Z tel que 6θ = 2kπ, ce qui revient à θ = k
π

3 , pour k ∈ Z.

Les solutions sont
{
e

ikπ
3 /k ∈ [[0, 5]]

}
.

Exercice 12. Remarquons tout d’abord que −1 + i

4 =
√

2−3
e3iπ/4.

Ainsi, on cherche z = ρeiθ tel que z3 =
√

2−3
e3iπ/4.

C’est équivalent au système : 
ρ3 =

√
2−3

3θ = 3π
4 + 2kπ, k ∈ Z

Ce qui est équivalent à, comme ρ > 0,
ρ = 1√

2
=
√

2
2

θ = 3π
4 + k

2π
3 , k ∈ Z

On a donc trois solutions,
√

2
2 eiπ/4,

√
2

2 e11iπ/12, et
√

2
2 e19iπ/12.

Quand on les élèves a la puissance 4, on trouve 1
4e

iπ = −1
4 ,

1
4e

11iπ/3 = 1
4e

5iπ/3, et
1
4e

19iπ/3 = 1
4e

iπ/3.
Seule la première a une puissance quatrième réelle.

Exercice 13. On trouve presque une identité remarquable. En fait, si on considère :
[(z−1)−(z+1)][(z−1)3 +(z−1)2(z+1)+(z−1)(z+1)2 +(z+1)3] = (z−1)4−(z+1)4.

L’équation de départ est donc équivalente à (z − 1)4 − (z + 1)4

2 = 0.

Comme −1 n’est pas solution, c’est équivalent à
(
z − 1
z + 1

)4
= 1.

On pose Z = z − 1
z + 1. On trouve 4 solutions pour Z : 1,−1, i,−i. On cherche ensuite les

solutions pour z.
1 n’était pas une solution possible pour Z, , il en reste donc 3 pour z : 0, i et −i.
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Exercice 14. 1 n’est pas solution. Pour z ̸= 1, en ajoutant 1 + zn à chaque membre et
en utilisant une formule bien connue, on voit que cette équation est équivalente à

21− zn+1

1− z = 1 + zn.

On arrive donc à
2(1− zn+1) = (1 + zn)(1− z),

autrement dit
2− 2zn+1 = 1− z + zn − zn+1.

On a donc
zn+1 + zn − z − 1 = 0.

Soit
zn(z + 1)− (z + 1) = 0.

Soit enfin
(1 + z)(zn − 1) = 0

On arrange ça en (1 + z)(1− zn) = 0. On trouve donc −1 solution ainsi que les solutions
de zn = 1.
En les cherchant sous la forme eiθ (car le module de z ne peut valoir que 1), on trouve
les e2ikπ/n pour k ∈ [[1, n− 1]] (il faut retirer 1 car il ne peut pas être solution).
Ainsi, l’ensemble solution est

{
e2ikπ/n/k ∈ [[1, n− 1]]

}
∪ {1}.

Exercice 15. 0 est solution. Cherchons les solutions non nulles. La première étape est
de simplifier cette écriture. On remarque que

z7 +
(

7
1

)
z6 +

(
7
2

)
z5 +

(
7
3

)
z4 +

(
7
4

)
z3 +

(
7
5

)
z2 + 7z + 1 = (z + 1)7

et
z7 −

(
7
1

)
z6 +

(
7
2

)
z5 −

(
7
3

)
z4 +

(
7
4

)
z3 −

(
7
5

)
z2 + 7z − 1 = (z − 1)7.

On a donc z7 +
(

7
2

)
z5 +

(
7
4

)
z3 + 7z = (z + 1)7 − (z − 1)7

2 .

L’équation de départ devient donc (z + 1)7 + (z − 1)7 = 0
On remarque que 1 n’est pas solution, on en déduit alors qu’on revient à(

z + 1
z − 1

)7
= −1 = eiπ.

En cherchant les solutions sous forme de z + 1
z − 1 = ρeiθ, on trouve rapidement que

z + 1
z − 1 = e(2k+1)iπ/7, k ∈ [[0, 6]]

(à détailler, mais à ce moment du chapitre, vous devez avoir l’habitude désormais).
L’équation

z + 1
z − 1 = e(2k+1)π/7,

est équivalente à
z + 1 = e(2k+1)π/7(z − 1),
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soit
(1− e(2k+1)π/7)z = −(e(2k+1)π/7 + 1).

On trouve alors, en factorisant par l’angle moitié,

z = 1 + e(2k+1)iπ/7

e(2k+1)iπ/7 − 1
= −icos((2k + 1)π/14)

sin((2k + 1)π/14)

pour k ∈ [[0, 6]].

4. Manipulations diverses
Exercice 16. 1. On a

(1 + i)n − (1− i)n =
(√

2eiπ/4
)n
−
(√

2e−iπ/4
)n

=
√

2n
(
einπ/4 − e−inπ/4

)
=
√

2n2i sin
(
nπ

4

)
=
√

2n+2
i sin

(
nπ

4

)
.

2. Comme on veut, soit par récurrence (en n’ayant pas peur de la trigo ou en utilisant le
résultat de la question précédente), soit en se rappelant du cours sur les suites suivant
une relation de récurrence linéaire d’ordre 2. Essayons la deuxième méthode.
On résout l’équation caractéristique associée X2 − 2X + 2 = 0. Le discriminant est
−4 = (2i)2. On a donc deux solutions,

2− 2i
2 = 1− i et 1 + i.

Ainsi, il existe λ et µ tels que, pour tout n ∈ N,

un = λ(1− i)n + µ(1 + i)n.

En faisant n = 0, on obtient λ+ µ = 0 puis en faisant n = 1, on récupère

λ(1− i) + µ(1 + i) = 2i

soit
−λ+ µ = 2

.
En ajoutant les deux équations, on obtient 2µ = 2, soit µ = 1 puis λ = −1.
Ainsi, on a, ∀n ∈ N, un = (1 + i)n − (1− i)n.

D’après la question précédente, il s’agit de un =
√

2n+2
i sin

(
nπ

4

)
.

Exercice 17. On prend a = eiθ et b = eiφ avec θ /∈ {φ+ 2kπ/k ∈ Z}. On a

a+ b

a− b
= eiθ + eiφ

eiθ − eiφ
.
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Le fait que θ − φ /∈ {2kπ/k ∈ Z} implique la non-nullité du dénominateur. Procédons.
On a

eiθ + eiφ

eiθ − eiφ
= ei(θ+φ)/2

ei(θ+φ)/2 ·
ei(θ−φ)/2 + e−i(θ−φ)/2

ei(θ−φ)/2 − e−i(θ−φ)/2 .

En simplifiant et en utilisant les formules d’Euler, on a

eiθ + eiφ

eiθ − eiφ
= 2 cos((θ − φ)/2)

2i sin((θ − φ)/2) .

Autrement dit,
eiθ + eiφ

eiθ − eiφ
= −icos((θ − φ)/2)

sin((θ − φ)/2) .

Il s’agit donc d’un imaginaire pur dont la partie imaginaire vaut cos((φ− θ)/2)
sin((φ− θ)/2) .

Exercice 18. On prend a et b sous forme polaire, donc il existe θ et φ deux réels tels
que a = eiθ et b = eiφ avec θ + φ /∈ {π + 2kπ/k ∈ Z}.
On a alors

a+ b

1 + ab
= eiθ + eiφ

1 + ei(θ+φ)

= ei(θ+φ)/2

ei(θ+φ)/2 ·
ei(θ−φ)/2 + e−i(θ−φ)/2

e−i(θ+φ)/2 + ei(θ+φ)/2

=
2 cos

(
θ−φ

2

)
2 cos

(
θ+φ

2

)
=

cos
(

θ−φ
2

)
cos

(
θ+φ

2

) .
C’est bien un réel.

Exercice 19. C’est l’inégalité triangulaire appliquée à

|a| =
∣∣∣∣a+ b

2 + a− b
2

∣∣∣∣
et

|b| =
∣∣∣∣a+ b

2 − a− b
2

∣∣∣∣ .
Le cas d’égalité revient au cas d’égalité de l’inégalité triangulaire, à savoir que a + b et
a − b doivent être liés par une relation de proportionnalité à coefficient positif. Ainsi,
dans ce cas, il existe λ > 0 tel que a+ b = λ(a− b) Soit (1− λ)a = (−1− λ)b, ou encore
b = λ− 1

1 + λ
a.

Exercice 20. Comme |z| ̸= 1, on a z ̸= 1, ainsi,

1− zn+1

1− z =
n∑

k=0
zk.

En appliquant le module et en utilisant l’inégalité triangulaire, on a∣∣∣∣∣1− zn+1

1− z

∣∣∣∣∣ =
∣∣∣∣∣

n∑
k=0

zk

∣∣∣∣∣ ⩽
n∑

k=0
|z|k .
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De plus, comme |z| ̸= 1, on a
n∑

k=0
|z|k = 1− |z|n+1

1− |z| .

On a donc bien, pour tout z ∈ C, |z| ̸= 1,∣∣∣∣∣1− zn+1

1− z

∣∣∣∣∣ ⩽ 1− |z|n+1

1− |z| .

Exercice 21. 1. On a(√
2

2 + i

√
2

2

)32

=
(
eiπ/4

)32
= e32iπ/4 = e8iπ = 1.

2. On a ( 1− i
1 + i

√
3

)24
=
(√

2e−iπ/4

2eiπ/3

)24

= 2−12
(
e−7iπ/12

)24
= e−14iπ

4096 = 1
4096 .

Exercice 22. Prendre z sous forme eiθ avec θ ∈]− π, π] et remarquer que

|1 + z| =
∣∣∣1 + eiθ

∣∣∣ =
∣∣∣eiθ/2

∣∣∣ ∣∣∣e−iθ/2 + eiθ/2
∣∣∣ = 2 |cos(θ/2)| .

Comme θ
2 ∈
]
− π

2 ,
π
2
]
, cos

(
θ

2

)
⩾ 0, donc

|1 + z| = 2 cos
(
θ

2

)
.

De la même façon, on a∣∣∣1 + z2
∣∣∣ =

∣∣∣1 + e2iθ
∣∣∣ =

∣∣∣eiθ
∣∣∣ ∣∣∣e−iθ + eiθ

∣∣∣ = 2 |cos(θ)| .

Il suffit alors de remarquer que si θ ∈
[
−2π

3 ,
2π
3

]
, alors θ2 ∈

[
−π3 ,

π

3

]
, donc cos

(
θ

2

)
⩾

1
2,

et sinon, θ ∈
]
− π,−2π

3

]
ou θ ∈

]2π
3 ;π

]
et alors cos(θ) < −1

2, donc 2 |cos(θ)| ⩾ 1.

Exercice 23. On remarque que, comme ab ̸= 1,∣∣∣∣ a− b1− ab

∣∣∣∣ = 1⇐⇒ |a− b|2 = |1− ab|2 .

Ou encore ∣∣∣∣ a− b1− ab

∣∣∣∣ = 1⇐⇒ (a− b)(a− b) = (1− ab)(1− ab)

⇐⇒ (a− b)(a− b) = (1− ab)(1− ab)

⇐⇒ |a|2 − ab− ab+ |b|2 = 1− ab− ab+ |ab|2

⇐⇒ |a|2 + |b|2 = 1 + |a|2 |b|2

⇐⇒ |a|2 (1− |b|2) + |b|2 − 1 = 0

⇐⇒ (1− |b|2)(|a|2 − 1) = 0

⇐⇒ (1− |b|)(1 + |b|)(|a| − 1)(|a|+ 1) = 0.
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Cette quantité est nulle si et seulement si |a| = 1 ou |b| = 1.

Exercice 24. 1. Si x ∈ {2kπ/k ∈ Z}, on a S = 2n+ 1. Si x /∈ {2kπ/k ∈ Z}, on trouve

S = e−inx
2n∑

ℓ=0
eiℓx.

Donc S = e−inx 1− e(2n+1)ix

1− eix
.

On factorise ensuite par l’angle moitié.

S = e−inx e
(2n+1)ix/2

eix/2
−2i sin((2n+ 1)x/2)
−2i sin(x/2) = sin((2n+ 1)x/2)

sin(x/2) .

2. Remarquons que C1 + iS1 =
n∑

k=0
ei(a+kb) = eia

n∑
k=0

(
eib
)k
.

Si b ∈ {2kπ/k ∈ Z, C1 = (n+ 1) cos(a) et S1 = (n+ 1) sin(a). Sinon,

C1 + iS1 = eia 1− ei(n+1)b

1− eib
= ei(a+nb/2)−2i sin((n+ 1)b/2)

−2i sin(b/2) .

En simplifiant, on trouve C1 + iS1 = ei(a+nb/2) sin((n+ 1)b/2)
sin(b/2) .

Ainsi,

C1 = cos
(
a+ nb

2

) sin
((n+ 1)b

2

)
sin
(
b

2

)
et

S1 = sin
(
a+ nb

2

) sin
((n+ 1)b

2

)
sin
(
b

2

) .

3. C’est le même principe, on considère C2 + iS2, on reconnait une formule (du binôme
cette fois-ci) :

C2 + iS2 =
n∑

k=0

(
n

k

)
eiak = (1 + eia)n.

En factorisant par l’angle moitié, on a

C2 + iS2 = eina/2
[
2 cos

(
a

2

)]n

= 2n cosn
(
a

2

)
eina/2.

On obtient
C2 = 2n cos

(
na

2

)
cosn

(
a

2

)
et

S2 = 2n sin
(
na

2

)
cosn

(
a

2

)
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4. Cette fois-ci, on pose S3 =
n∑

k=0
cosk(x) sin(kx), donc

C3 + iS3 =
n∑

k=0
cosk(x)eikx.

On remarque que si x ∈ {kπ/k ∈ Z}, C3 = n + 1 et S3 = 0 (attention, c’est bien les
multiples de π par de 2π pour avoir le terme qui vaut 1). Sinon,

C3 + iS3 = 1− cosn+1(x)ei(n+1)x

1− cos(x)eix
.

Sauf que là, pas de miracle d’angle moitié pour récupérer la partie réelle, il faut
multiplier par le conjugué du dénominateur et récupérer ce qu’il faut.
On trouve après un peu de calcul

C3 = 1− cos2(x)− cosn+1(x) cos((n+ 1)x) + cosn+2(x) cos(nx)
1− cos2(x) .

Exercice 25. On remarque qu’un tel z est forcément non nul.
Si z ̸= 0, on multiplie tout par 2z et on a l’équation équivalente :

z2 − 2xz + 1 = 0.

Cette équation a deux solutions, z1 et z2 tels que z1z2 = 1. Si on note ρ1 et ρ2 leurs
modules respectifs, on a ρ1ρ2 = 1, donc si ρ1 < 1, alors ρ2 > 1 et inversement. Il reste a
exclure le cas ρ1 = 1 (qui implique ρ2 = 1).
Supposons |z1| = |z2| = 1.
Rappelons que l’on a z1 + z2 = 2x.
Si x ∈ C \ R, alors z1 et z2 ne sont pas conjugués car z1 + z2 /∈ R, donc z1z2 ̸= 1.
Si x ∈ R \ [−1, 1], on a |2x| > 2, donc 2 < |z1| + |z2| par inégalité triangulaire mais
z1 + z2 = 2, donc on a 2 < 2 ce qui est exclus.
On en déduit donc que z1 et z2 ne peuvent pas tout deux être de module 1 puisque
x ∈ C \ [−1; 1].
Ainsi, on en revient à la conclusion précédente : au moins une des deux racines est de
module strictement supérieur à 1.

Exercice 26. Comme i n’est pas solution, on peut prendre z ̸= i et on a alors(
z + i

z − i

)n

= 1.

Autrement dit, il existe k ∈ Z tel que z + i

z − i
= e

2ikπ
n .

On remarque qu’il suffit de prendre k ∈ [[0, n−1]] et que le terme en k = 0 est impossible
(car z − i ̸= z + i).
On a alors, z + i = (z − i)e 2ikπ

n , donc

(1− e
2ikπ

n )z = −i(e
2ikπ

n + 1).

Ainsi, on a
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z = −ie
2ikπ

n + 1
e

2ikπ
n − 1

.

En factorisant au numérateur et au dénominateur par e ikπ
n

z = −i
2 cos

(
ikπ
n

)
2i sin

(
ikπ
n

) .

On trouve alors, z = −
cos

(
kπ

n

)
sin
(
kπ

n

) , pour k ∈ [[1, n− 1]].

Exercice 27. 1. On a z4
0 + z3

0 + z2
0 + z0 + 1 = 1− z5

0
1− z0

= 0 car z0 ̸= 1.

2. Il suffit de factoriser la première équation par z2
0 ̸= 0 et d’arranger un peu les termes

ou sans trop réfléchir remarquer que(
z0 + 1

z0

)2
+
(
z0 + 1

z0

)
− 1 = z2

0 + 2 + 1
z2

0
+ z0 + 1

z0
− 1

donc (
z0 + 1

z0

)2
+
(
z0 + 1

z0

)
− 1 = 0⇐⇒ z2

0 + z0 + 1 + 1
z0

+ 1
z2

0
= 0.

Il suffit de remarquer qu’on peut multiplier cette dernière égalité par z2
0 ̸= 0 pour

avoir l’égalité de la question précédente.

3. On a z0 + 1
z0

= e2iπ/5 + e−2iπ/5 = 2 cos
(2π

5

)
. Il s’ensuit que 2 cos

(2π
5

)
est solution

de X2 +X − 1 = 0.

Cette équation a deux solutions (à détailler), −1−
√

5
2 et −1 +

√
5

2 . Comme cos
(2π

5

)
>

0, on a forcément

2 cos
(2π

5

)
= −1 +

√
5

2
soit

cos
(2π

5

)
= −1 +

√
5

4 .

6 Élements d’analyse
1. Applications
Exercice 1. Ce sont deux applications de R dans R mais

f ◦ g(x) = f(g(x)) = f(1 + x2) = 2 + x2

alors que
g ◦ f(x) = g(1 + x) = 2 + 2x+ x2.

Nous n’avons donc pas égalité.
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Exercice 2. 1. f est surjective car ∀y ∈ Z, on a f(2y) = y.
f n’est pas injective car, par exemple, f(0) = f(1).
Remarquons que l’image par g d’un nombre pair est pair, l’image d’un nombre impair
est impair.
Si on prend x, x′ ∈ Z tels que g(x) = g(x′) alors ils ont tous deux la même parité.
S’ils sont pairs, on a 2x = 2x′, s’ils sont impairs on a 2x+ 1 = 2x′ + 1, dans tous les
cas, x = x′. Ainsi g est injective.
Prenons 1. S’il avait un antécédent, il serait forcément impair d’après la remarque
précédente. Or pour avoir 2x+ 1 = 1, il faut avoir x = 0 qui est pair. Ainsi 1 n’a pas
d’antécédent. g n’est pas surjective.

2. Remarquons que g ◦ f et f ◦ g sont deux applications de Z dans Z.

Soit x ∈ Z. Si x pair, on a g(x) = 2x, donc f(g(x)) = 2x
2 = x. Si x est impair, on a

g(x) = 2x+ 1 donc f(g(x)) = 2x+ 1− 1
2 = x. Ainsi, f ◦ g = idZ qui est bijective.

Remarquons que f(0) = f(1), donc g(f(0)) = g(f(1)), ainsi g ◦ f n’est pas injective.
Par ailleurs, on a vu que 1 n’avait aucun antécédent par g donc pas non plus par g◦f .
Ainsi, g ◦ f n’est pas surjective.

Exercice 3. 1. Soient x, x′ ∈ E tels que f(x) = f(x′). On a alors

g(f(x)) = g(f(x′))⇐⇒ g ◦ f(x) = g ◦ f(x′).

Or, g ◦ f est injective, donc x = x′.
Ainsi, f est injective.

2. Soient y, y′ ∈ F tels que g(y) = g(y′).
Comme f est surjective, il existe x ∈ E tel que f(x) = y et il existe x′ ∈ E tel que
f(x′) = y′.

Ainsi, on a g ◦ f(x) = g(f(x)) = g(f(x′)) = g ◦ f(x′). Comme g ◦ f est injective, on a
x = x′. En appliquant f , on a

y = f(x) = f(x′) = y′.

Ainsi, g est injective.

3. Soit z ∈ G. Si g ◦ f surjective sur G, alors il existe x ∈ E tel que g ◦ f(x) = z.

Donc z = g(f(x)). Ainsi, g est surjective.

4. Soit y ∈ F . On a g(y) ∈ G, donc il existe x ∈ E tel que g ◦ f(x) = g(y).
Autrement dit, g(f(x)) = g(y). Comme g est injective, on a y = f(x). Ainsi f est
surjective.

Exercice 4. 1. Soit y ∈ E. Comme h ◦ g ◦ f est surjective, il existe x ∈ E tel que
h ◦ g ◦ f(x) = y, autrement dit h(g ◦ f(x)) = y, donc h est surjective.
De même, comme g ◦ f ◦ h est surjective, g est surjective.
Ensuite, soit y, y′ ∈ F tels que g(y) = g(y′). On a alors f ◦ h(g(y)) = f ◦ h(g(y′)) et
comme f ◦ h ◦ g est une injection, on a y = y′. Ainsi, g est une injection, donc une
bijection.
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Soient z, z′ ∈ G tels que h(z) = h(z′). Comme g est une surjection, il existe y, y′ ∈ F
tels que g(y) = z et g(y′) = z′. On a f(h(z)) = f(h(z′)) qui devient f ◦ h ◦ g(y) =
f ◦ h ◦ g(y′). Donc comme f ◦ h ◦ g est injective, on a y = y′. En appliquant g, on a
g(y) = g(y′), soit z = z′ c’est-à-dire h injective. Ainsi, h est une bijection.
Soient maintenant x, x′ ∈ E tels que f(x) = f(x′). On a alors l’existence de z, z′ ∈ G
tels que h(z) = h(z′) puisque h est surjective, puis celle de y, y′ tels que g(y) = z et
g(y′) = z′ car g est surjective. Ainsi, on a f ◦ h ◦ g(y) = f ◦ h ◦ g(y′) ce qui donne par
injectivité de f ◦ h ◦ g, y = y′ donc x = h ◦ g(y) = h ◦ g(y′) = x′, soit f injective.
Soit désormais y ∈ F . On a alors h◦g(y) ∈ E, donc il existe x ∈ E tel que h◦g◦f(x) =
h ◦ g(y). Comme h est injective, on a g ◦ f(x) = g(y). Et comme g est injective, on a
f(x) = y donc f est surjective. Ainsi, f est bijective.

2. De la même façon que dans la question précédente, on récupère immédiatement l’in-
jectivité de f et h et la surjectivité de f .
Ainsi, f est bijective.
Soit x ∈ E. On a f(x) ∈ F , donc il existe y ∈ F tel que f ◦h ◦ g(y) = f(x). Comme f
est injective, on a h◦g(y) = x, ce qui donne la surjectivité de h. Ainsi, h est bijective.
Soit y, y′ ∈ F tels que g(y) = g(y′). Comme f est surjective, on trouve x, x′ ∈ E tels
que f(x) = y et f(x′) = y′. Comme g(y) = g(y′), on a g((f(x)) = g(f(x′)). On a donc
forcément h ◦ g ◦ f(x) = h ◦ g ◦ f(x′) et comme h ◦ g ◦ f est injective, on a x = x′ donc
y = f(x) = f(x′) = y′. Ainsi g est injective.
On prend désormais z ∈ G. On a donc f ◦ h(z) ∈ F , donc il existe y ∈ F tel que
f ◦ h ◦ g(y) = f ◦ h(z). puisque f ◦ h ◦ g est surjective. Comme f est injective, on a
h ◦ g(y) = h(z) puis comme h est injective, g(y) = z ce qui donne la surjectivité de g.
Ainsi, g est bijective.

Exercice 5. 1. Soit y ∈ f(A ∩B), donc il existe x ∈ A ∩B, tel que f(x) = y.
Ainsi, y = f(x) avec x ∈ A, donc y ∈ f(A). De même, y ∈ f(B).
Ainsi y ∈ f(A) ∩ f(B). On a donc

f(A ∩B) ⊂ f(A) ∩ f(B).

2. Si f est injective, il suffit de montrer l’inclusion inverse de la question précédente (on
vient de montrer que l’autre est toujours vraie).
Prenons donc y ∈ f(A) ∩ f(B). Comme y ∈ f(A), il existe x ∈ A tel que f(x) = y.
De même, comme y ∈ f(B), il existe x′ ∈ B tel que f(x′) = y.

On a donc f(x) = f(x′). Or f est injective, donc x = x′, donc x = x′ ∈ A ∩ B donc
y ∈ f(A ∩B).
On a donc f(A)∩ f(B) ⊂ f(A∩B) ce qui donne l’inclusion réciproque de la question
précédente.
On a donc montré que si f est injective, on a ∀(A,B) ∈ (P(E))2 =⇒ f(A ∩ B) =
f(A) ∩ f(B)
Réciproquement, soient x, x′ ∈ E tels que f(x) = f(x′).
On a f({x} ∩ {x′}) = f({x}) ∩ f({x′}) = f({x}). Or, si x ̸= x′, on a {x} ∩ {x′} = ∅
et donc f({x} ∩ {x′}) = ∅, ce qui est exclu. On a donc x = x′, et ainsi f est injective.
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Exercice 6. 1. Soit Y un élément de P(E). Soit il contient a un antécédent possible est
Y \ {a} soit il ne le contient pas et un antécédent est Y ∪ {a}.
Si on prend X et X ′ deux éléments de P(E) tels que f(X) = f(X ′), alors on remarque
qu’ils contiennent tous les deux a ou non et que pour le reste, les éléments sont les
mêmes puisque f ne change que la présence de a.

2. On trouve rapidement que f ◦ f consiste à ajouter a puis l’enlever, ou l’enlever puis
l’ajouter. Dans tous les cas f ◦ f = idP(E), donc f était bijective et sa bijection
réciproque est elle-même (on parle d’involution).

2. Etudes de fonction
Exercice 7. 1. Il s’agit de la composition de cos qui est dérivable sur R à valeurs dans

[−1; 1] ⊂ R avec x 7→ x3 qui est dérivable sur R. Ainsi, f est dérivable sur R et on a
∀x ∈ R, f ′(x) = −3 sin(x) cos2(x).

2. Il s’agit de la composition de la fonction dérivable sur R à valeurs dans R, x 7→ 3x
avec la fonction cos qui est dérivable sur R. Ainsi, ∀x ∈ R, f ′(x) = −3 sin(3x).

3. La difficulté est de déterminer où cos(2x) = 0, soit quand 2x = π

2 + kπ où k ∈ Z.

Ainsi, on a R \ {π
4 + k π

2 /k ∈ Z} −→ R \ {π
2 + kπ/k ∈ Z};x 7−→ 2x est dérivable. On

la compose avec R \ {π
2 + kπ/k ∈ Z} −→ R∗;x 7−→ cos(x) qui est aussi dérivable.

On a donc la fonction R \ {π
4 + k π

2 /k ∈ Z} −→ R∗;x 7−→ cos(2x) est dérivable et ne
s’annule pas, donc son inverse est aussi dérivable sur le même ensemble.

Pour tout x ∈ R \ {π
4 + k π

2 /k ∈ Z}, on a f ′(x) = −−2 sin(2x)
cos2(2x) = 2 sin(2x)

cos2(2x) .

4. Il aurait fallu déterminer l’ensemble des réels tels qu’il existe k ∈ Z avec x2 = π

2 +kπ.
L’ensemble de dérivabilité sera R privé de l’ensemble de ces points.
Ensuite, sur cet ensemble, on a la composition de x 7−→ x2 avec tan qui sont deux
fonctions dérivables, l’une sur l’ensemble évoqué à valeurs dans R \ {π

2 + kπ/k ∈ Z}
sur lequel tan est dérivable. Ainsi, pour tout x dans cet ensemble, on a f ′(x) =
2x(1 + tan2(x2)) = 2x

cos2(x2) .

5. Sur R∗+ \ {1}, f est le quotient de deux fonctions dérivables dont le dénominateur ne

s’annule pas. Ainsi, pour tout x ∈ R∗+ \ {1}, f ′(x) = ln(x)− 1
(ln(x))2 .

6. Il s’agit du quotient de deux polynômes donc, f est dérivable sur l’ensemble sur
lequel le dénominateur ne s’annule pas. Ainsi pour tout x ∈ R \ {−1

5}, on a f ′(x) =
49(2x− 1)6

(5x+ 1)8 .

7. C’est le quotient de deux fonctions dérivables dont le dénominateur ne s’annule qu’en
0. Ainsi, pour tout x ∈ R∗, on a f ′(x) = (x− 1)ex

x2 .

8. Sur ]− 1,+∞[, la fonction x 7→ 1 + x est dérivable est à valeurs dans R∗+, donc, par
composition, x 7→ ln(1 + x) est dérivable sur cet intervalle.
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Ainsi, comme sur ]− 1, 0[∪]0,+∞[, le dénominateur ne s’annule pas, f sera dérivable
sur cet ensemble. Pour tout x ∈]− 1, 0[∪]0,+∞[, on a f ′(x) = x− (1 + x) ln(1 + x)

x2(1 + x) .

9. Attention, il faut absolument réaliser qu’il faut passer en notation exponentielle. Ainsi,
on a f(x) = e(x+2) ln(x).

Par produit de fonctions dérivables, on a x 7→ (x + 2) ln(x) dérivable sur R∗+ qu’on
compose avec exponentielle, dérivable sur R. Ainsi, f est dérivable sur R∗+ et pour

tout x ∈ R∗+, on a f ′(x) = x ln(x) + x+ 2
x

e(x+2) ln(x).

10. Par produit de fonctions dérivables sur R∗+, f est dérivable sur R∗+, on a pour tout
x ∈ R∗+, f ′(x) = ln(x) + 1.

11. Sur ]1,+∞[, ln est à valeurs dans R∗+, donc on peut composer par ln. Ainsi, f est
dérivable sur ]1,+∞[ et on a pour tout x ∈]1,+∞[, f ′(x) = 1

x ln(x) .

12. Attention à bien séparer le cas R∗+ et R∗−.
Sur R∗+, on trouve f(x) = x ln(x) qui est dérivable par produit et on trouve ∀x ∈ R∗+,
f ′(x) = ln(x) + 1.
Sur R∗−, on trouve f(x) = x ln(−x) qui est dérivable par composition de x 7→ −x à
valeurs dans R∗+ avec ln puis par produit. Ainsi, on a ∀x ∈ R∗−, f ′(x) = ln(−x) + 1.
On peut résumer ça en simplement, f dérivable sur R∗ et ∀x ∈ R∗, f ′(x) = ln(|x|)+1.

13. f(x) = esin(3x). Il s’agit d’une composition de 3 fonctions dérivables sur R tout entier.
Ainsi, f est dérivable sur R et on a, pour tout x ∈ R, f ′(x) = 3 cos(3x)esin(3x).

14. Remarquons que f(x) =
√
x2(x+ 6). Ainsi, sur [−6,+∞[, x 7→ x2(x+6) est à valeurs

dans R+. Cependant, la fonction racine n’est pas dérivable en 0. Ainsi, on doit se
placer sur ]− 6; 0[∪]0,+∞[ où x 7→ x2(x+ 6) est dérivable à valeurs dans R∗+ donc on
peut composer par la fonction racine carrée qui est dérivable sur R∗+.

On a alors ∀x ∈]− 6; 0[∪]0,+∞[, f ′(x) = 3x2 + 12x
2
√
x3 + 6x2

= 3x(x+ 4)
2
√
x3 + 6x2

.

Exercice 8. 1. Elle est dérivable sur R, comme produit de fonctions dérivables sur R.
On a pour tout x ∈ R, f ′(x) = (1 − x)e−x. On en déduit qu’elle est croissante
sur ] −∞, 1], décroissante sur [1,+∞[, tends vers −∞ en −∞ ; vers 0 en +∞ (par
croissances comparées pour cette dernière limite).

x

y

1 2-2 -1

1

-3

-2

-1

0
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2. x 7→ e−2x2 est dérivable sur R par composition de deux fonctions dérivables sur R. De
plus, f est alors un produit de fonctions dérivable sur R donc elle est dérivable sur R.
On a alors ∀x ∈ R, f ′(x) = (1 − 4x2)e−2x2 donc décroissante sur ] − ∞,−1

2 ], puis
croissante sur [−1

2 ,
1
2 ] et enfin décroissante sur [1

2 ,+∞[.
Par croissances comparées, elle tend vers 0 en −∞ et +∞.

x

y

1 2 3 4-4 -3 -2 -1 0

3. Elle est dérivable sur R+∗ par produit de fonctions dérivables sur R∗+. On a pour tout
x ∈ R∗+, f ′(x) = ln(x) + 1. f est donc décroissante sur ]0, e−1], puis croissante sur
[e−1,+∞[. Par croissances comparées, elle tend vers 0 en 0 et par produit vers +∞
en +∞.

x

y

1 2

1

0

Exercice 9. A connaitre quasiment par cœur tellement c’est classique (et une technique
classique).
Notons h la fonction définie et dérivable sur ] − 1; +∞[ par h(x) = x − ln(1 + x), bien
définie et dérivable car sur cet intervalle 1 + x > 0, donc on compose des fonctions
dérivables puis on ajoute des fonctions dérivables.
On a h′(x) = 1− 1

1 + x
= x

1 + x
. Ainsi, h′(x) est du signe de x puisque 1 + x > 0. Donc

h est décroissante sur ] − 1; 0] et croissante sur [0,+∞[. Ainsi h est minimale en 0. Or
h(0) = 0, donc ∀x ∈]− 1 +∞[, h(x) ⩾ 0, ce qui est équivalent à

∀x ∈]− 1; +∞[; ln(1 + x) ⩽ x.
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Exercice 10. Posons f la fonction définie sur R par f(x) = x − sin(x). Il s’agit d’une
somme de fonctions dérivables sur R, donc dérivons-la.
On a pour tout x ∈ R, f ′(x) = 1− cos(x) ⩾ 0. Ainsi, f est croissante sur R. Par ailleurs,
f(0) = 0 donc f est négative sur R− et positive sur R+ ce qui est équivalent aux deux
inégalités démandées.

Exercice 11. 1. Remarquons que f est la somme (ou plutôt la combinaison linéaire)
de fonctions dérivables sur R. Dérivons-la.
On a f ′(x) = −1 + e−x. Or, f ′(x) ⩾ 0 si et seulement si e−x ⩾ 1, soit −x ⩾ 0, soit
x ⩽ 0.
Ainsi, f est croissante sur R− et décroissante sur R+ et f(0) = 0.
Ainsi, pour tout x ∈ R, f(x) ⩽ 0.

Exercice 12. Notons f la fonction définie sur R par f(x) = ex − 1− x− x2

2 −
x3

6 . Elle
est dérivable sur R et on a

f ′(x) = ex − 1− x− x2

2 .

f ′ est aussi dérivable sur R et on a

f ′′(x) = ex − 1− x.

Continuons encore une fois, f ′′ étant encore dérivable sur R. On a alors f (3)(x) = ex−1.
Ainsi, f (3) est négative sur R− et positive sur R+.
On a donc f ′′ décroissante sur R− et croissante sur R+. Par ailleurs f ′′(0) = 0, donc f ′′
est positive.
Ainsi, f ′ est croissante sur R. Comme f ′(0) = 0, f ′ est négative sur R− et positive sur
R+. On a donc f décroissante sur R− et croissante sur R+.
Comme f(0) = 0, on a alors, ∀x ∈ R, f(x) ⩾ 0 ce qui est équivalent à

1 + x+ x2

2 + x3

6 ⩽ ex.

Exercice 13. 1. Notons T ∈ R∗+ une période de f .
Commençons par montrer que, pour tout x ∈ R et pour tout n ∈ N, f(x+nT ) = f(x)
en faisant une récurrence.
Soit x ∈ R. Notons, pour n ∈ N, P(n) : ≪ f(x+ nT ) = f(x). ≫

Il est clair que P(0) est vraie.
Soit n ∈ N quelconque fixé. Supposons P(n) vraie. On a f(x + (n + 1)T ) = f(x +
nT + T ) = f(x+ nT ) car f est T -périodique, puis en utilisant P(n), on a

f(x+ (n+ 1)T ) = f(x).

Donc P(n+ 1) est vraie. Ainsi, on a démontré par récurrence que pour tout x ∈ R et
tout n ∈ N, f(x+ nT ) = f(x).
Notons T un de ses périodes. On prend x < y deux réels quelconques. Il existe n ∈ N
tel que x ⩽ y ⩽ x+ nT (grosso modo n = ⌊y − x

T
⌋+ 1 si vous n’êtes pas sûrs que ça

existe). On applique f à cette égalité pour obtenir que f(x) ⩽ f(y) ⩽ f(x+nT ) = f(x)
si f est croissante. Ainsi f(x) = f(y). Si f est décroissante, l’inégalité change de sens
mais la conclusion reste vraie.
Ainsi, pour tous réels x, y, on a f(x) = f(y) donc f est constante.
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2. On peut affirmer assez rapidement qu’elle est 12π-périodique. Pour en savoir plus
(est-ce la plus petite ?), il faudrait bien connaitre ses formules de trigonométrie.

Exercice 14. Remarquons que g et h sont bien définies sur R car f l’est et x 7→ −x est
à valeur réelles (pour la composition).
De plus, ∀x ∈ R, −x ∈ R (autrement dit, R est bien centré autour de 0).
Ensuite, ∀x ∈ R, on a

g(−x) = f(−x) + f(−(−x))
2 = f(−x) + f(x)

2 = g(x)

et
h(−x) = f(−x)− f(−(−x))

2 = f(−x)− f(x)
2 = −h(x).

g est paire, h est impaire.
Remarquons par ailleurs que f = g + h. On dit que g est la partie paire de f alors que
h en est sa partie impaire.

Exercice 15. 1. Notons g : x 7→ f(−x). Par composition de fonctions dérivables, la
composition étant évidemment licite, g est dérivable. En la dérivant on a, ∀x ∈ R,
g′(x) = −f ′(−x).
Mais si f est paire, g = f , donc ∀x ∈ R f ′(x) = −f ′(−x)⇔ f ′(−x) = −f ′(x) avec f ′
définie sur R qui est centré en 0. Ainsi, f ′ est impaire.

2. Avec la même fonction que la question précédente, on a cette fois ci g = −f , donc
∀x ∈ R, g′(x) = −f ′(x).
Ainsi, ∀x ∈ R −f ′(x) = −f ′(−x) ⇔ f ′(x) = f ′(−x). Comme f ′ est définie sur R
centré en 0, on a cette fois-ci f ′ paire.

3. Notons T une période de f . Cette fois-ci, posons h : x 7→ f(x+ T ). Par composition
de fonctions dérivables, la composition étant évidemment licite, h est dérivable. En la
dérivant on a, ∀x ∈ R, h′(x) = f ′(x+ T ).
Ainsi, comme f est périodique, on a f = h, donc ∀x ∈ R, f ′(x) = f ′(x+ T ).
Ainsi, f ′ est T -périodique.

Exercice 16. 1. On peut bien entendu montrer que la fonction est dérivable, l’étudier
et regarder ce qu’il se passe. Sinon, on peut se souvenir de la forme canonique du
trinôme du second degré et remarquer que ∀x ∈ R,

f(x) = 1
(x+ 1

2)2 + 3
4
.

Il devient donc clair que Donc f admet un maximum car ∀x ∈ R, 0 < f(x) ⩽= 4
3 =

f

(
−1

2

)
et est minorée par 0. Elle n’a pas de minimum car clairement lim

x→+∞
f(x) = 0.

2. On sait que ∀x ∈ R∗+, ⌊1
x
⌋ ⩽ 1

x
, donc en multipliant par x > 0, on a

f(x) = x⌊1
x
⌋ ⩽ x

1
x

= 1

De plus, on sait que ∀x ∈ R∗+, f(x) = x⌊1
x
⌋ ⩾ 0.
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On a donc ∀x ∈ R∗+,
0 ⩽ f(x) ⩽ 1.

Par ailleurs, f(2) = 0 et f
(1

2

)
= 1, donc 0 et 1 sont respectivement le minimum de

f et son maximum.

Exercice 17. 1. Pour tout x ∈ R, −x ∈ R (donc R est bien symétrique par rapport à
0), et on a ch(−x) = ch(x) et sh(−x) = − sh(x). La fonction ch est donc paire et sh
impaire.

2. Il suffit de développer et simplifier. On a pour tout x ∈ R,

ch2(x)− sh2(x) = (ex + e−x)2

4 − (ex − e−x)2

4 = e2x + 2 + e2x − (e2x − 2 + e−2x)
4 = 1.

3. Remarquons que, ∀x ∈ R, ex = ch(x) + sh(x).
Ensuite, on a pour a, b réels

ch(a+ b) = ea+b + e−a−b

2 = eaeb + e−ae−b

2 .

En utilisant la remarque qu’on vient de faire, on obtient

ch(a+ b) = (ch(a) + sh(a))(ch(b) + sh(b)) + (ch(−a) + sh(−a))(ch(−b) + sh(−b))
2 .

En utilisant la parité, on peut un peu simplifier

ch(a+ b) = (ch(a) + sh(a))(ch(b) + sh(b)) + (ch(a)− sh(a))(ch(b)− sh(b))
2 .

Il ne reste qu’à développer pour obtenir

ch(a+ b) = 2 ch(a) ch(b) + 2 sh(a) sh(b)
2 = ch(a) ch(b) + sh(a) sh(b).

De la même façon, on a

sh(a+ b) = ea+b − e−a−b

2 = eaeb − e−ae−b

2 .

Puis

sh(a+ b) = (ch(a) + sh(a))(ch(b) + sh(b))− (ch(a)− sh(a))(ch(b)− sh(b))
2 .

Et enfin,

sh(a+ b) = 2 ch(a) sh(b) + 2 sh(a) ch(b)
2 = ch(a) sh(b) + sh(a) ch(b).

On remarque que l’on retrouve un semblant de formules trigonométriques (avec des
signes qui ne sont pas forcément les mêmes).
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4. On peut remarquer que les fonctions ch et sh sont dérivables sur R car elles sont
combinaison linéaire de x 7→ ex et x 7→ e−x qui le sont.
Par ailleurs, on a pour tout x ∈ R

ch′(x) = ex − e−x

2 = sh(x) et sh′(x) = ex + e−x

2 = ch(x).

On a donc ch′ = sh et sh′ = ch.

5. Comme ch est une somme d’exponentielles donc toujours strictement positive. sh est
donc strictement croissante sur R. De plus sh(0) = 0, donc sh(x) < 0 pour x ∈ R− et
sh(x) > 0 pour x ∈ R+. En résumé :

t

ch(x)

sh

−∞ +∞

+

−∞−∞

+∞+∞

0

0

La dérivée de ch est sh. ch est donc strictement décroissante sur R− et strictement
croissante sur R+. On a

t

sh(x)

ch

−∞ 0 +∞

− 0 +

+∞+∞

11

+∞+∞

6. Pour tout x ∈ R, ch(x)− sh(x) = e−x > 0 donc la courbe de ch est toujours au-dessus
de celle de sh.
En pointillés, la courbe représentative de sh, en trait plein, celle de ch avec sa tangente
horizontale
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x

y

1 2-2 -1

1

2

3

4

-4

-3

-2

-1

0

Les questions suivantes nécessitent d’avoir vu la définition d’application surjective et
injective du chapitre sur les applications. Je laisse ces questions dans ce chapitre car
elles concluent cet exercice que je vous conseille de reprendre une fois ces définitions
apprises.

7. On prend x, x′ ∈ R tels que sh(x) = sh(x′), ce qui est équivalent à

sh(x) = sh(x′)⇔ sh(x)− sh(x′) = 0

⇔ ex − e−x

2 − ex′ − e−x′

2 − = 0

⇔ ex − ex′ − (e−x − e−x′)
2 = 0

⇔ e(x+x′)/2 e
(x−x′)/2 − e−(x−x′)/2

2 − e−(x+x′)/2 e
−(x−x′)/2 − e(x−x′)/2

2 = 0

⇔ e(x+x′)/2 sh
(
x− x′

2

)
− e−(x−x′)/2 sh

(
−x− x

′

2

)
= 0

⇔ e(x+x′)/2 sh
(
x− x′

2

)
+ e−(x−x′)/2 sh

(
x− x′

2

)
= 0 car sh impaire

⇔ sh
(
x− x′

2

)(
e(x+x′)/2 + e−(x−x′)/2

)
= 0

⇔ 2 sh
(
x− x′

2

)
ch
(
x− x′

2

)
= 0.

Or ch ne s’annule jamais et sh ne s’annule qu’en 0, ainsi x−x′

2 = 0 donc x = x′. On a
donc
sh injective.
Il aurait été plus malin de remarquer que sh(a+b)+sh(a−b) = 2 ch(a) ch(b) d’après les

formules précédemment démontrées et donc de remarquer qu’il faut choisir a = x− x′

2
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et b = −x− x
′

2 ...

On a alors sh(x) qui sera équivalente à (ex − ey)(ex + e−y) = 0 donc...

8. Le plus simple est d’utiliser le théorème des valeurs intermédiaires. On a sh continue
sur R avec lim

x→−∞
sh(x) = −∞ et lim

x→+∞
sh(x) = +∞. Ainsi, d’après les théorème des

valeurs intermédiaires, pour tout y ∈ R, il existe x ∈ R tel que sh(x) = y.

9. Soit y ∈ R. On cherche x tel que sh(x) = y, soit ex− e−x = 2y. On multiplie tout par
ex ̸= 0 ce qui donne

e2x− 1 = 2yex.

Pose X = ex, l’équation est donc équivalente à

X2 − 2yX − 1.

Son discriminant est ∆ = 4y2 + 4 = 4(y2 + 1) > 0.
On a donc deux solutions

X = 2y −
√

4(y2 + 1)
2 = y −

√
y2 + 1 ou X = y +

√
y2 + 1.

Cependant, on a y2 + 1 > y2 donc en appliquant la racine carrée on a |y| <
√
y2 + 1.,

donc y <
√
y2 + 1, ainsi la première solution est négative ce qui est exclu.

Par ailleurs, on a y+
√
y2 + 1 > y+ |y| ⩾ 0, donc la deuxième est strictement positive.

Ainsi, on a ex = y +
√
y2 + 1 > 0. On peut donc écrire que, pour tout y ∈ R, on a

l’existence d’un unique x ∈ R tel que sh(x) = y, et il s’agit de x = ln(y +
√
y2 + 1).

Ainsi, on a ainsi démontré la bijectivité de sh et sh−1(y) = ln(y +
√
y2 + 1).

Bien entendu, cela redémontre au passage le résultat des deux questions précédentes.

10. Est-ce que ch est injective ? surjective sur R ? Bijective de R dans R ? Si elle est bijec-
tive, exhiber sa réciproque. ch est paire donc ch(−1) = ch(1), ce qui implique qu’elle
n’est pas injective. Et comme ∀x ∈ R, ch(x) > 0, 0 n’admet pas d’antécédent donc
elle n’est pas surjective. Elle n’est donc pas bijective et n’admet pas de réciproque.
Remarquons que si on considère la restriction de ch à R+ et qu’on considère son
ensemble d’arrivée comme étant [1,+∞[, cela change tout et dans ce cas, elle est
bijective et on peut déterminer une réciproque, avec le même principe que ce qu’on a
fait pour sh.

Exercice 18. 1. ∂f
∂x

(x, y) = y + 9x2y2 et ∂f
∂y

(x, y) = x+ 2y + 6x3y

2. ∂f
∂x

(x, y) = y + 2
y

+ y

(3− x)2 et ∂f
∂y

(x, y) = x− 2x
y2 + 1

3− x

3. ∂f
∂x

(x, y) = ye1+xy+y2 et ∂f
∂y

(x, y) = (x+ 2y)e1+xy+y2

4. ∂f
∂x

(x, y) = y(1− xy)e1−xy et ∂f
∂y

(x, y) = x(1− xy)e1−xy
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5. ∂f
∂x

(x, y) = 1
x+ y

+ 2x et ∂f
∂y

(x, y) = 1
x+ y

6. ∂f
∂x

(x, y) = y2

1 + xy2 et ∂f
∂y

(x, y) = 2xy
1 + xy2

7. ∂f
∂x

(x, y) = (1 + xy)exy et ∂f
∂y

(x, y) = x2exy

8. ∂f
∂x

(x, y) = 2x
1 + y2 et ∂f

∂y
(x, y) = − 2x2y

(1 + y2)2 .

9. ∂f
∂x

(x, y) = (1− x2)y2

(1 + x2)2 et ∂f
∂y

(x, y) = 2xy
1 + x2 .

10. ∂f
∂x

(x, y) = 1− y2

(1 + xy)2 et ∂f
∂y

(x, y) = 1− x2

(1 + xy)2 .

3. Déterminer des primitives
Exercice 19. 1. La fonction que nous nommerons f est continue sur R+ en tant que

produit de fonctions continues donc admet une primitive sur cet intervalle.

On a, ∀x ∈ R+, f(x) = x
3
2 −x

1
2 . Ainsi, sur R+, une primitive est x 7−→ 2

5x
5
2 − 2

3x
3
2 =

2
5x

2√x− 2
3x
√
x.

2. La fonction considérée est continue sur ]−∞;−1[ ou sur ]− 1; +∞[, donc elle admet
des primitives sur l’un ou l’autre de ces intervalles.

On remarque que x+ 3
x+ 1 = x+ 1 + 2

x+ 1 = 1 + 2
x+ 1 ce qui permet de trouver qu’une

primitive sur ]− 1,+∞[, est par exemple x 7→ x+ 2 ln(x+ 1).

Sur ]−∞,−1[, on écrira plutôt x+ 3
x+ 1 = 1 + 2 −1

−(x+ 1) ce qui donnera une primitive

sous la forme x 7→ x+ 2 ln(−x− 1).
Autre possibilité, rédiger à l’aide du changement de variable qui rend les choses plus
faciles.

3. La fonction est un quotient de fonctions continues sur R dont le dénominateur ne
s’annule pas, et on reconnait qu’elle admet une primitive sur R de la forme x 7→
ln(1 + ex).
Autre possibilité, rédiger à l’aide du changement de variable qui rend les choses plus
faciles.

4. Il s’agit du produit de deux fonctions continues sur R∗+, donc elle admet une primitive
sur cet ensemble.
Pour la chercher, on va devoir faire une intégration par parties. On cherche, pour
x ∈ R∗+, ∫ x

1
t ln(t)dt.

Posons u, v deux fonctions C1(R∗+) définies par

u′(t) = t u(t) = t2

2

v(t) = ln(t) v′(t) = 1
t
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On a alors ∫ x

1
t ln(t)dt =

[
t2

2 ln(t)
]x

1
−
∫ x

1

t2

2
1
t
dt.

Ainsi ∫ x

1
t ln(t)dt = x2

2 ln(x)− 1
2

∫ x

1
tdt.

Soit ∫ x

1
t ln(t)dt = x2

2 ln(x)− 1
2

[
x2

2

]x

1
.

On a alors ∫ x

1
t ln(t)dt = x2

2 ln(x)− x2

4 + 1
4 .

Ainsi, sur R∗+, une primitive est x 7→ x2 ln(x)
2 − x2

4 .

5. Sur l’intervalle considéré, ces deux fonctions sont des quotients de fonctions continues
dont le dénominateur ne s’annule pas donc admettent des primitives.
Remarquons que (u+ v)(x) = 1 donc u+ v a pour primitive x.

Par ailleurs, (u− v)(x) = sin(x)− cos(x)
cos(x) + sin(x) avec sur cet intervalle cos(x) + sin(x) > 0.

Ainsi u− v a pour primitive x 7→ − ln(cos(x) + sin(x)).

Ainsi, u admet pour primitive x 7→ 1
2(x− ln(cos(x) + sin(x))) et v admet par exemple

x 7→ 1
2(x + ln(cos(x) + sin(x))), ce qu’on obtient en faisant la moyenne de u + v et

u− v ou la demi-différence.
Ça peut s’étendre à n’importe quel intervalle où cos(x)+sin(x) est strictement positif,
voire strictement négatif à condition de gérer une primitive de u− v sans se tromper.

Exercice 20. 1. Sur [−1,+∞[, x 7→
√
x+ 1 est continue par composition de x 7→ x+ 1

à valeurs dans R+ avec la fonction racine carrée continue sur R+.
On peut remarquer que x

√
1 + x = (x+ 1)

√
x+ 1−

√
x+ 1 = (x+ 1) 3

2 − (x+ 1) 1
2 et

intégrer terme à terme.
Autre possibilité, rédiger à l’aide du changement de variable qui rend les choses plus
faciles.
L’ensemble des primitives de cette fonction est constitué des fonctions définies sur
[1,+∞[ par

x 7→ 2
5(x+ 1)

5
2 − 2

3(x+ 1)
3
2 + k =

(2
5x−

4
15

)
(x+ 1)

√
x+ 1 + k; k ∈ R.

2. Cette fonction admet des primitives sur chaque intervalle ne contenant ni 1 ni −1
puisque qu’il s’agira alors d’un quotient de fonctions continues dont le dénominateur
ne s’annule pas.
Il faut ensuite penser à écrire

1
1− x2 = 1

(1− x)(1 + x) = 1
2(1− x) + 1

2(1 + x) = −1
2
−1

1− x + 1
2

1
1 + x
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qu’on peut intégrer terme à terme.
On trouve alors que les primitives sont les fonctions définies sur un intervalle ne
contenant ni 1 ni −1 de la forme

x 7→ −1
2 ln(|1− x|) + 1

2 ln(|1 + x|) + k; k ∈ R.

3. Il s’agit d’un produit de fonctions continues sur R.
Pour chercher une primitive, on va devoir faire une intégration par parties. On cherche,
pour x ∈ R, ∫ x

0
(2t− 1)e3tdt.

Posons u, v deux fonctions C1(R) définies par

u(t) = 2t− 1 u′(t) = 2

v′(t) = e3t v(t) = 1
3e

3t

Ainsi,∫ x

0
(2t− 1)e3tdt =

[
(2t− 1)1

3e
3t
]x

0
−
∫ x

0

2
3e

3tdt = 1
3(2x− 1)e3x + 1

3 −
[2

9e
3t
]x

0
.

Pour finir ∫ x

0
(2t− 1)e3tdt = 1

3(2x− 1)e3x + 1
3 −

2
9e

3x + 2
9 .

Donc sur R, l’ensemble des primitives est {x 7→ 1
9(6x− 5)e3x + k/k ∈ R}.

4. Il s’agit d’un produit de fonctions continues sur R, donc elle admet des primitives sur
R.
Pour chercher une primitive, on va devoir faire une intégration par parties. On cherche,
pour x ∈ R, ∫ x

0
t sin(t) cos(t)dt.

Posons u, v deux fonctions C1(R) définies par

u(t) = t u′(t) = 1

v′(t) = sin(t) cos(t) v(t) = 1
2 sin2(t)

Ainsi, ∫ x

0
t sin(t) cos(t)dt =

[
t

2 sin2(t)
]x

0
−
∫ x

0

1
2 sin2(t)dt

= x

2 sin2(x)− 1
2

∫ x

0
sin2(t)dt.

Or, sin2(t) = 1− cos(2t)
2 , donc

∫ x

0
sin2(t)dt =

x− 1
2 sin(2x)

2 .
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Ainsi, on a ∫ x

0
t sin(t) cos(t)dt = x

2 sin2(x)− 1
8(2x− sin(2x)).

Sur R, l’ensemble des primitives est

{x 7→ x

2 sin2(x)− 1
8(2x− sin(2x)) + k/k ∈ R}.

Le plus simple est encore d’utiliser sin2(t) = 1− cos(2t)
2 ce qui donne, après simplifi-

cations, {
x 7→ 1

8(sin(2x)− 2x cos(2x)) + k/k ∈ R
}
.

Il est bien entendu tout à fait possible que vous trouviez une expression différente en
ayant choisi d’autres formules de trigonométrie.

5. Sur R∗+ il s’agit du produit de fonctions continues, donc elle admet une primitive.
Encore une fois, on va devoir faire une intégration par parties. Soit x ∈ R∗+,

∫ x

1

ln(t)
t2

dt.

Posons u, v deux fonctions C1(R∗+) définies par

u(t) = ln(t) u′(t) = 1
t

v′(t) = 1
t2

v(t) = −1
t

Ainsi, ∫ x

1

ln(t)
t2

dt =
[
−1
t

ln(t)
]x

1
−
∫ x

1
− 1
t2
dt = − ln(x)

x
−
[1
t

]x

1
.

Donc ∫ x

1

ln(t)
t2

dt = − ln(x)
x
− 1
x

+ 1.

On en conclue que l’ensemble des primitives sur R∗+ est
{
x 7→ −1− ln(x)

x
+ k/k ∈ R

}
.

Exercice 21. Remarquons que F est définie sur R, et si x ∈ R, −x ∈ R.
Ensuite, considérons pour x ∈ R, F (−x) =

∫ −x

0
f(t)dt. Posons le changement de variable

u = −t qui est C1 sur R avec du = −dt. On a alors

F (−x) =
∫ −x

0
f(t)dt =

∫ x

0
f(−u)(−du) = −

∫ x

0
f(−u)du.

Or f est paire, donc f(−u) = f(u). Ainsi,

F (−x) = −
∫ x

0
f(u)du = −F (x).

Ainsi, F est impaire.
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7 Suites usuelles
Exercice 1. 1. Remarquons que, si l’on note r la raison de cette suite arithmétique, on

a
u80 = u15 + (80− 15)r

soit r = 393− 133
65 = 4.

Ainsi, u1 = u15 + (1− 15)4 = 133− 56 = 77.
Par ailleurs,

S80 =
80∑

k=1
uk =

80∑
k=1

u1 + (k − 1)4

= 80u1 + 4
79∑

ℓ=0
k par linéarité et avecℓ = k − 1

= 80× 77 + 479× 80
2

= 80(77 + 2× 79)

= 80× 235

= 18800

Pour les fans de formules, il était confortable de se servir de S80 = 80u1+u80
2 à condition

de s’en souvenir.

2. Si on se souvient que S15 = 15u1+u15
2 = 15× 73 = 1095, ça va vite.

Sinon, en notant r la raison de la suite, on trouve que r = u15−u1
14 = 10.

Ainsi,

S15 =
15∑

k=1
uk =

15∑
k=1

u1 + (k − 1)10

= 15u1 + 10
14∑

ℓ=0
k par linéarité et avecℓ = k − 1

= 15× 3 + 1014× 15
2

= 45 + 10× 105

= 1095.

3. Si on note r la raison de la suite, on cherche n tel que un = −16, donc u1 +(n−1)r =
−16 soit encore 5 + (n− 1)r = −16.

Par ailleurs, on veut Sn = −77
2 .

Or Sn =
n∑

k=1
uk =

n∑
k=1

5 + (k − 1)r. En utilisant la linéarité de la somme et en posant

ℓ = k − 1, on a

Sn = 5n+ r
n−1∑
ℓ=0

k = 5n+ r
n(n− 1)

2 = n
10 + (n− 1)r

2 .
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Or, pour le n cherché, (n− 1)r = −16− 5, donc

Sn = n
10− 21

2 .

Cependant, Sn = −77
2 .

On a donc l’équation −77
2 = n

−11
2 , soit n = 7.

Encore une fois, on aurait pu gagner un peu de temps en se souvent que Sn = (n −
1)u1+un

2 . On trouve n = 7 (il faut poser le calcul de Sn avec une raison inconnue et
celui de un avec la même raison inconnue, on trouve un système à deux équations et
deux inconnues et on récupère n.)

Exercice 2. 1. On a

S24 =
24∑

k=0
uk

=
24∑

k=0
(−3)k

= 1− (−3)25

1− (−3)

= 1 + 325

4 .

On remarquera bien que (−3)25 = −325 parce que 25 est impair, mais c’est une
remarque inutile bien entendu.

2. On a

S15 =
15∑

k=0
uk

=
15∑

k=0

(
−1

2

)k−1
12

= −2× 12
15∑

k=0

(
−1

2

)k

= −24
1−

(
−1

2

)16

1−
(
−1

2

)
= −16

(
1− 1

216

)
.

3. Si on note q la raison de la suite, on a u4 = q3u1, donc 54 = q32, ainsi q3 = 27 ce qui
est équivalent à q3 − 27 = 0 soit encore

(q − 3)(q2 + 3q + 9) = 0

qui n’a pour seule solution réelle que 3.
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On a alors

S4 =
4∑

k=0
uk

=
4∑

k=0
3k−1u1

= 2
3

4∑
k=0

3k

= 2
3

1− 35

1− 3

= 1
3(35 − 1)

= 242
3 .

Exercice 3. 1. On note, pour tout n ∈ N, P(n), ≪ un existe et un > 0. ≫

On a u0 = 1 donc P(0) est vraie.
Soit n ∈ N quelconque fixé. Supposons P(n) vraie.
On a un > 0, donc 4un > 0. On peut bien appliquer la racine carrée qui est strictement
croissante pour obtenir √

4un > 0.
Ainsi, on a bien montré l’existence de un+1 et sa stricte positivité. P(n+ 1) est vraie.
On a montré par récurrence que (un)n∈N est bien définie et strictement positive.
Remarquons que presque à chaque fois qu’on vous demandera de montrer qu’une
suite est bien définie, il faudra faire une récurrence avec la propriété ≪ un existe ≫.
Attention, si vous mettez des parenthèses autour de un, on ne parle plus du terme un

mais de la suite dans son intégralité, donc ce n’est plus une propriété portant sur un
entier donc impossible de faire une récurrence.

2. Voir plus bas.

3. On peut bien la définir puisqu’on a démontré précédemment que ∀n ∈ N, un > 0.
On a, pour n ∈ N,

vn+1 = ln(un+1)− ln(4)

= ln(
√

4un)− ln(4)

= 1
2(ln(4) + ln(un))− ln(4)

= 1
2(ln(un)− ln(4))

= 1
2vn.

Ainsi (vn) est géométrique de raison 1
2. On a alors ∀n ∈ N,

vn = 1
2n
v0.

Or v0 = ln(u0)− ln(4) = − ln(4). On a donc ∀n ∈ N, vn = − ln(4)
2n

.
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4. Comme, ∀n ∈ N, vn = ln(un)− ln(4), on a

un = evn+ln(4) = 4e
− ln(4)

2n = 4e
1

2n ln
(

1
22
)

= 4
(1

4

) 1
2n

.

On trouve un = 22(1− 1
2n ).

Comme lim
n→+∞

1
2n

= 0, on trouve (par composition avec la fonction exponentielle
continue, nous le reverrons ultérieurement) un −−−−−→

n→+∞
22 = 4.

Exercice 4. 1. Il s’agit d’une suite arithmético-géométrique. On cherche ℓ ∈ R tel que

ℓ = 1
2ℓ− 5,

soit ℓ = −10.
On pose alors ∀n ∈ N, vn = un + 10.
On a alors, pour n ∈ N,

vn+1 = un+1 + 10

= 1
2un − 5 + 10

Or un = vn − 10, donc

vn+1 = 1
2(vn − 10) + 5

= 1
2vn.

Ainsi, (vn)n∈N est une suite géométrique de raison 1
2 .

Ainsi, pour tout n ∈ N, vn = 1
2n
v0. Or v0 = u0 + 10 = 13, donc

vn = 13
2n
.

On revient alors à la question posée et on peut désormais affirmer que pour tout
n ∈ N, un = 13

2n
− 10.

2. Il s’agit d’une suite arithmético-géométrique. On cherche ℓ ∈ R tel que

ℓ = −2ℓ+ 1,

soit ℓ = 1
3.

On pose alors ∀n ∈ N, vn = un −
1
3.

On a alors, pour n ∈ N,

vn+1 = un+1 −
1
3

= −2un + 1− 1
3
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Or un = vn + 1
3, donc

vn+1 = −2
(
vn + 1

3

)
+ 2

3

= −2vn.

Ainsi, (vn)n∈N est une suite géométrique de raison −2.
Ainsi, pour tout n ∈ N, vn = (−2)n−1v1. Or v1 = u1 − 1

3 = 2
3 , donc

vn = 2(−2)n−1

3 = −(−2)n

3 .

On peut désormais affirmer que pour tout n ∈ N, un = −(−2)n

3 + 1
3.

Remarquons que l’on aurait aussi pu déterminer u0 et se rapporter à la valeur de u0,
mais c’est moins efficace.

3. Il s’agit d’une suite arithmético-géométrique. On cherche ℓ ∈ R tel que

ℓ = 2ℓ+ 3,

soit ℓ = −3.
On pose alors ∀n ∈ N, vn = un + 3.
On a alors, pour n ∈ N,

vn+1 = un+1 + 3

= 2un + 3 + 3

Or un = vn − 3, donc

vn+1 = 2 (vn − 3) + 6

= 2vn.

Ainsi, (vn)n∈N est une suite géométrique de raison 2.
Ainsi, pour tout n ∈ N, vn = (2)n−2v2. Or v2 = u2 + 3 = 5, donc

vn = 2n−25.

On peut désormais affirmer que pour tout n ∈ N, un = 2n−25− 3

Exercice 5. Il s’agit d’une suite arithmético-géométrique. On cherche ℓ ∈ R tel que

5ℓ = ℓ+ 8,

soit ℓ = 2.
On pose alors ∀n ∈ N∗, vn = un − 2.
On a alors, pour n ∈ N∗,

vn+1 = un+1 − 2

= 1
5un + 8

5 − 2
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Or un = vn + 2, donc

vn+1 = 1
5(vn + 2)− 2

5

= 1
5vn.

Ainsi, (vn)n∈N∗ est une suite géométrique de raison 1
5 .

Ainsi, pour tout n ∈ N∗, vn = 1
5n−1 v1. Or v1 = u1 − 2 = −1, donc

vn = − 1
5n−1 .

On a pour tout n ∈ N∗, un = − 1
5n−1 + 2.

Exercice 6. 1. Soit (un)n∈N une suite arithmétique. Notons r sa raison. On a pour tout
n ∈ N un+1 = un + r et donc pour tout n ∈ N∗, un = un−1 + r ou un−1 = un − r.
Ainsi, pour tout n ∈ N,

un+1 + un−1
2 = un + r + un − r

2 = un.

On peut montrer que la suite (un+1 − un)n∈N est constante ce qui permettra de
conclure.

2. Cette relation est équivalente à ∀n ∈ N∗, 2un = un+1 + un−1 ou encore à

un+1 − un = un − un−1.

Ainsi, la suite (un+1 − un)n∈N est constante. Autrement dit, il existe r ∈ R tel que,
∀n ∈ N,

un+1 − un = r ⇐⇒ un+1 = un + r.

Il s’agit donc d’une suite arithmétique.

Exercice 7. On peut le faire directement en cherchant si on peut trouver a, b ∈ R tels
que

1
ukuk+1

= a

uk
+ b

uk+1

en écrivant que uk+1 = uk + r où r est la raison de la suite arithmétique (uk)k∈N. Il
faut ensuite procéder par télescopage et tout réduire au même dénominateur une fois les
simplifications faites.

Sinon, on peut aussi poser, pour n ∈ N, P(n) : ≪

n∑
k=0

1
ukuk+1

= n+ 1
u0un+1

. ≫.

Tout a bien du sens puisque par hypothèse, la suite (un)n∈N ne s’annule pas.

On a
0∑

k=0

1
ukuk+1

= 1
u0u1

donc P(0) est vraie.

Soit n ∈ N quelconque fixé. On suppose P(n) vraie.
On a

n+1∑
k=0

1
ukuk+1

=
n∑

k=0

1
ukuk+1

+ 1
un+1un+2

= n+ 1
u0un+1

+ 1
un+1un+2

d’après P(n)

= (n+ 1)un+2 + u0
u0un+1un+2

.
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Comme (un)n∈N est arithmétique, notons r sa raison. On a alors

(n+1)un+2+u0 = (n+1)(un+1+r)+u0 = (n+1)un+1+u0+(n+1)r = (n+1)un+1+un+1.

Ainsi,
(n+ 1)un+2 + u0 = (n+ 2)un+1.

Ainsi, on a
n+1∑
k=0

1
ukuk+1

= (n+ 1)un+2 + u0
u0un+1un+2

= (n+ 2)un+1
u0un+1un+2

= n+ 2
u0un+2

.

Ainsi, P(n+ 1) est vraie.
On a donc démontré que si (un)n∈N est une suite arithmétique dont aucun de ses termes
n’est nul, on a, pour tout n ∈ N,

n∑
k=0

1
ukuk+1

= n+ 1
u0un+1

.

Exercice 8. 1. Supposons l’existence d’une telle suite arithmétique (wn)n∈N. Alors il
existerait deux réels a et b tels que pour tout n ∈ N, wn = an+ b. Injectons ça dans
la relation de récurrence. Elle devient

∀n ∈ N; a(n+ 1) + b = 2(an+ b)− n− 2.

Soit
(a− 2a+ 1)n+ 2 + a− b = 0.

Ainsi, en prenant n = 0, on doit avoir a − b = −2 puis en faisant n = 1 on récupère
a = 1. Par suite il vient b = 3.
Si une suite arithmétique (wn)n∈N vérifie (1), alors on a pour tout n ∈ N, wn = n+ 3.
Il s’agit donc de la suite arithmétique de raison 1 et de premier terme 3.
Réciproquement, il suffit de vérifier qu’elle vérifie bien l’équation (1) : on a bien

(n+ 1) + 3 = 2(n+ 3)− n− 2

donc elle remplit bien ce qu’on lui demande.

2. On a alors pour tout n ∈ N,

un+1 = 2un − n− 2

wn+1 = 2wn − n− 2

En faisant la différence de ces deux lignes, on récupère

un+1 − wn+1 = 2(un − wn)

ainsi ∀n ∈ N, vn+1 = 2vn. On trouve qu’elle est géométrique de raison 2.
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3. Soit n ∈ N.
On a d’après la question précédente vn = 2nv0. Or v0 = u0 − w0 = λ− 3.
Ainsi, vn = 2n(λ− 3).
Or vn = un − wn = un − n− 3.
On a donc

∀n ∈ N, un = 2n(λ− 3) + n+ 3.

Exercice 9. 1. On note, pour tout n ∈ N, P(n), ≪ un existe et un < 0. ≫

On a u0 = −2 donc P(0) est vraie.
Soit n ∈ N quelconque fixé. Supposons P(n) vraie.
On a un < 0, donc 3−un > 0 puis on peut bien former le quotient (bien défini puisque
3− un ̸= 0), et avoir un

3− un
< 0.

Ainsi, on a bien montré l’existence de un+1 et sa stricte négativité. P(n+1) est vraie.
On a montré par récurrence que (un)n∈N est bien définie et strictement négative.

2. a. Parce qu’on a jamais un = 1 puisque ∀n ∈ N, un < 0.
b. Soit n ∈ N. On a

vn+1 = un+1
1− un+1

=

2un

3− un

1− 2un

3− un

= 2un

3− un − 2un

= 2
3

un

1− un

= 2
3vn.

Ainsi, la suite (vn)n∈N est géométrique de raison 2
3.

c. (vn)n∈N est géométrique de raison 2
3 et v0 = u0

1− u0
= −2

3 .

Ainsi, ∀n ∈ N, on a vn = −
(2

3

)n+1
.

Ensuite, on a vn = un

1− un
donc (1− un)vn = un et ainsi vn = (1 + vn)un.

On a donc ∀n ∈ N, un = vn

1 + vn
=
−
(

2
3

)n+1

1−
(

2
3

)n+1 .

En multipliant tout par 3n+1, on récupère

∀n ∈ N, un = − 2n+1

3n+1 − 2n+1 .
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Exercice 10. Je vous renvoie aux exemples du cours pour la rédaction. Vous ne trou-
verez que les résultats dans les 6 questions suivantes.

1. On trouve, pour tout n ∈ N, un = 2
5

1
2n

+ 3
5(−2)n.

2. On trouve, pour tout n ∈ N, un = 2n.

3. On trouve, pour tout n ∈ N, un = 1
52n − 6

5
1
3n

.

4. On trouve, pour tout n ∈ N, un = 2n−1 sin
(
nπ

2

)
.

Ce qui s’arrange en un = 0 si n est pair, et lorsque n impair, un = 2n−1(−1)(n−1)/2.

5. On trouve, pour tout n ∈ N, un = 2
√

3
3 sin

(2π
3 n

)
.

Cela s’arrange aussi : pour k ∈ N, u3k = 0, u3k+1 = 1 et u3k+2 = −1.

6. On pose pour tout n ∈ N, vn = un − 1 et on trouve que vn = (n + 1)2n puis
un = (n+ 1)2n + 1.

Exercice 11. On note, pour tout n ∈ N, P(n), ≪ un existe et un > 0. ≫

On a u0 = 1 donc P(0) est vraie. De plus, u1 = e donc P(1) est vraie.
Soit n ∈ N quelconque fixé. Supposons P(n) et P(n+ 1) vraies.
On a un > 0, et un+1 > 0 donc un+1un > 0, soit un+2 > 0. Ainsi, on a bien montré
l’existence de un+2 et sa stricte positivité. P(n+ 2) est vraie.
On a montré par récurrence que (un)n∈N est bien définie et strictement positive.
Ensuite, prenons le logarithme de la relation de récurrence (on peut grâce à ce qu’on
vient de démontrer).
On a ∀n ∈ N,

ln(un+2) = ln(un+1) + 2 ln(un)

Donc en posant, ∀n ∈ N, vn = ln(un), on a ∀n ∈ N,

vn+2 = vn+1 + 2vn.

Ainsi, (vn)n∈N suit une relation de récurrence linéaire d’ordre 2.
Résolvons son équation caractéristique associée

X2 = X + 2

Autrement dit
X2 −X − 2 = 0.

On voit rapidement que les deux racines du trinômes sont −1 et 2. Ainsi, il existe deux
réels λ et µ tels que, pour tout n ∈ N, vn = λ(−1)n + µ2n.
Or on a v0 = ln(u0) = 0 donc λ+ µ = 0.
Et on a v1 = ln(u1) = 1 donc −λ+ 2µ = 1.
On a donc le système 

λ+ µ = 0

−λ+ 2µ = 1
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⇐⇒


λ+ µ = 0

3µ = 1 L2 ← L2 + L1

Ce qui donne comme unique solution λ = −1
3 et µ = 1

3.

On a donc ∀n ∈ N, vn = −1
3(−1)n + 1

32n.

Or, on a, pour tout n ∈ N, un = exp(vn) = exp
(
−1

3(−1)n + 1
32n

)
.

Exercice 12. 1. On trouve u3 = 4, u4 = 11 et u5 = 26.

2. Deux façons de faire.

def suite (n):

u0 =0
u1 =0
u2 =1
for k in range (3,n+1):

u3 =4*u2 -5* u1 +2* u0
u0=u1
u1=u2
u2=u3

return u2

Ou bien

def suite (n):

u0 ,u1 ,u2=0 ,0,1
for k in range (3,n+1):

u2 ,u1 ,u0 =4*u2 -5* u1 +2*u0 ,u2 ,u1
return u2

3. On a, pour tout n ∈ N,

vn+2 = un+3 − un+2
= 3un+2 − 5un+1 + 2un car un+3 = 4un+2 − 5un+1 + 2un

= 3(vn+1 + un+1)− 5un+1 + 2un car un+2 = vn+1 + un+1
= 3vn+1 − 2un+1 + 2un

= 3vn+1 − 2(un+1 − un)
= 3vn+1 − 2vn car vn = un+1 − un.

4. D’après la question précédente, (vn)n∈N suit une relation de récurrence linéaire d’ordre
2.
Résolvons son équation caractéristique associée

X2 = 3X − 2

Autrement dit
X2 − 3X + 2 = 0.
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On voit rapidement que les deux racines du trinômes sont 1 et 2. Ainsi, il existe deux
réels λ et µ tels que, pour tout n ∈ N, vn = λ2n + µ.

Or on a v0 = u1 − u0 = 0 donc λ+ µ = 0.
Et on a v1 = u2 − u1 = 1 donc 2λ+ µ = 1.
On a donc le système 

λ+ µ = 0

2λ+ µ = 1

⇐⇒


λ+ µ = 0

λ = 1 L2 ← L2 − L1

Ce qui donne comme unique solution λ = 1 et µ = −1.
On a donc ∀n ∈ N, vn = 2n − 1.

5. On a ∀n ∈ N, vn = un+1−un donc d’après la question précédente ∀n ∈ N, un+1−un =
2n − 1.
C’est surtout pour donner la réponse à ceux qui n’auraient pas réussi la question
précédente.

6. On trouve que

n−1∑
k=0

uk+1 − uk =
n−1∑
k=0

uk+1 −
n−1∑
k=0

uk par linéarité

=
n∑

ℓ=1
uℓ −

n−1∑
k=0

uk en posant ℓ = k + 1

=
n−1∑
ℓ=1

uℓ + un −
(
u0 +

n−1∑
k=1

uk

)

= un − u0

= un.

D’autre part, on a aussi

n−1∑
k=0

uk+1 − uk =
n−1∑
k=0

(2k − 1)

=
n−1∑
k=0

2k −
n−1∑
k=0

1

= 1− 2n

1− 2 − n

= 2n − n− 1.

On trouve donc, ∀n ∈ N, un = 2n − 1− n.
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Exercice 13. 1. On a, pour tout n ∈ N,

un+2 = −un+1 − vn+1

= −un+1 −
(4

3un + 5
3vn

)
= −un+1 −

4
3un −

5
3vn

= −un+1 −
4
3un −

5
3(−un+1 − un)

= 2
3un+1 + 1

3un.

On en conclue que, pour tout n ∈ N, un+2 = 2
3un+1 + 1

3un.

2. D’après la question précédente, (un)n∈N suit une relation de récurrence linéaire d’ordre
2.
Résolvons son équation caractéristique associée

X2 = 2
3X + 1

3
Autrement dit

3X2 − 2X − 1 = 0.

On voit rapidement que les deux racines du trinômes sont 1 et −1
3. Ainsi, il existe

deux réels λ et µ tels que, pour tout n ∈ N, un = λ

(
−1

3

)n

+ µ.

Or on a u0 = 2 donc λ+ µ = 2.

Et on a u1 = −u0 − v0 = 1 donc −1
3λ+ µ = 1.

On a donc le système 
λ+ µ = 2

−1
3λ+ µ = 1

⇐⇒


λ+ µ = 2

4µ = 5 L2 ← L1 + 3L2

Ce qui donne comme unique solution µ = 5
4 puis λ = 3

4.

Ainsi, pour tout n ∈ N, un = 5
4 + 3

4

(
−1

3

)n

.

3. L’erreur est de tout refaire à partir du début, alors qu’on peut remarquer que, pour
tout n ∈ N, on a

vn = −un − un+1

= −
[5

4 + 3
4

(
−1

3

)n]
−
[

5
4 + 3

4

(
−1

3

)n+1
]

= −5
2 −

1
2

(
−1

3

)n

.
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8 Systèmes linéaires
Exercice 1. 1. On a le système équivalent

2x+ 3y = 1

−y = 1 L2 ← 2L2 − 5L1

⇐⇒


2x = 2

y = −1

L’ensemble solution est {(2,−1)}.

2. On a le système équivalent
4x− 2y = 5

0 = 17 L2 ← 2L2 + 3L1

Il n’y a donc pas de solutions.

3. On a le système équivalent

7y = −7 L1 ← L1 − 2L2

x− 2y = 5

5y = −9 L3 ← L3 − 2L2

⇐⇒



y = −1

x− 2y = 5

y = −9
5

Ce qui est impossible (L3 ← L3 − L1 donne 0 = −4
5).

4. Le système est équivalent à :
2x+ 4y = 10

0 = 0 L2 ← 2L2 − 3L1

⇐⇒ 2x+ 4y = 10⇐⇒ x = 5− 2y.

L’ensemble solution est {(5 − 2y, y)/y ∈ R} que l’on peut aussi écrire {(5 − 2λ, λ)/
λ ∈ R}.

5. Le système est équivalent à :

2x+ y − 3z = −1

7x− 4z = 3 L2 ← L2 + 2L1

11x− 10z = 1 L3 ← L3 + 3L1

⇐⇒



y + 2x− 3z = −1

7x− 4z = 3

−13x = −13 L3 ← 2L3 − 5L2
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⇐⇒



y − 3z + 2x = −1

−4z + 7x = 3

x = 1

⇐⇒



y = 0

z = 1

x = 1

Il y a une unique solution (1, 0, 1).

6. Le système est équivalent à :

14x+ 10z = 24 L1 ← L1 + 3L3

14x+ 20z = 34 L2 ← L2 + 3L3

−y + 4x+ 4z = 7

⇐⇒



10z = 10 L1 ← L2 − L1

14x+ 20z = 34

−y + 4x+ 4z = 7

⇐⇒



z = 1

x = 1

y = 1

L’unique solution du système est (1, 1, 1).

7. Le système est équivalent à :

x+ 2y + 3z = 3

−y + 2z = −5 L2 ← L2 − 2L1

−4y + 8z = −8 L3 ← L3 − 3L1

⇐⇒



x+ 2y + 3z = 3

−y + 2z = −5

0 = 12 L3 ← L3 − 4L2

Le système n’a pas de solution.
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8. Le système est équivalent à :

−5y − 5z = −5 L1 ← L1 − 2L2

x+ y + 2z = 3

y + z = 1 L3 ← L3 − L2

⇐⇒



0 = 0 L1 ← L1 + 5L3

x+ y + 2z = 3

y + z = 1

⇐⇒



0 = 0

x+ z = 2 L2 ← L2 − L3

y + z = 1

⇐⇒


x = −z + 2

y = −z + 1

L’ensemble solution est {(2− z, 1− z, z)/z ∈ R}.

9. Le système est équivalent à :

x+ 2y − 3z + 2t = 2

y − 2z + 2t = 1 L2 ← L2 − 2L1

−2y + 4z − 4t = −2 L3 ← L3 − 3L1

⇐⇒



x+ z − 2t = 0 L1 ← L1− 2L2

y − 2z + 2t = 1

0 = 0 L3 ← L3 + 2L2

⇐⇒


x = −z + 2t

y = 2z − 2t+ 1

L’ensemble solution est {(−z + 2t, 2z − 2t+ 1, z, t)/(z, t) ∈ R2}.

10. Le système est équivalent à :
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

x+ y − z = 1

y + (α+ 2)z = 1 L2 ← L2 − 2L1

(α− 1)y + 4z = 1 L3 ← L3 − L1

⇐⇒



x+ y − z = 1

y + (α+ 2)z = 1

(4− (α− 1)(α+ 2))z = 1− (α− 1) L3 ← L3 − (α− 1)L2

⇐⇒



x+ y − z = 1

y + (α+ 2)z = 1

(6− α− α2)z = 2− α

Or 6− α− α2 = −(α− 2)(α+ 3).
On doit distinguer 3 cas.

a. Si α = 2, alors le système est équivalent à

x+ y − z = 1

y + 4z = 1

0 = 0

⇐⇒


x− 5z = 0 L1 ← L1 − L2

y + 4z = 1
Ainsi, l’ensemble solution est {(5z,−4z + 1, z)/z ∈ R}.

b. Si α = −3, le système est équivalent à

x+ y − z = 1

y − z = 1

0 = 5
Ce système n’a pas de solution.

c. Dans les autres cas, le système est équivalent à

x+ y − z = 1

y + (α+ 2)z = 1

z = 1
α+ 3
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⇐⇒



x = 1

y = 1− α+ 2
α+ 3 = 1

α+ 3

z = 1
α+ 3

Le système a alors une unique solution,
(

1, 1
α+ 3 ,

1
α+ 3

)

Exercice 2. Ce genre de problème devra être résolu rapidement et efficacement l’an
prochain, donc on commence à s’entrainer dès maintenant. N’oubliez pas qu’il est interdit
toute opération de la forme

L1 ← (1− λ)L1 + L2

pour essayer d’éliminer une inconnue, car on ne sait pas si 1 − λ = 0. Par contre, on
peut tout à fait faire

L2 ← (1− λ)L1 + L2

qui enlèvera la même inconnue et ne pose aucun problème : si λ = 1, on fait L2 ← L2
ce qui n’est pas interdit !

(S1)Le système est équivalent à
(4− (2− λ)(−1− λ))y = 0 L1 ← L1 − (2− λ)L2

x+ (−1− λ)y = 0

⇐⇒


x+ (−1− λ)y = 0

(6 + λ− λ2)y = 0 L1 ↔ L2

Le système est échelonné. Il admet une infinité de solutions lorsque au moins un de
ses coefficients diagonaux est nul, ce qui n’arrive que lorsque

−λ2 + λ+ 6 = 0.

C’est-à-dire lorsque λ = −2 ou λ = 3.

Si λ = −2, le système est équivalent à


x+ y = 0

0 = 0

L’ensemble solution est alors {x(−1, 1)/x ∈ R}.

Si λ = 3, le système est équivalent à


x− 4y = 0

0 = 0

L’ensemble solution est alors {x(4, 1)/x ∈ R}.

(S2)Le système est déjà échelonné. Il admet une infinité de solutions lorsque au moins un
de ses coefficients diagonaux est nul, ce qui n’arrive que lorsque λ = 1. Dans ce cas,
l’ensemble solution est {x(1, 0)/x ∈ R}.

102 / 359



(S3)Le système est équivalent à
(−18− (5− λ)(−6− λ))y = 0 L1 ← 3L1 − (5− λ)L2

3x+ (−6− λ)y = 0

⇐⇒


3x+ (−6− λ)y = 0

(12− λ− λ2)y = 0 L1 ↔ L2

Le système est échelonné. Il admet une infinité de solutions lorsque au moins un de
ses coefficients diagonaux est nul, ce qui n’arrive que lorsque

12− λ− λ2 = 0
soit pour λ = 3 ou λ = −4.

Si λ = −4, le système est équivalent à


3x− 2y = 0

0 = 0 L1 ↔ L2

Ainsi, l’ensemble solution est
{(

2
3y, y

)
/y ∈ R

}
= {α(2, 3)/α ∈ R}.

Si λ = 3, le système est équivalent à


3x− 9y = 0

0 = 0 L1 ↔ L2

Ainsi, l’ensemble solution est {(3y, y)/y ∈ R} = {y(3, 1)/α ∈ R}.

(S4)Le système est équivalent à

(−1 + λ)y + (2 + λ− λ2)z = 0 L1 ← L1 − (1− λ)L3

(1− λ)y = 0

x+ y − λz = 0

Réorganisons un peu les lignes et les colonnes

⇐⇒



x− λz + y = 0

(2 + λ− λ2)z + (−1 + λ)y = 0

(1− λ)y = 0

Le système a une infinité de solution si et seulement si un de ses coefficients diagonaux
est nul, donc si

1− λ = 0 ou 2 + λ− λ2 = 0.

On trouve trois valeurs pour λ : −1, 1 ou 2.

Pour λ = −1, le système est équivalent à



x+ z + y = 0

−2y = 0

2y = 0
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On trouve alors comme ensemble solution {(−z, 0, z)/z ∈ R} = {z(−1, 0, 1)/z ∈ R}.

Pour λ = 1, le système est équivalent à



x− z + y = 0

2z = 0

0 = 0

On trouve alors comme ensemble solution {(−y, y, 0)/y ∈ R} = {y(−1, 1, 0)/y ∈ R}.

Pour λ = 2, le système est équivalent à



x− 2z + y = 0

y = 0

−y = 0

On trouve alors comme ensemble solution {(2z, 0, z)/z ∈ R} = {z(2, 1, 0)/z ∈ R}.

(S5)Le système est équivalent à

(−4 + 1− 2λ+ λ2)y + (4 + 2− 2λ)z = 0 L1 ← 2L1 + (1− λ)L2

−2x+ (1− λ)y + 2z = 0

(−3 + λ)y + (3− λ)z = 0 L3 ← L3 − L2

⇐⇒



−2x+ (1− λ)y + 2z = 0

(−3 + λ)y + (3− λ)z = 0 L1 ← L2 ← L3 ← L1

(−3− 2λ+ λ2)y + (6− 2λ)z = 0

⇐⇒



−2x+ (1− λ)y + 2z = 0

(−3 + λ)y + (3− λ)z = 0

(3− 4λ+ λ2)y = 0 L3 ← L3 − 2L2

⇐⇒



−2x+ 2z + (1− λ)y = 0

(3− λ)z + (−3 + λ)y+ = 0

(3− 4λ+ λ2)y = 0 L3 ← L3 − 2L2

Le système a une infinité de solution si et seulement si un de ses coefficients diagonaux
est nul, donc si

3− 4λ+ λ2 = 0 ou 3− λ = 0.

L’équation de degré deux admet 1 comme racine évidente, et comme le produit fait
3, l’autre est 3.
Ainsi, le système a une infinité de solution si et seulement

λ = 1 ou λ = 3.
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Dans le cas λ = 1, le système est équivalent à

−2x+ 2z = 0

2z − 2y = 0

0 = 0

⇐⇒


x = z

y = z

L’ensemble solution est {(z, z, z)/z ∈ R} = {z(1, 1, 1)/z ∈ R}.
Dans le cas λ = 3, le système est équivalent à

−2x− 2y + 2z = 0

0 = 0

0 = 0

⇐⇒ z = x+ y

L’ensemble solution est {(x, y, x+ y)/y ∈ R} = {x(1, 0, 1) + y(0, 1, 1)/z ∈ R}.

9 Équations différentielles
1. Premier ordre
Exercice 1. 1. Il s’agit d’une équation différentielle linéaire homogène du premier ordre.

Ses solutions sont les fonctions y telles qu’il existe λ ∈ R avec ∀x ∈ R, y(x) = λe3x.

De plus, on a y(0) = −2 ce qui est équivalent à λ = −2.
Ainsi, la fonction recherchée est la fonction y définie sur R par ∀x ∈ R, y(x) = −2e3x.

2. Il s’agit d’une équation différentielle linéaire du premier ordre.
L’équation homogène associée est ∀x ∈ R, y′(x) + 2y(x) = 0 Ses solutions sont les
fonctions y0 telles qu’il existe λ ∈ R avec ∀x ∈ R, y0(x) = λe−2x.

Cherchons une solution particulière yp sous forme d’une constante, c’est-à-dire telle
qu’il existe a ∈ R pour que ∀x ∈ R, yp(x) = a.

Ainsi, on a y′p(x) + 2yp(x) = 6 ⇐⇒ 2a = 6 ⇐⇒ a = 3. Une solution particulière est
donc la fonction yp telle que ∀x ∈ R, yp(x) = 3.
Les solutions de l’équation sont donc les fonctions y telles qu’il existe λ ∈ R définies
par ∀x ∈ R, y(x) = 3 + λe−2x.

De plus, on a y(0) = 0 ce qui est équivalent à 3 + λ = 0⇐⇒ λ = −3.
Ainsi, la fonction recherchée est la fonction y définie sur R par ∀x ∈ R, y(x) =
3− 3e−2x.

3. Il s’agit d’une équation différentielle linéaire du premier ordre.
L’équation homogène associée est ∀x ∈ R, y′(x) + y(x) = 0 Ses solutions sont les
fonctions y0 telles qu’il existe λ ∈ R avec ∀x ∈ R, y0(x) = λe−x.

Cherchons une solution particulière yp telle qu’il existe a ∈ R définie par ∀x ∈ R,
yp(x) = aex.

Ainsi, on a y′p(x) + yp(x) = 4ex ⇐⇒ 2a = 4 ⇐⇒ a = 2. Une solution particulière est
donc la fonction yp telle que ∀x ∈ R, yp(x) = 2ex.
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Les solutions de l’équation sont donc les fonctions y telles qu’il existe λ ∈ R définies
par ∀x ∈ R, y(x) = 2ex + λe−x.

De plus, on a y(0) = −2 ce qui est équivalent à 2 + λ = −2⇐⇒ λ = −4.
Ainsi, la fonction recherchée est la fonction y définie sur R par ∀x ∈ R, y(x) =
2ex − 4e−x.

4. Il s’agit d’une équation différentielle linéaire homogène du premier ordre. On peut la
réécrire sous la forme : ∀x ∈]− 1,+∞[, y′(x) + x

1 + x
y(x) = 0.

Cherchons une primitive de x 7→ x

1 + x
. On peut remarquer que x

1 + x
= 1 + x− 1

1 + x
=

1− 1
1 + x

ce qui est facile à primitiver, mais sinon, déterminons, pour x ∈]− 1,+∞[,∫ x

0

t

1 + t
dt. Posons le changement de variable de classe C1 sur ]− 1 +∞[, u = 1 + t

donc du = dt. Ainsi,∫ x

0

t

1 + t
dt =

∫ x+1

1

u− 1
u

du =
∫ x+1

1
1− 1

u
du = [u− ln(u)]x+1

1 = x+1−ln(x+1)−1.

Une primitive de x 7→ x

1 + x
est donc x 7→ x− ln(x+ 1).

Ainsi, les solutions de l’équation sont les fonctions y0 telles qu’il existe λ ∈ R avec
∀x ∈ R, y0(x) = λe−(x−ln(1+x)) = λ(x+ 1)e−x.

De plus, on a y(0) = 2 ce qui est équivalent à λ = 2.
Ainsi, la fonction recherchée est la fonction y définie sur R par ∀x ∈ R, y(x) =
2(x+ 1)e−x.

5. Il s’agit d’une équation différentielle linéaire du premier ordre. On peut la réécrire
sous la forme : ∀x ∈]− 2,+∞[, y′(x) + 1

2 + x
y(x) = 1

2 + x

L’équation homogène associée est ∀x ∈]−2,+∞[, y′(x)+ 1
2 + x

y(x) = 0 Ses solutions

sont les fonctions y0 telles qu’il existe λ ∈ R avec ∀x ∈ R, y0(x) = λe− ln(2+x) = λ

2 + x
.

Cherchons une solution particulière yp sous la forme yp(x) = λ(x)
2 + x

où λ est une
fonction de classe C1(]− 2,+∞[).

Ainsi, on a (2 + x)y′p(x) + yp(x) = 1 ⇐⇒ (2 + x)λ
′(x)

2 + x
− (2 + x) λ(x)

(2 + x)2 + λ(x)
2 + x

=

1⇐⇒ λ′(x) = 1.
On peut donc prendre λ(x) = x, et ainsi, une solution particulière est donc la fonction
yp telle que ∀x ∈ R, yp(x) = x

2 + x
.

Les solutions de l’équation sont donc les fonctions y telles qu’il existe λ ∈ R définies
par ∀x ∈ R, y(x) = x

2 + x
+ λ

2 + x
= x+ λ

2 + x
.

De plus, on a y(0) = 1 ce qui est équivalent à λ

2 = 2⇐⇒ λ = 4.

Ainsi, la fonction recherchée est la fonction y définie sur R par ∀x ∈ R, y(x) = x+ 4
x+ 2 .

Remarquons que nous aurions pu remarquer que la fonction constante égale à 1 était
solution particulière ce qui nous aurait donné une forme un peu différente mais le
même résultat final.
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Exercice 2. 1. Résolvons l’équation différentielle homogène associée, y′(x)−2y(x) = 0.
Les solutions sont les fonctions y0 où il existe λ ∈ R tel que ∀x ∈ R, y0(t) = λe2x.

Revenons à notre problème. Cherchons une solution particulière sous la forme yp(t) =
λ(x)e2x où λ est une fonction C1(R).
Dans ce cas, on a y′p(x) = (λ′(x) + 2λ(x))e2x donc

y′p(x)− 2yp(x) = λ′(x)e2x.

Ainsi, yp est solution si et seulement si ∀x ∈ R, λ′(x)e2x = (x− 1)e2x, autrement dit
λ′(x) = x− 1. On prend alors λ(x) = 1

2x
2 − x, donc yp(x) =

(1
2x

2 − x
)
e2x.

On trouve que l’ensemble des solutions est constitué par les fonctions y définies sur
R par ∀x ∈ R y(x) =

(1
2x

2 − x+ λ

)
e2x où λ ∈ R.

2. Résolvons l’équation différentielle homogène associée, y′(x)+2y(x) = 0. Les solutions
sont les fonctions y0 où il existe λ ∈ R tel que ∀x ∈ R, y0(t) = λe−2x.

Revenons à notre problème. Cherchons une solution particulière sous la forme yp(t) =
λ(x)e−2x où λ est une fonction C1(R).
Dans ce cas, on a y′p(x) = (λ′(x)− 2λ(x))e−2x donc

y′p(x)− 2yp(x) = λ′(x)e−2x.

Ainsi, yp est solution si et seulement si ∀x ∈ R, λ′(x)e−2x = x2 − 2x + 3, autrement
dit λ′(x) = (x2 − 2x+ 3)e2x.
Cherchons alors une primitive de x 7→ (x2 − 2x+ 3)e2x.

Par exemple, considérons λ définie par ∀x ∈ R, λ(x) =
∫ x

0
(t2 − 2t+ 3)e2tdt.

Posons u, v deux fonctions C1(R) définies par

u(t) = t2 − 2t+ 3 u′(t) = 2t− 2

v′(t) = e2t v(t) = 1
2e

2t

On a alors
λ(x) =

[
t2 − 2t+ 3

2 e2t

]x

0
−
∫ x

0
(t− 1)e2tdt.

Faisons encore une intégration par parties, pour calculer cette dernière intégrale. Po-
sons u, v deux fonctions C1(R) définies par

u(t) = t− 1 u′(t) = 1

v′(t) = e2t v(t) = 1
2e

2t

Ainsi,

λ(x) = x2 − 2x+ 3
2 e2x − 3

2 −
[
t− 1

2 e2t
]x

0
+
∫ x

0

1
2e

2tdt.
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Soit
λ(x) = x2 − 2x+ 3

2 e2x − 3
2 −

x− 1
2 e2x − 1

2 +
[1

4e
2t
]x

0
.

On a donc

λ(x) = x2 − 3x+ 4
2 e2x − 2 + 1

4e
2x − 1

4 = 2x2 − 6x+ 9
4 e2x − 9

4 .

Pour plus de légèreté, on prendra λ(x) = 2x2 − 6x+ 9
4 e2x.

Ainsi, une solution particulière est la fonction yp définie sur R par, ∀x ∈ R,

yp(x) = 2x2 − 6x+ 9
4 .

On trouve que l’ensemble des solutions est constitué par les fonctions y définies sur

R par ∀x ∈ R y(x) = 2x2 − 6x+ 9
2 + λe−2x où λ ∈ R.

On se permettra de remarquer que si la méthode de variation de la constante marche
très bien dans certains cas, il faut pas mal travailler dans d’autres. Ici, il aurait
été nettement plus rapide de chercher une solution particulière sous la forme d’un
polynôme de degré 2.

Exercice 3. La modélisation amène à l’existence d’un réel α tel que y′(t) = αy(t) où t
est exprimé en minutes et y(t) est exprimé en gramme.
Ainsi, il existe une constante K telle que, ∀t ∈ R, y(t) = Keαt. On peut même remarquer
que K = y(0) = 20, donc y(t) = 20eαt.
Ensuite, on sait que nous avons que y(5) = 10, soit 20e5α = 10.
Ainsi, on obtient α = − ln(2)

5 .

Ensuite, on cherche t1 tel que y(t1) = 1 ce qui se traduit par 20eαt1 = 1, donc

t1 = − ln(20)
α

= 5ln(20)
ln(2) .

Exercice 4. Ici, la modélisation amène à l’existence d’un réel α tel que y′(t) = αy(t)
où t est exprimé en heures.
Ainsi, il existe une constante K telle que, ∀t ∈ R, y(t) = Keαt. On peut même remarquer
que K = y(0).
Ensuite, on sait que nous avons que y(50) = 2y(0), soit y(0)e50α = 2y(0).
Ainsi, on obtient α = ln(2)

50 .

Ensuite, on cherche t1 tel que y(t1) = 3y(0) ce qui se traduit par eαt1 = 3, donc

t1 = ln(3)
α

= 50ln(3)
ln(2) .

Exercice 5. Remarquons que ∀x ∈ R∗+, x ̸= 0, donc l’équation est équivalente à

y′(x) + 2
x
y(x) = 1

1 + x2 .
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Résolvons l’équation homogène associée, y′(x) + 2
x
y(x) = 0.

Une primitive de x 7→ 2
x est x 7→ 2 ln(x) car ∀x ∈]0,+∞[, x > 0.

Les solutions de l’équation homogène associée sont donc les fonctions y0 définies sur R∗+
par

∀x ∈ R∗+, y0(x) = λe−2 ln(x) = λ

x2

où λ ∈ R.
Cherchons une solution particulière yp telle que ∀x ∈]0,+∞[, yp(x) = λ(x)

x2 où λ ∈
C1(R∗+).
On a alors

y′p(x) + 2
x
yp(x) = 1

x2 + 1

⇐⇒ λ′(x)
x2 − 2λ(x)

x3 + 2
x

λ(x)
x2 = 1

x2 + 1

⇐⇒ λ′(x)
x2 = 1

x2 + 1

⇐⇒ λ′(x) = x2

x2 + 1

⇐⇒ λ′(x) = x2 + 1− 1
x2 + 1

⇐⇒ λ′(x) = 1− 1
x2 + 1 .

Or une primitive de x 7→ 1− 1
x2 + 1 est x 7→ x− arctan(x).

Ainsi, on prend
∀x ∈ R, yp(x) = x− arctan(x)

x2 .

Ainsi, les solutions sont les fonctions y définies sur R par

∀x ∈ R, y(x) = x− arctan(x) + λ

x2 , où λ ∈ R.

Exercice 6. Nous allons tout d’abord nous placer sur ]− 1,+∞[. Sur cet intervalle, on
a 1 + x ̸= 0, donc l’équation est équivalente à

∀x ∈]− 1,+∞[, y′(t)− 1
x+ 1y(x) = 0.

Les solutions sont les fonctions y de la forme y(x) = λeln(x+1) = λ(x+ 1) où λ ∈ R.
Sur l’intervalle ]−∞,−1[, on a 1 + x < 0, donc l’équation est équivalente à

∀x ∈]− 1,+∞[, y′(t)− 1
x+ 1y(x) = 0.

Les solutions sont les fonctions y de la forme y(x) = µeln(|x+1|) = µ |x+ 1| = −µ(x+ 1)
où µ ∈ R.
Remarquons que sans la moindre perte de généralité, on peut prendre y(x) = µ(x+ 1).
Par ailleurs, en −1, on a 0y′(−1) = y(−1) donc y(−1) = 0.
Ainsi, les fonctions solutions semblent être de la forme

y(x) =


λ(x+ 1) si x > −1
0 si x = −1
µ(x+ 1) si x < −1.
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où λ et µ sont deux réels.
Ainsi, y est C1 sur ]− 1,+∞[ et sur ]−∞,−1[ et on a

y′(x) =
{
λ si x > −1
µ si x < −1.

Pour que y soit C1 sur R, la dérivée doit être continue en −1 donc les limites à droite et
à gauche doivent être les mêmes, ce qui donne λ = µ
En résumé les solutions de l’équation différentielles sont les fonctions y de la forme
y(x) = λ(x+ 1) avec λ ∈ R. Elles sont bien C1(R).

Exercice 7. 1. Sur cet intervalle, on a x ̸= 0, donc l’équation est équivalente à

∀x ∈ R∗+, y′(t)− 2
x
y(x) = x.

L’équation homogène associée est

∀x ∈ R∗+, y′(t)− 2
x
y(x) = 0.

Les solutions sont les fonctions y0 de la forme y(x) = λe2 ln(x) = λx2 où λ ∈ R.
Cherchons une solution particulière sous la forme yp(x) = λ(x)x2 où λ est une fonction
C1(R∗+).
On a alors ∀x ∈ R∗+,

y′p(t)− 2
x
yp(x) = x

⇐⇒ λ′(x)x2 + 2xλ(x)− 2
x
λ(x)x2 = x

⇐⇒ λ′(x)x2 = x

⇐⇒ λ′(x) = 1
x
.

On prend donc λ(x) = ln(x) puis yp(x) = x2 ln(x).
On peut donc conclure que les solutions sont les fonctions y définies sur R∗+ par

∀x ∈ R∗+, y(x) = x2(λ+ ln(x)), où λ ∈ R.

2. C’est exactement la même chose :
Sur cet intervalle, on a x ̸= 0, donc l’équation est équivalente à

∀x ∈ R∗−, y′(t)− 2
x
y(x) = x.

L’équation homogène associée est

∀x ∈ R∗−, y′(t)− 2
x
y(x) = 0.

Les solutions sont les fonctions y0 de la forme y(x) = µe2 ln(|x|) = µx2 où λ ∈ R.
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Cherchons une solution particulière sous la forme yp(x) = µ(x)x2 où µ est une fonction
C1(R∗−).
On a alors ∀x ∈ R∗−,

y′p(t)− 2
x
yp(x) = x

⇐⇒ µ′(x) = 1
x
.

On prend donc µ(x) = ln(−x) puis yp(x) = x2 ln(−x).
On peut donc conclure que les solutions sont les fonctions y définies sur R∗− par

∀x ∈ R∗−, y(x) = x2(µ+ ln(|x|)), où µ ∈ R.

3. On remarque rapidement que pour x = 0, l’équation ne donne pas d’information sur
la valeur de y(0).
On a donc, ∀x ∈ R,

y(x) =


x2(λ+ ln(|x|)) si x > 0
ν si x = 0
x2(µ+ ln(|x|)) si x < 0

où λ, µ et ν sont trois réels.
Remarquons que les limites à gauche et à droite en 0 valent 0 donc pour que y soit
continue, on doit avoir ν = 0.
Remarquons que le taux d’accroissement à droite est

y(0 + h)− y(0)
h

= h(λ+ ln(h)) −−−→
h→0

0

et de même à gauche. Ainsi, y est dérivable en 0 et y′(0) = 0.
Enfin, regardons la dérivée de y. On a ∀x ∈ R,

y′(x) =


2x(λ+ ln(|x|)) + x si x > 0
0 si x = 0
2x(µ+ ln(|x|)) + x si x < 0

Il est clair que la dérivée est bien continue en 0.
Ainsi, les fonctions y solutions sont les fonctions pour lesquelles il existe deux réels λ
et µ tels que, ∀x ∈ R,

y(x) =


x2(λ+ ln(|x|)) si x > 0
0 si x = 0
x2(µ+ ln(|x|)) si x < 0

On remarquera que contrairement à d’autres cas, on a bien deux paramètres différents.
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Exercice 8. 1. Sur cet intervalle, on a 1− x2 ̸= 0, donc l’équation est équivalente à

∀x ∈]−∞,−1[, y′(t) + −x
1− x2 y(x) = 0.

Les solutions sont les fonctions y de la forme y(x) = λ1e
− 1

2 ln(|1−x2|) = λ1√
|1− x2|

où

λ ∈ R.

2. De la même façon, les solutions sont les fonctions y de la forme y(x) = λ2e
− 1

2 ln(|1−x2|) =
λ2√
|1− x2|

où λ ∈ R.

3. De la même façon, les solutions sont les fonctions y de la forme y(x) = λ3e
− 1

2 ln(|1−x2|) =
λ3√
|1− x2|

où λ ∈ R.

4. Un telle fonction y vérifie ∀x ∈ R \ {−1, 1},

y(x) =



λ1√
|1− x2|

si x < −1
λ2√
|1− x2|

si − 1 < x < 1
λ3√
|1− x2|

si x > 1

où λ1, λ2 et λ3 sont trois réels.
Pour qu’elles soient continues sur R, il faut qu’elles aient une limite finie en −1 et 1.
Si on ne prend pas λ1 = λ2 = λ3 = 0, ce n’est pas le cas. Une fois qu’on a remarqué
ça, on remarque que la seule solution doit être nulle sur chaque intervalle considéré,
et continue sur R donc nulle sur R tout entier.
On réalise donc que la seule fonction qui remplit les conditions est la fonction nulle.

Exercice 9. Plaçons-nous sur R∗+. On a alors ∀x ∈ R∗+,

3
2x

∫ x

0
f(t)dt = f(x).

Ainsi, si f est continue sur R∗+ alors x 7→
∫ x

0 f(t)dt est C1 donc par produit x 7→
3

2x

∫ x
0 f(t)dt aussi. Ainsi, f ∈ C1(R∗+).

En dérivant l’équation de départ, on récupère

∀x ∈ R∗+, 3f(x) = 2f(x) + 2xf ′(x).

Ou encore
∀x ∈ R∗+, f ′(x)− 1

2xf(x) = 0.

Les solutions sont les fonctions de la forme f(x) = λe
1
2 ln(x) = λ

√
x où λ ∈ R.

De la même façon, sur R∗−, on récupère

∀x ∈ R∗−, f ′(x)− 1
2xf(x) = 0.
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Les solutions sont les fonctions de la forme f(x) = µe
1
2 ln(|x|) = µ

√
|x| où µ ∈ R.

Ainsi, les fonctions continues sont les fonctions qui vérifient ∀x ∈ R∗,

f(x) =
{
λ
√
x si x > 0

µ
√
−x si x < 0

où λ et µ sont deux réels.
Enfin, pour que f soit continue, il faut que f(0) = 0. Cela permet de conclure. ∀x ∈ R∗,

f(x) =


λ
√
x si x > 0

0 si x = 0
µ
√
−x si x < 0

où λ et µ sont deux réels.

Exercice 10. 1. Puisque y ne s’annule pas, on a − y
′(x)
y2(x) = 3.

Soit x > 0, en intégrant de 0 à x, on obtient∫ x

0
− y
′(t)
y2(t)dt =

∫ x

0
3dt

Autrement dit 1
y(x) −

1
y(0) = 3x.

Ainsi on a, ∀x ∈ R+, y(x) = 2
6x+ 1.

2. On appliquera exactement la même méthode que ci-dessus pour obtenir ∀x ∈ R+,
y(x) = 1

2x+ 1.

Exercice 11. On pose ∀x ∈ R+, z(x) = 1
y(x) . Ainsi, z est bien C1(R+) (inverse de

fonction C1 qui ne s’annule pas).

On a ainsi, ∀x ∈ R+, z′(x) = − y
′(x)
y2(x) = −

y(x)(1− y(x)
K )

y2(x) .

Cela se simplifie en
z′(x) = − 1

y(x) + 1
K

= −z(x) + 1
K
.

On reconnait une équation linéaire du première ordre à coefficients constants, dont une
solution particulière est la fonction définie par zp(x) = 1

K
et les solutions de l’équation

homogène associée sont z0(x) = λe−x, où λ ∈ R.
Ainsi, il existe λ ∈ R+, tel que ∀x ∈ R, z(x) = λe−x + 1

K
. Or

λ+ 1
K

= z(0) = 1
y(0) = 2

K
,

donc λ = 1
K

.

Ainsi, ∀x ∈ R+, z(x) = 1
K

+ 1
K
e−x puis y(x) = K

1 + e−x
.
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Exercice 12. 1. Si y ne s’annule pas et ne vaut jamais 1
2.

On a alors ∀t ∈ R+,
−y′(t)

y(t)

ln
( 1

2y(t)

) = −1.

Comme y(0) = 1
8, et que y est continue, on a ∀t ∈ R+, 0 < y(t) <

1
2, donc

ln
( 1

2y(t)

)
> 0.

On reconnait ainsi une dérivée classique, donc si on intègre entre 0 et x > 0, on a,

∀x > 0,
∫ x

0

−y′(t)
y(t)

ln
( 1

2y(t)

)dt =
∫ x

0
−dt.

Autrement dit

∀x > 0,
[
ln
(

ln
( 1

2y(t)

))]x

0
= −x.

Donc

∀x > 0, ln
(

ln
( 1

2y(x)

))
− ln(ln(4)) = −x.

On a donc

∀x > 0, ln
(

ln
( 1

2y(x)

))
= ln(2 ln(2))− x.

Puis
∀x > 0, ln

( 1
2y(x)

)
= 2 ln(2)e−x.

Et enfin
∀x > 0, 1

2y(x) = e2 ln(2)e−x
.

Pour finir, on a
∀t > 0, y(t) = 1

2e
−2 ln(2)e−t

.

2. Supposons que la taille ne s’annule pas et qu’il s’agit d’une fonction C1(R+).

On pose ∀t ∈ R+, z(t) = 1
y(t) . Ainsi, z est bien C1(R+) (inverse de fonction C1 qui ne

s’annule pas).

On a ainsi, ∀t ∈ R+, z′(t) = − y
′(t)
y2(t) = −y(t)(1− 2y(t))

y2(t) .

Cela se simplifie en
z′(t) = − 1

y(t) + 2 = −z(t) + 2.
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On reconnait une équation linéaire du première ordre à coefficients constants, dont une
solution particulière est la fonction définie par zp(t) = 2 et les solutions de l’équation
homogène associée sont z0(t) = λe−t, où λ ∈ R.
Ainsi, il existe λ ∈ R+, tel que ∀t ∈ R, z(t) = λe−t + 2. Or

λ+ 2 = z(0) = 1
y(0) = 8,

donc λ = 6.

Ainsi, ∀t ∈ R+, z(t) = 2 + 6e−t puis y(t) = 1
2 + 6e−t

.

3. Non, dans les deux cas, on trouve la même limite.

4. Sans traitement il faut résoudre 1
4 = 1

2e
−2 ln(2)e−t , soit − ln(2) = −2 ln(2)e−t et fina-

lement t = ln(2).

Avec traitement, il faut résoudre 1
4 = 1

2 + 6e−t
soit e−t = 1

3 , soit t = ln(3).

On aura donc gagné ln(3)− ln(2) mois 2.

2. Second ordre
Exercice 13. 1. Il s’agit d’une équation différentielle linéaire du second ordre.

Résolvons l’équation caractéristique associée, X2 +X − 2 = 0. Il s’agit d’un trinôme
du second degré dont 1 est racine évidente. Le produit des racines fait −2 donc l’autre
est −2.
Ainsi, les solutions de l’équation différentielle homogène associée sont les fonctions
telles qu’il existe (λ, µ) ∈ R2 définies par y0(x) = λex + µe−2x.

Cherchons une solution particulière sous la forme yp(x) = a cos(x) + b sin(x) avec
(a, b) ∈ R2.
Or y′p(x) = −a sin(x) + b cos(x) et y′′p(x) = −a cos(x)− b sin(x).
Ainsi, on a

y′′p(x)+y′p(x)−2yp(x) = (−a cos(x)−b sin(x))+(−a sin(x)+b cos(x))−2(a cos(x)+b sin(x))

Ainsi, on doit avoir

(−3a+ b) cos(x) + (−a− 3b) sin(x) = 10 cos(x).

Résolvons{
−3a +b = 10
−a −3b = 0 ⇐⇒

L2←L2+3L1

{
−3a +b = 10
−10a = 30 ⇐⇒

{
b = 1

a = −3

Ainsi, une solution particulière est la fonction yp définie par, ∀x ∈ R, yp(x) =
−3 cos(x) + sin(x).
Ses solutions sont les fonctions y telles qu’il existe (λ, µ) ∈ R2 avec

∀x ∈ R, y(x) = −3 cos(x) + sin(x) + λex + µe−2x.

2. En pratique, on utilise en général le même modèle avec ou sans traitement, c’est en général les
constantes qui varient, mais je souhaitais faire une comparaison de deux modèles
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De plus, on a y(0) = −3⇐⇒ −3λ+ µ = −3⇐⇒ λ+ µ = 0.
Ensuite, ∀x ∈ R, y′(x) = 3 sin(x) + cos(x) + λex − 2µe−2x, donc

y′(0) = 4⇐⇒ 1 + λ− 2µ = 4⇐⇒ λ− 2µ = 3.

Cela revient au système

{
λ +µ = 0
λ −2µ = 3 ⇐⇒

L2←L2−L1

{
λ +µ = 0
−3µ = 3 ⇐⇒

{
λ = 1

µ = −1

Ainsi, la fonction recherchée est la fonction y définie sur R par

∀x ∈ R, y(x) = ex − e−2x − 3 cos(x) + sin(x).

2. Il s’agit d’une équation différentielle linéaire du second ordre.
Résolvons l’équation caractéristique associée, X2 + 4X + 4 = 0⇐⇒ (X + 2)2 = 0. Il
s’agit d’un trinôme du second degré avec une seule racine −2.
Ainsi, les solutions de l’équation différentielle homogène associée sont les fonctions
telles qu’il existe (λ, µ) ∈ R2 définies par y0(x) = (λx+ µ)e−2x.

Cherchons une solution particulière sous la forme yp(x) = ax2e−2x avec a ∈ R.
Or

y′p(x) = 2axe−2x − 2ax2e−2x = a(2x− 2x2)e−2x

et
y′′p(x) = a(2− 4x)e−2x − 2a(2x− 2x2)e−2x = a(2− 8x+ 4x2)e−2x.

Ainsi, on a y′′p(x) + 4y′p(x) + 4yp(x) = 2ae−2x.

On doit avoir
2ae−2x = 4e−2x ⇐⇒ a = 2.

Ses solutions sont les fonctions y telles qu’il existe (λ, µ) ∈ R2 avec

∀x ∈ R, y(x) = 2x2e−2x + (λx+ µ)e−2x.

De plus, on a y(0) = 1⇐⇒ µ = 1.
Ensuite, ∀x ∈ R, y′(x) = (4x+ λ)e−2x − 2(2x2 + λx+ µ)e−2x = (−4x2 + (4− 2λ)x+
λ− 2µ)e−2x, donc

y′(0) = 1⇐⇒ λ− 2µ = 1⇐⇒ λ = 3.

Ainsi, la fonction recherchée est la fonction y définie sur R par

∀x ∈ R, y(x) = (2x2 + 3x+ 1)e−2x.

3. Il s’agit d’une équation différentielle linéaire du second ordre.
Résolvons l’équation caractéristique associée, X2 + 2X + 2 = 0. Il s’agit d’un trinôme
du second degré dont le discriminant ∆ = −4.

Il a deux racines conjuguées −2− 2i
2 = −1− i et −1 + i.

116 / 359



Ainsi, les solutions de l’équation différentielle homogène associée sont les fonctions
telles qu’il existe (λ, µ) ∈ R2 définies par y0(x) = e−x(λ cos(x) + µ sin(x)).
Cherchons une solution particulière sous la forme yp(x) = ax2 + bx+ c avec (a, b, c) ∈
R3.
Or y′p(x) = 2ax+ b et y′′p(x) = 2a.
Ainsi, on a

y′′p(x) + 2y′p(x) + 2yp(x) = 2ax2 + (4a+ 2b)x+ (2a+ 2b+ 2c).

Or, on doit avoir ∀x ∈ R, 2ax2 + (4a + 2b)x + (2a + 2b + 2c) = 2x2 + 6x + 6. Par
unicité de l’écriture développée réduite d’un polynôme, cela revient au système


2a = 2
4a +2b = 6
2a +2b +2c = 6

⇐⇒


a = 1

b = 1
c = 1

Ses solutions sont les fonctions y telles qu’il existe (λ, µ) ∈ R2 avec

∀x ∈ R, y(x) = x2 + x+ 1 + e−x(λ cos(x) + µ sin(x)).

De plus, on a y(0) = 1⇐⇒ 1 + λ = 1⇐⇒ λ = 0.
Ainsi, la fonction recherchée est telle qu’il existe µ ∈ R définie par ∀x ∈ R, y(x) =
x2 + x+ 1 + µ sin(x)e−x.

Donc, ∀x ∈ R, y′(x) = 2x+ 1 + µ cos(x)e−2x − µ sin(x)e−x, donc

y′(0) = 2⇐⇒ 1 + µ = 2⇐⇒ µ = 1.

Ainsi, la fonction recherchée est la fonction y définie sur R par

∀x ∈ R, y(x) = x2 + x+ 1 + sin(x)e−x.

Exercice 14. Vous trouverez les résultats ci-dessous mais pour la rédaction, vous vous
rapporterez à l’exemple illustrant le principe de superposition dans le cours.

1. Résoudre sur R ∀x ∈ R, y′′(x) + y(x) = 0 {λ cos(x) + µ sin(x)/(λ, µ) ∈ R2}.

2. y(x) = 1
2x sin(x).

3. y(x) = −1
3 sin(2x).

4. {x 7→ λ cos(x) +
(1

2x+ µ

)
sin(x)− 1

3 sin(2x)/(λ, µ) ∈ R2}.

Exercice 15. Vous trouverez les résultats ci-dessous mais pour la rédaction, vous vous
rapporterez à l’exemple illustrant le principe de superposition dans le cours.

1. f(x) = − 4
65 cos(2x)− 7

65 sin(2x).

2. g(x) = 1
4xe

x.
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3. h(x) = 1
21e

4x.

4. {x 7→ λe−3x + µex − 4
65 cos(2x)− 7

65 sin(2x) + 1
4xe

x + 1
21e

4x/(λ, µ) ∈ R2}.

Exercice 16. Remarquons que si f est C1(R), alors par composition x 7→ f(−x) aussi.
Ainsi, f ′ est C1(R), donc f est en réalité C2(R).
Dérivons cette relation. Par composition, on obtient

∀x ∈ R, f ′′(x) = −f ′(−x).

En utilisant l’équation de départ, on obtient

∀x ∈ R, f ′′(x) = −f(x).

Autrement dit, les fonctions f qui satisfont cette égalité sont à chercher parmi les solu-
tions de l’équation différentielle

y′′ + y = 0.

Cette équation différentielle homogène très classique a pour équation caractéristique
associée X2 + 1 = 0 qui a deux racines i et −i. Ainsi, on sait qu’il existe λ et µ deux
réels tels que

∀x ∈ R, f(x) = λ cos(x) + µ sin(x).

Vérifions ces fonctions pour savoir si elles sont bien solutions. Si il existe λ et µ deux
réels tels que

∀x ∈ R, f(x) = λ cos(x) + µ sin(x),

on a alors
∀x ∈ R, f ′(x) = −λ sin(x) + µ cos(x).

Si on a ∀x ∈ R, f ′(x) = f(−x), alors on a

∀x ∈ R, −λ sin(x) + µ cos(x) = λ cos(−x) + µ sin(−x) = λ cos(x)− µ sin(x).

En prenant x = 0, on obtient λ = µ.
Ainsi, on a forcément ∀x ∈ R, f(x) = λ(cos(x) + sin(x)), et donc

f ′(x) = λ(cos(x)− sin(x)) = f(−x).

Les solutions sont donc les fonctions f avec λ ∈ R, telles que ∀x ∈ R,

f(x) = λ(cos(x) + sin(x)).

Exercice 17. 1. Il s’agit d’une équation homogène dont l’équation caractéristique as-
sociée est X2 − 1 = 0, donc l’ensemble des solutions est l’ensemble des fonctions qui
s’écrivent x 7→ λe−x + µex où λ et µ sont deux réels.

2. Remarquons que y(4) − 2y′′ + y = 0 est équivalent à (y′′ − y)′′ − (y′′ − y) = 0, donc
que la fonction z = y′′ − y est solution de l’équation précédente.
y est solution si et seulement si il existe deux réels λ et µ tels que ∀x ∈ R,

y′′(x)− y(x) = λex + µe−x.
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Il faut donc désormais résoudre y′′ − y = λe−x + µex.
On remarquera que l’équation homogène associée est l’équation de la question 1.
Cherchons une solution particulière sous la forme yp(x) = axex + bxe−x.
On a alors y′p(x) = (ax+ a)ex + (−bx+ b)e−x.
Et y′′p(x) = (ax+ 2a)ex + (bx− 2b)e−x.

Ainsi, y′′p(x)− yp(x) = 2aex − 2be−x. On peut ainsi prendre a = λ

2 et b = −µ2 .

Et une solution particulière est yp(x) = λ

2 e
x − µ

2 e
−x.

Ainsi, les solutions de l’équation sont les fonctions de la forme

y(x) = λ

2xe
x − µ

2xe
−x + λ′ex + µ′e−x

où λ, λ′, µ, µ′ sont 4 réels.
On peut plus simplement écrire que les solutions sont exactement les fonctions telles
qu’il existe 4 réels a, b, c, d avec

∀x ∈ R, y(x) = (ax+ b)ex + (cx+ d)e−x

3. Autres équations, pour s’entrainer
Exercice 18 (Equations homogènes). 1. Il est clair qu’il existe K ∈ R tel que, ∀t|inR,
y(t) = Ke3t.

Par ailleurs, comme y(0) = 2, on a K = 2. Ainsi, y est définie par, pour tout t ∈ R,
y(t) = 2e3t.

2. C’est équivalent à y′ − 4
3y = 0. Ainsi, il est clair qu’il existe K ∈ R tel que, ∀t|inR,

y(t) = Ke
4
3 t.

Par ailleurs, comme y(0) = −1, on a K = −1. Ainsi, y est définie par, pour tout
t ∈ R, y(t) = −e

4
3 t.

3. Il est clair qu’il existe K ∈ R tel que, ∀t|inR, y(t) = Ke3t.

Par ailleurs, comme y(3) = e9, on a Ke9 = e3. Ainsi, y est définie par, pour tout
t ∈ R, y(t) = e−6e3t = e3t−6.

4. Il est clair qu’il existe K ∈ R tel que, ∀t|inR, y(t) = Ke
5
7 t.

Ainsi, l’ensemble des fonctions solutions est {t 7→ λe
5
7 t/λ ∈ R}.

Exercice 19 (Equations non homogènes). 1. Résolvons l’équation différentielle homogène
associée, y′ − 2y = 0. Les solutions sont les fonctions y0 où il existe K ∈ R tel que
∀t ∈ R, y0(t) = Ke2t.

Revenons à notre problème. Une solution particulière est la fonction yp définie sur R

par ∀t ∈ R, yp(t) = −1
2 .

Ainsi, les solutions sont les fonctions y définies sur R où il existe K ∈ R tel que ∀t ∈ R,
y(t) = Ke2t − 1

2 .
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Par ailleurs, on a y(0) = K − 1
2 et y(0) = 2, donc K = 5

2 .

Ainsi, la solution recherchée est la fonction y définie sur R par, ∀t ∈ R, y(t) = 5
2e

2t− 1
2 .

2. Résolvons l’équation différentielle homogène associée, y′ − 4y = 0. Les solutions sont
les fonctions y0 où il existe K ∈ R tel que ∀t ∈ R, y0(t) = Ke4t.

Revenons à notre problème. Une solution particulière est la fonction yp définie sur R

par ∀t ∈ R, yp(t) = 3
4 .

Ainsi, les solutions sont les fonctions y définies sur R où il existe K ∈ R tel que ∀t ∈ R,
y(t) = Ke4t + 3

4 .

Par ailleurs, on a y(0) = K + 3
4 et y(0) = 2, donc K = 5

4 .

Ainsi, la solution recherchée est la fonction y définie sur R par, ∀t ∈ R, y(t) = 5
4e

4t+ 3
4 .

3. Résolvons l’équation différentielle homogène associée, 3y′− 4y = 0. Les solutions sont
les fonctions y0 où il existe K ∈ R tel que ∀t ∈ R, y0(t) = Ke

4
3 t.

Revenons à notre problème. Une solution particulière est la fonction yp définie sur R

par ∀t ∈ R, yp(t) = −3
4 .

Ainsi, les solutions sont les fonctions y définies sur R où il existe K ∈ R tel que ∀t ∈ R,
y(t) = Ke

4
3 t − 3

4 .

Par ailleurs, on a y(0) = K − 3
4 et y(0) = −1, donc K = −1

4 .

Ainsi, la solution recherchée est la fonction y définie sur R par, ∀t ∈ R, y(t) =
−1

4e
4
3 t − 3

4 .

4. Résolvons l’équation différentielle homogène associée, y′ − 2y = 0. Les solutions sont
les fonctions y0 où il existe K ∈ R tel que ∀t ∈ R, y0(t) = Ke2t.

Revenons à notre problème. Une solution particulière est la fonction yp définie sur R

par ∀t ∈ R, yp(t) = 3
2 .

Ainsi, les solutions sont les fonctions y définies sur R où il existe K ∈ R tel que ∀t ∈ R,
y(t) = Ke2t + 3

2 .

Ainsi l’ensemble solution est
{
x 7→ Ke2t + 3

2/K ∈ R
}
.

5. Résolvons l’équation différentielle homogène associée, y′ − 3y = 0. Les solutions sont
les fonctions y0 où il existe K ∈ R tel que ∀t ∈ R, y0(t) = Ke3t.

Revenons à notre problème. Une solution particulière est la fonction yp définie sur R

par ∀t ∈ R, yp(t) = −2
3 .

Ainsi, les solutions sont les fonctions y définies sur R où il existe K ∈ R tel que ∀t ∈ R,
y(t) = Ke3t − 2

3 .

De plus, on a ∀t ∈ R, y′(t) = 3Ke3t. Or y′(0) = 1, donc 3K = 1 soit K = 1
3 .
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Ainsi, la solution recherchée est la fonction y définie sur R par, ∀t ∈ R, y(t) = 1
3e

3t− 2
3 .

6. Résolvons l’équation différentielle homogène associée, y′ − 3
4y = 0. Les solutions sont

les fonctions y0 où il existe K ∈ R tel que ∀t ∈ R, y0(t) = Ke
3
4 t.

Revenons à notre problème. Une solution particulière est la fonction yp définie sur R
par ∀t ∈ R, yp(t) = −4.
Ainsi, les solutions sont les fonctions y définies sur R où il existe K ∈ R tel que ∀t ∈ R,
y(t) = Ke

3
4 t − 4.

Ainsi l’ensemble solution est
{
t 7→ Ke

3
4 t − 4/K ∈ R

}
.

7. Résolvons l’équation différentielle homogène associée, y′ − 4y = 0. Les solutions sont
les fonctions y0 où il existe K ∈ R tel que ∀x ∈ R, y0(x) = Ke4x.

Revenons à notre problème. Cherchons une solution particulière sous la forme yp(t) =
λex où λ ∈ R.

Dans ce cas, on a y′p(x) = λex donc y′p(x)−4yp(x) = −3λex. Ainsi, en prenant λ = −1
3,

on obtient une solution particulière. On a donc une solution particulière yp définie sur
R par yp(x) = −1

3e
x.

Ainsi, les solutions sont les fonctions y définies sur R où il existe K ∈ R tel que
∀x ∈ R, y(x) = Ke4x − 1

3e
x.

Par ailleurs, on a y(0) = K − 1
3 et y(0) = 2, donc K = 7

3 .

Ainsi, la solution recherchée est la fonction y définie sur R par,

∀x ∈ R, y(x) = 7
3e

4x − 1
3e

x.

8. Résolvons l’équation différentielle homogène associée, 3y′− 4y = 0. Les solutions sont
les fonctions y0 où il existe K ∈ R tel que ∀x ∈ R, y0(t) = Ke

4
3 x.

Revenons à notre problème. Cherchons une solution particulière sous la forme yp(t) =
ax+ b où a et b sont deux réels.
Dans ce cas, on a y′p(x) = a donc 3y′p(x)−4yp(x) = −4ax+ 3a−4b. Ainsi, en prenant

a = −1
4 puis b = 3

4a = − 3
16 , on obtient une solution particulière. On a donc une

solution particulière yp définie sur R par yp(x) = −1
4x−

3
16 .

Ainsi, les solutions sont les fonctions y définies sur R où il existe K ∈ R tel que
∀x ∈ R, y(x) = Ke

4
3 x − 1

4x−
3
16 .

Par ailleurs, on a y(0) = K − 3
16 et y(0) = −1, donc K = −13

16 .

Ainsi, la solution recherchée est la fonction y définie sur R par,

∀x ∈ R; y(x) = −13
16e

4
3 x − 1

4x−
3
16 .
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9. Résolvons l’équation différentielle homogène associée, y′ − 2y = 0. Les solutions sont
les fonctions y0 où il existe K ∈ R tel que ∀x ∈ R, y0(t) = Ke2x.

Revenons à notre problème. Cherchons une solution particulière sous la forme yp(t) =
(ax+ b)e2x où a et b sont deux réels.
Dans ce cas, on a y′p(x) = (2ax + a + 2b)e2x donc y′p(x) − 2yp(x) = ae2x. Ainsi, en
prenant a = 1 et b = 0, on obtient une solution particulière. On a donc une solution
particulière yp définie sur R par yp(x) = xe2x.

Ainsi, les solutions sont les fonctions y définies sur R où il existe K ∈ R tel que
∀x ∈ R, y(x) = (x+K)e2x.

Ainsi, l’ensemble solution est {x 7→ (x+K)e2x/K ∈ R}.

10. Résolvons l’équation différentielle homogène associée, y′ − 3y = 0. Les solutions sont
les fonctions y0 où il existe K ∈ R tel que ∀x ∈ R, y0(t) = Ke3x.

Revenons à notre problème. Cherchons une solution particulière sous la forme yp(t) =
ax2 + bx+ c où a, b et c sont trois réels.
Dans ce cas, on a y′p(x) = 2ax+b donc y′p(x)−3yp(x) = −3ax2 +(2a−3b)x+(b−3c).

Ainsi, en prenant a = −1
3 et b = 2

3a = −2
9, et enfin c = 1

3b = −2 2
27 on obtient

une solution particulière. On a donc une solution particulière yp définie sur R par
yp(x) = −1

3x
2 − 2

9x−
2
27 .

Ainsi, les solutions sont les fonctions y définies sur R où il existe K ∈ R tel que
∀x ∈ R, y(x) = Ke3x − 1

3x
2 − 2

9x−
2
27 .

Ainsi, l’ensemble solution est
{
x 7→ Ke3x − 1

3x
2 − 2

9x−
2
27/K ∈ R

}
.

11. Résolvons l’équation différentielle homogène associée, y′ − 3
4y = 0. Les solutions sont

les fonctions y0 où il existe K ∈ R tel que ∀x ∈ R, y0(t) = Ke
3
4 x.

Revenons à notre problème. Cherchons une solution particulière sous la forme yp(t) =
a cos(x) + b sin(x) où a et b sont deux réels.
Dans ce cas, on a y′p(x) = −a sin(x) + b cos(x) donc

y′p(x)− 3
4yp(x) =

(
b− 3

4a
)

cos(x) +
(
−a− 3

4b
)

sin(x).

Ainsi, on a une solution particulière lorsque
−3

4a+ b = 1

−a− 3
4b = 0

⇐⇒
{
−3a+ 4b = 4 L1 ← 4L1

4a+ 3b = 0 L2 ← −4L2

⇐⇒
{
−3a+ 4b = 4

25b = 16 L2 ← 3L2 + 4L1

⇐⇒
{
−75a = 36 L1 ← 25L1 − 4L2

25b = 16
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⇐⇒


a = −12

25

b = 16
25

On a donc une solution particulière yp définie sur R par yp(x) = −12
25 cos(x) +

16
25 sin(x).

Ainsi, les solutions sont les fonctions y définies sur R où il existe K ∈ R tel que
∀x ∈ R, y(x) = Ke

3
4 x − 12

25 cos(x) + 16
25 sin(x).

Ainsi, l’ensemble solution est
{
x 7→ Ke

3
4 x − 12

25 cos(x) + 16
25 sin(x)/K ∈ R

}
.

Exercice 20. 1. Aucune difficulté, les solutions sont les fonctions y définies sur R par

∀x ∈ R, y(x) = λ exp(− exp(x))

où λ est un réel.

2. Remarquons que ∀x ∈ R, 1 + x2 ̸= 0, donc l’équation est équivalente à

y′(x)− 2x
1 + x2 y(x) = x

1 + x2 .

Résolvons l’équation homogène associée, y′(x)− 2x
1 + x2 y(x) = 0.

Une primitive de x 7→ 2x
1+x2 est x 7→ ln(1 + x2) car ∀x ∈ R, 1 + x2 > 0.

Les solutions de l’équation homogène associée sont donc les fonctions y0 définies sur
R par

∀x ∈ R, y0(x) = λeln(1+x2) = λ(1 + x2)
où λ ∈ R.
Cherchons une solution particulière yp telle que ∀x ∈ R, yp(x) = λ(x)(1 + x2) où
λ ∈ C1(R).
On a alors

y′p(x)− 2x
1 + x2 yp(x) = x

1 + x2

⇐⇒ λ′(x)(1 + x2) + 2xλ(x)− 2x
1 + x2λ(x)(1 + x2) = x

1 + x2

⇐⇒ λ′(x)(1 + x2) = x

1 + x2

⇐⇒ λ′(x) = x

(1 + x2)2 .

Or une primitive de x 7→ x

(1 + x2)2 est x 7→ −1
2

1
1 + x2 .

Ainsi, on prend λ(x) = −1
2

1
1 + x2 donc

∀x ∈ R, yp(x) = −1
2 .
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Ainsi, les solutions sont les fonctions y définies sur R par

∀x ∈ R, y(x) = λ(1 + x2)− 1
2 , où λ ∈ R.

Bien entendu, si on avait remarqué qu’une fonction constante pouvait être solution
particulière, on aurait gagné pas mal de temps !

3. Remarquons que ∀x ∈]− 2,+∞[, 2 + x ̸= 0, donc l’équation est équivalente à

y′(x) + 1
2 + x

y(x) = 2
2 + x

.

Résolvons l’équation homogène associée, y′(x) + 1
2 + x

y(x) = 0.

Une primitive de x 7→ 1
2+x est x 7→ ln(2 + x) car ∀x ∈]− 2,+∞[, 2 + x > 0.

Les solutions de l’équation homogène associée sont donc les fonctions y0 définies sur
R par

∀x ∈ R, y0(x) = λe− ln(2+x) = λ

2 + x

où λ ∈ R.

Cherchons une solution particulière yp telle que ∀x ∈]2,+∞[, yp(x) = λ(x)
2 + x

où λ ∈
C1(]2,+∞[).
On a alors

y′p(x) + 1
2 + x

yp(x) = 2
2 + x

⇐⇒ λ′(x)
2 + x

− λ(x)
(2 + x)2 + 1

2 + x

λ(x)
2 + x

= 2
2 + x

⇐⇒ λ′(x)
2 + x

= 2
2 + x

⇐⇒ λ′(x) = 2.

Or une primitive de x 7→ 2 est x 7→ 2x.
Ainsi, on prend

∀x ∈ R, yp(x) = 2x
2 + x

.

Ainsi, les solutions sont les fonctions y définies sur R par

∀x ∈ R, y(x) = λ

2 + x
+ 2x

2 + x
, où λ ∈ R.

ou encore
∀x ∈ R, y(x) = λ+ 2x

2 + x
, où λ ∈ R.

Si on est très malin, on remarque que

λ+ 2x
2 + x

= λ− 4 + 2(2 + x)
2 + x

= λ− 4
2 + x

+ 2.

Et alors, qu’en réalité, on peut dire que les solutions sont les fonctions y définies sur
R par

∀x ∈ R, y(x) = λ

2 + x
+ 2, où λ ∈ R.
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On aurait pu remarquer qu’en réalité, une solution particulière était la fonction
constante égale à 2 ce qui nous aurait simplifié la vie.

4. Remarquons que ∀x ∈]− 1,+∞[, 1 + x ̸= 0, donc l’équation est équivalente à

y′(x) + 1
1 + x

y(x) = sin(x).

Résolvons l’équation homogène associée, y′(x) + 1
1 + x

y(x) = 0.

Une primitive de x 7→ 1
1 + x

est x 7→ ln(1 + x) car ∀x ∈]− 1,+∞[, 2 + x > 0.

Les solutions de l’équation homogène associée sont donc les fonctions y0 définies sur
R par

∀x ∈ R, y0(x) = λe− ln(1+x) = λ

1 + x
.

où λ ∈ R.

Cherchons une solution particulière yp telle que ∀x ∈] − 1,+∞[, yp(x) = λ(x)
1 + x

où
λ ∈ C1(]− 1,+∞[).
On a alors

y′p(x) + 1
1 + x

yp(x) = sin(x)

⇐⇒ λ′(x)
1 + x

− λ(x)
(1 + x)2 + 1

1 + x

λ(x)
1 + x

= sin(x)

⇐⇒ λ′(x)
1 + x

= sin(x)

⇐⇒ λ′(x) = sin(x)(1 + x).

Prenons λ(x) =
∫ x

0
sin(t)(1 + t)dt.

Posons u, v deux fonctions C1(]− 1,+∞[) définies par

u′(t) = sin(t) u(t) = − cos(t)

v(t) = 1 + t v′(t) = 1

Ainsi, on a
λ(x) = [− cos(t)(1 + t)]x0 +

∫ x

0
cos(t)dt.

Ainsi, on a

λ(x) = − cos(x)(1 + x) + 1 + [sin(t)]x0 = − cos(x)(1 + x) + sin(x) + 1.

Prenons plutôt λ(x) = − cos(x)(1 + x) + sin(x).
Ainsi, on a

∀x ∈ R, yp(x) = − cos(x) + sin(x)
1 + x

.
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Ainsi, les solutions sont les fonctions y définies sur R par

∀x ∈ R, y(x) = − cos(x) + sin(x) + λ

1 + x
, où λ ∈ R.

Exercice 21 (Equations homogènes). Vous trouverez les résultats ci-dessous, mais pour
la résolution on se rapportera aux exemples du cours.

1. y(t) = 4
3e

t + 2
3e
−2t.

2. {t 7→ λe−t + µe3t/(λ, µ) ∈ R2}.

3. y(t) = −4
5e
− 1

2 t + 9
5e

1
3 t.

4. y(t) = et − 1.

5. y(t) = tet.

6. y(t) = e−t.

7. {t 7→ λe
−1−

√
5

2 t + λe
−1+

√
5

2 t/(λ, µ) ∈ R2}.

8. y(t) = e
t
2

(
cos(
√

3
2 t) +

√
3

3 sin(
√

3
2 t)

)
.

9. y(t) = (−x+ 1)e2x.

10. Si y est impaire, y(−0) = −y(0) donc y(0) = 0. y(t) = sin(x).

11. {t 7→ e
√

2
2 x

(
λ cos(

√
2

2 x) + µ sin(
√

2
2 x)

)
/(λ, µ) ∈ R2}.

Exercice 22 (Equations non homogènes). Vous trouverez les résultats ci-dessous, mais
pour la résolution on se rapportera aux exemples du cours.

1. {x 7→ λe−2x + µex − 1
2/(λ, µ) ∈ R2}.

2. y : x 7→ e
x
2

(
3
2 cos(

√
7

2 x) +
√

7
14 sin(

√
7

2 x)
)
− 1

2 .

3. y : x 7→ e
√

2x
2

(
λ cos(

√
2

2 x) + µ sin(
√

2
2 x)

)
+ 1.

4. y : x 7→ e
x
2

(
cos(
√

3
2 x) +

√
3

3 sin(
√

3
2 x)

)
− 1.

5. {x 7→ e
x
2

(
λ cos(

√
7

2 x) + µ sin(
√

7
2 x)

)
+ 1

2e
x/(λ, µ) ∈ R2}.

6. {x 7→ e
√

2x
2

(
λ cos(

√
2

2 x) + µ sin(
√

2
2 x)

)
+ x2 + 2

√
2x+ 2/(λ, µ) ∈ R2}.

7. {x 7→ e
x
2

(
λ cos(

√
3

2 x) + µ sin(
√

3
2 x)

)
− 8

73 cos(3x)− 3
73 sin(3x)/(λ, µ) ∈ R2}.
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10 Matrices

Exercice 1. 1. a. K =

8 1 −1
9 8 −26

3
3 3 17


b. L = A+ C =

1 −4 4
0 1 −10

3
3 0 1


c. M = 6A =

 6 −12 18
12 0 −24
12 6 6


d. N = 0 =

0 0 0
0 0 0
0 0 0



e. P =

 0 −1 −5
−9 6 10
−1 −5 3



2. On a AB =

0 −5 13
4 2 −24
5 5 1

 ; BA =

 0 −6 0
7 −2 −9
10 5 5

 ; AD =

 8 20
−2 −14
1 10

 ; AE

est impossible ; EA =
(

6 −3 3
5 3 −10

)
; ED =

(
1 10
−4 0

)
; DE =

−1 7 4
−3 −4 −3
−3 11 6

 ;

EBD =
(
−4 15
−3 30

)
.

3. a. On trouve quasi-immédiatement que l’équation est équivalente à

X = 1
2(A−B) = 1

2

−1 −3 5
1 −3 −4
2 1 −4

 .

b. L’équation est équivalente à
2A− 6C = 2X

donc

X = A− 3C =

 1 4 0
8 −3 −6
−1 4 1



4. a. Le système est équivalent à{
X − Y = F

3X = F +G L2 ← L2 + L1

⇐⇒


Y = −2

3F + 1
3G

X = 1
3F + 1

3G L2 ← L2 + L1
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On a donc X =
(

1 1
3 −1

)
et Y =

(
0 −2
1 −2

)
.

b. Le système est équivalent à
X − Y + Z = ED

2Y + Z = −ED +H L2 ← L2 − L1
3Y − 2Z = −ED +G L3 ← L3 − L1

⇐⇒


X − Y + Z = ED

2Y + Z = −ED +H
7Z = ED − 2G+ 3H L3 ← −2L3 + 3L2

⇐⇒


7X − 7Y = 6ED + 2G− 3H L1 ← 7L1 − L3

14Y = −8ED + 2G+ 4H L2 ← 7L2 − L3
7Z = ED − 2G+H

⇐⇒


14X = 4ED + 6G− 2H L1 ← 2L1 + L2
14Y = −8ED + 2G+ 4H
7Z = ED − 2G+H

⇐⇒


7X = 2ED + 3G−H L1 ← 1

2L1
7Y = −4ED +G+ 2H
7Z = ED − 2G+H

Ainsi, X = 1
7

(
7 20
11 −13

)
; Y = 1

7

(
0 −40
27 −2

)
; Z = 1

7

(
−2 10
−16 9

)
.

Exercice 2. 1. Supposons qu’il en existe deux. On aurait alorsM = aA+bB = a′A+b′B
où a, b, a′, b′ sont des éléments de K.
On a alors (

a+ b a
b a+ b

)
=
(
a′ + b′ a′

b′ a′ + b′

)
.

Les coefficients antidiagonaux entrainent directement a = a′ et b = b′.
Ainsi, si on peut écrire M comme combinaison linéaire de (A,B), elle est unique.
Autrement dit, en utilisant un vocabulaire que vous verrez plus tard, la famille (A,B)
est libre.

2. Supposons qu’il existe a, b ∈ K tel que M = aA+ bB.
C’est équivalent à (

x y
z t

)
=
(
a+ b a
b a+ b

)
.

Ce qui est équivalent au système
a+ b = x

a = y
b = z

a+ b = t

⇐⇒


0 = x− y − z L1 ← L1 − L2 − L3
a = y
b = z
0 = −y − z + t L4 ← L4 − L2 − L3

Ainsi, il existe a, b ∈ K tel que M = aA+ bB si et seulement si{
x− y − z = 0
−y − z + t = 0
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⇐⇒
{
x = y + z
t = y + z

Autrement dit, vous verrez ultérieurement qu’on vient de démontrer que

Vect(A,B) =
{(

x y
z t

)
∈M2(K)/x = t = y + z

}
.

Exercice 3. C’est le classique !

On remarque que A = −3I3 +N où N =

0 2 1
0 0 1
0 0 0

 .
On a bien entendu (−3I3)N = −3N = N(−3I3) donc on peut utiliser la formule du
binôme.
Ainsi, pour tout n ∈ N, on a

An =
n∑

k=0

(
n

k

)
(−3I3)n−kNk =

n∑
k=0

(
n

k

)
(−3)n−kNk

puisque In−k
3 = I3.

Par ailleurs, on remarque que N2 =

0 0 2
0 0 0
0 0 0

 et N3 = 0.

Ainsi, ∀k ⩾ 3, Nk = 0 et on a tout simplement,

An =
2∑

k=0

(
n

k

)
(−3)n−kNk

en posant que
(n

k

)
= 0 si k > n.

On a alors

An = (−3)nI3 + n(−3)n−1N + n(n− 1)
2 (−3)n−2N2.

On peut factoriser par (−3)n−2 pour alléger un peu l’écriture,

An = (−3)n−2
(

9I3 − 3nN + n(n− 1)
2 N2

)
.

L’écriture matricielle est An =

(−3)n 2n(−3)n−1 n(n− 4)(−3)n−2

0 (−3)n n(−3)n−1

0 0 (−3)n

 .
Astuce : pour vous assurez que vous ne vous êtes pas trompés, il peut être habile de
vérifier si pour n = 0 on trouve bien l’identité et pour n = 1 la matrice de départ.

Exercice 4. 1. Comme l’exercice précédent, on remarque que A = aI2 + bN où N =(
0 1
0 0

)
.

On a bien entendu (aI2)(bN) = abN = (bN)(aI2) donc on peut utiliser la formule du
binôme.
Ainsi, pour tout n ∈ N, on a

An =
n∑

k=0

(
n

k

)
(aI2)n−k(bN)k =

n∑
k=0

(
n

k

)
an−kbkNk
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puisque In−k
2 = I2.

Par ailleurs, on remarque que N2 = 0. Ainsi, ∀k ⩾ 2, Nk = 0.
On a tout simplement :

An =
1∑

k=0

(
n

k

)
an−kbkNk

en posant que
(n

k

)
= 0 si k > n.

On a alors

An = anI2 + nan−1bN = an−1 (aI2 + nbN) .

L’écriture matricielle est An =
(
an nan−1b
0 an

)
.

2. On remarque que A2 = I3. Ainsi, si n est pair, il existe k ∈ N tel que n = 2k, on a
alors

An = A2k = (A2)k = Ik
3 = I3.

Si n est impair, il existe k ∈ N tel que n = 2k + 1, donc

An = A2k+1 = A2kA = I3A = A.

En résumé, si n pair, An = I3, sinon An = A.

3. Utilisons l’astuce suggérée. On a A = (a− b)I2 + bB.
On a [(a− b)I2](bB) = b(a− b)B = (bB)(a− b)I2, donc on peut utiliser le binôme de
Newton.
Ainsi, on a, pour n ∈ N,

An =
n∑

k=0

(
n

k

)
[(a− b)I2]n−k(bB)k =

n∑
k=0

(
n

k

)
bk(a− b)n−kBk.

On se pose alors la question de savoir ce que vaut Bk.

On a B2 =
(

2 2
2 2

)
= 2B. Ainsi, on peut supposer que, ∀k ∈ N∗, Bk = 2k−1B.

On le montre par récurrence en posant P(k) : Bk = 2k−1B.
Il est bien évident que B1 = 20B, donc P(1) est vraie.
Soit k ∈ N∗ quelconque fixé. Supposons P(k) vraie.
On a Bk+1 = BkB. Or d’après l’hypothèse de récurrence, on a Bk = 2k−1B, ainsi

Bk+1 = 2k−1B2 = 2k−12B = 2kB

en se souvenant que B2 = 2B.
Ainsi, P(k + 1) est vraie.
On a donc, pour tout k ∈ N∗, Bk = 2k−1B.

Revenons-en à An. On a
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An =
n∑

k=0

(
n

k

)
bk(a− b)n−kBk = (a− b)nI2 +

n∑
k=1

(
n

k

)
bk(a− b)n−kBk.

On isole le terme en k = 0 parce que la formule sur Bk n’est vraie que pour k ⩾ 1.
En utilisant ce que nous venons de démontrer, on a

An = (a− b)nI2 +
n∑

k=1

(
n

k

)
bk(a− b)n−k2k−1B.

En essayant de faire apparaitre une formule du binôme, on a

An = (a− b)nI2 +
(

n∑
k=1

(
n

k

)
bk(a− b)n−k2k−1

)
B

= (a− b)nI2 + 1
2

(
n∑

k=1

(
n

k

)
(2b)k(a− b)n−k

)
B

= (a− b)nI2 + 1
2

(
n∑

k=0

(
n

k

)
(2b)k(a− b)n−k − (a− b)n

)
B

= (a− b)nI2 + 1
2 ((a+ b)n − (a− b)n)B.

L’écriture matricielle est donc : An = 1
2

(
(a+ b)n + (a− b)n (a+ b)n − (a− b)n

(a+ b)n − (a− b)n (a+ b)n + (a− b)n

)
.

Exercice 5. On peut tout à fait faire utiliser la formule du binôme en écrivant que
A = 3I3 + B, vérifier que les matrices commutent, calculer Bk comme dans l’exercice
précédent et faire à nouveau apparaitre une formule du binôme. Ou on peut faire une
récurrence parce que l’énoncé a gentiment donné le résultat. Faisons la récurrence pour
changer.

On note, pour n ∈ N, P(n) : An = 3n−1

2 (3n − 1)B + 3nI3.

On a A0 = I3 et 3−1

2 (30 − 1)B + 30I3 = I3 donc P(0) est vraie.
Soit n ∈ N quelconque fixé. Supposons P(n) vraie.
On a An+1 = AAn. Or en utilisant P(n) on a

An+1 = A

(
3n−1

2 (3n − 1)B + 3nI3

)

= (B + 3I3)
(

3n−1

2 (3n − 1)B + 3nI3

)

= 3n−1

2 (3n − 1)B2 + 3nB + 3I3
3n−1

2 (3n − 1)B + 3n+1I3.
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Or B2 =

12 12 12
12 12 12
12 12 12

 = 6B. Ainsi,

An+1 = 3n−1

2 (3n − 1)6B + 3nB + 3n

2 (3n − 1)B + 3n+1I3

=
(

63n−1

2 (3n − 1) + 3n + 3n

2 (3n − 1)
)
B + 3n+1I3

=
(

3n(3n − 1) + 3n + 3n

2 (3n − 1)
)
B + 3n+1I3

= 3n
(

3n − 1 + 1 + 3n − 1
2

)
B + 3n+1I3

= 3n
(2× 3n + 3n − 1

2

)
B + 3n+1I3

= 3n
(3× 3n − 1

2

)
B + 3n+1I3

= 3n

(
3n+1 − 1

2

)
B + 3n+1I3

Donc P(n+ 1) est vraie.

Ainsi, ∀n ∈ N, P(n) : An = 3n−1

2 (3n − 1)B + 3nI3.
L’autre solution est de voir que A = B + 3I3 donc, comme B(3I3) = 3B = 3I3B, on
peut appliquer la formule du binôme et remarquer que

An =
n∑

k=0

(
n

k

)
Bk(3I3)n−k =

n∑
k=0

(
n

k

)
3n−kBk.

Or on a B2 =

12 12 12
12 12 12
12 12 12

 = 6B. Ainsi, on peut supposer que, ∀k ∈ N∗, Bk = 6k−1B.

On le montre par récurrence en posant P(k) : Bk = 6k−1B.
Il est bien évident que B1 = 60B, donc P(1) est vraie.
Soit k ∈ N∗ quelconque fixé. Supposons P(k) vraie.
On a Bk+1 = BkB. Or d’après l’hypothèse de récurrence, on a Bk = 6k−1B, ainsi

Bk+1 = 6k−1B2 = 6k−16B = 6kB

en se souvenant que B2 = 6B.
Ainsi, P(k + 1) est vraie.
On a donc, pour tout k ∈ N∗, Bk = 6k−1B.
Revenons-en à An. On a

An =
n∑

k=0

(
n

k

)
3n−kBk = 3nI3 +

n∑
k=1

(
n

k

)
3n−kBk.

On isole le terme en k = 0 parce que la formule sur Bk n’est vraie que pour k ⩾ 1.
En utilisant ce que nous venons de démontrer, on a

An = 3nI3 +
n∑

k=1

(
n

k

)
3n−k6k−1B.

En essayant de faire apparaitre une formule du binôme, on a
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An = 3nI3 +
(

n∑
k=1

(
n

k

)
3n−k6k−1

)
B

= 3nI3 + 1
6

(
n∑

k=1

(
n

k

)
6k3n−k

)
B

= 3nI3 + 1
6

(
n∑

k=0

(
n

k

)
6k3n−k − 3n

)
B

= 3nI3 + 1
6 (9n − 3n)B

= 3nI3 + 3n

6 (3n − 1)B

= 3nI3 + 3n−1

2 (3n − 1)B.

Ce type de matrice est croisé très régulièrement, et on a besoin de calculer sa puis-
sance énième avec ou sans connaissance du résultat final. Il faut donc maitriser les deux
méthodes.

Exercice 6. 1. Non elle a deux colonnes identiques.

2. On trouve A2 =

 1 0 0
−a a+ 1 a+ 1
a −a −a

 et A3 = A.

3. Si n est pair, il existe k ∈ N tel que n = 2k.
Montrons que, pour tout k ∈ N∗, A2k = A2.
On le montre par récurrence en posant P(k) : A2k = A2.
Il est bien évident que A2×1 = A2, donc P(1) est vraie.
Soit k ∈ N∗ quelconque fixé. Supposons P(k) vraie.
On a A2(k+1) = A2k+2 = A2kA2. Or d’après l’hypothèse de récurrence, on a A2k = A2,
ainsi

A2(k+1) = A2A2 = A3A = AA = A2

car on a vu que A3 = A.
Ainsi, P(k + 1) est vraie.
On a donc, pour tout k ∈ N∗, A2k = A2.

Par ailleurs, si n est impair, il existe k ∈ N tel que n = 2k + 1.
Ainsi, An = A2k+1 = A2kA = A2A = A3 = A.

En résumé, si n est pair non nul, An = A2 et si n est impair, An = A.

Exercice 7 (Même genre que le précédent). 1. Le système homogène associé est
−5x+ 2y + 2z = 0
−3x+ y + z = 0
−9x+ 4y + 4z = 0

⇐⇒


x = 0 L1 ← L1 − 2L2

−3x+ y + z = 0
3x = 0 L3 ← L3 − 4L2

qui est un système

de rang 2 (puisque les premières et dernières lignes sont équivalentes). Ainsi, la matrice
n’est pas inversible.

2. On trouve A2 =

 1 0 0
3 −1 −1
−3 2 2

 et A3 = A.
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3. Il semblerait que, pour A4 = A3A = A2 et A5 = A4A = A2A = A3 = A.

On peut donc penser que, pour tout k ∈ N, P(k) : A2k+1 = A.
Il est bien évident que A2×0+1 = A, donc P(0) est vraie.
Soit k ∈ N quelconque fixé. Supposons P(k) vraie.
On a A2(k+1)+1 = A2k+3 = A2k+1A2. Or d’après l’hypothèse de récurrence, on a
A2k+1 = A, ainsi

A2(k+1)+1 = AA2 = A3 = A

car on a vu que A3 = A.
Ainsi, P(k + 1) est vraie.
On a donc, pour tout k ∈ N, A2k+1 = A.

Par ailleurs, si k ∈ N∗, on a A2k = A2k−1A = AA = A2.

Et pour finir, on a comme d’habitude, A0 = I3.

Exercice 8. 1. A3 = −I3, ce qu’on peut réécrire en A(−A2) = I3. On a donc A−1 =
−A2.

2. A3 = A, donc si A était inversible, en multipliant par A−1, on aurait A−1A3 = A−1A,
ce qu’on écrit en A2 = I3. En calculant A3, on a bien vu que A2 ̸= I3, donc A n’est
pas inversible.

3. A3−2A2−5A+ 10I3 = 0 ce qui est équivalent à A
(
− 1

10(A2 − 2A− 5I3)
)

= I3,donc

A−1 = − 1
10(A2 − 2A− 5I3)

4. En isolant le terme en k = 0, on a α0In +
d∑

i=1
αiA

i = 0.

Lorsque α0 ̸= 0, c’est équivalent à(
− 1
α0

d∑
i=1

αiA
i−1
)
A = In.

Ou encore, en posant k = i− 1, à(
− 1
α0

d−1∑
k=0

αk+1A
k

)
A = In.

Autrement dit, A est inversible et on a A−1 = − 1
α0

d−1∑
k=0

αk+1A
k.

Si on considère un polynôme qui le vérifie du plus petit degré possible (donc tel que
tout polynôme de degré inférieur strictement n’annule pas A), on peut montrer que
A est inversible si et seulement si α0 ̸= 0.

Exercice 9. 1. a. Les techniques habituelles amènent à P−1 =

−3 2 1
−4 3 1
4 −2 −1



b. En la calculant, on remarque qu’elle est diagonale : D =


1 0 0
0 1 0
0 0 1

2


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c. On a P−1AP = D, donc en multipliant à gauche par P et à droite par P−1, on a
PP−1APP−1 = PDP−1, donc A = PDP−1.

d. La question qui revient presque tous les ans.
Notons, pour n ∈ N, P(n) : ≪ An = PDnP−1 ≫.
Pour n = 0, on a A0 = I3 et PD0P−1 = PP−1 = I3. Ainsi, P(0) est vraie.
Soit n ∈ N quelconque fixé. Supposons P(n) vraie. On a alors

An+1 = AAn

= APDnP−1 d’après P(n)
= PDP−1PDnP−1 d’après la question précédente
= PDDnP−1

= PDn+1P−1.

Donc P(n+ 1) est vraie.
Ainsi, pour tout entier naturel n, on a An = PDnP−1.

2. a. Pas de secret, il faut poser proprement le calcul pour avoir :

An =

−3 + 2−n+2 2− 2−n+1 1− 2−n

−4 + 2−n+2 3− 2−n+1 1− 2−n

−4 + 2−n+2 2− 2−n+1 2− 2−n



b. Il est clair que 2−n =
(

1
2

)n
−−−−−→
n→+∞

0, car −1 <
1
2 < 1, donc lim

n→+∞
An =−3 2 1

−4 3 1
−4 2 2

.

Exercice 10. Il n’y a pas de technique cachée non plus. On peut utiliser la formule
quand on est dansM2(K) sinon, il faut passer par le système associé et le résoudre. On
trouve les résultats suivants :

A ==

 8 5
2

−3 −1


B == 1

7

(
2 1
1 −3

)

C = Non inversible.

D == 1
2

 1 0 −1
−2 0 0
−1 −2 −1



E == 1
2

0 1 1
2 −1 1
0 −1 1



F == 1
30

−10 −2 8
−5 8 −2
0 6 6


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G == 1
8

1 1 2
4 −4 0
1 −7 2



H == 1
5

1 0 1
4 −5 −1
1 −5 1


Exercice 11. 1. Attention à ne pas faire d’opération interdite !

On pose le système homogène associé :
(3− λ)x− 2y + 2z = 0

3x+ (−2− λ)y + 3z = 0
2x− 2y + (3− λ)z = 0

⇐⇒


(3− λ)x− 2y + 2z = 0

(6 + (3− λ)(−2− λ))x+ (2− 2λ)z = 0 L2 ← 2L2 + (−2− λ)L1
(−1 + λ)x+ (1− λ)z = 0 L3 ← L3 − L1

⇐⇒


−2y + 2z + (3− λ)x = 0

(1− λ)z + (−1 + λ)x = 0
2(1− λ)z + (−λ+ λ2)x = 0 L2 ↔ L3

⇐⇒


−2y + 2z + (3− λ)x = 0

(1− λ)z + (−1 + λ)x = 0
(2− 3λ+ λ2)x = 0 L3 ← L3 − 2L2

Le système n’est pas de rang 3 lorsque 1 − λ = 0 ou 2 − 3λ + λ2 = 0 (dont les deux
racines évidentes sont 1 et 2).
La matrice Aλ n’est donc pas inversible lorsque λ = 1 ou λ = 2.

2. On pose le système homogène associé :
(2− λ)x+ y − 7z = 0

2x+ (3− λ)y − 8z = 0
2x+ 2y + (−7− λ)z = 0

⇐⇒


(2− λ)x+ y − 7z = 0

(2− (3− λ)(2− λ))x+ (−8 + 7(3− λ))z = 0 L2 ← L2 − (3− λ)L1
(−2 + 2λ)x+ (7− λ)z = 0 L3 ← L3 − 2L1

⇐⇒


y + (2− λ)x− 7z = 0

2(−1 + λ)x+ (7− λ)z = 0
(−4 + 5λ− λ2)x+ (13− 7λ)z = 0 L2 ↔ L3

Or −4 + 5λ− λ2 = −(λ− 1)(λ− 4), donc le système est en fait

⇐⇒


y + (2− λ)x− 7z = 0

2(λ− 1)x+ (7− λ)z = 0
−(λ− 1)(λ− 4)x+ (13− 7λ)z = 0

⇐⇒


y + (2− λ)x− 7z = 0

2(λ− 1)x+ (7− λ)z = 0
[2(13− 7λ) + (λ− 4)(7− λ)] z = 0 L3 ← 2L3 + (λ− 4)L2

Le système n’est pas de rang 3 lorsque 2(λ−1) = 0 ou 2(13−7λ)+(λ−4)(7−λ) = 0.
La première égalité donne λ = 1, la deuxième par contre est équivalente à

26− 14λ− 28 + 11λ− λ2 = 0⇐⇒ −2− 3λ− λ2 = 0.
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On reconnait −1 comme racine évidente, le produit des deux doit faire 2, donc l’autre
est −2.
La matrice Bλ n’est donc pas inversible lorsque λ = −2,−1 ou 1.

3. On pose le système homogène associé :
(2− λ)x− y + z = 0

−4x+ (5− λ)y − 2z = 0
−6x+ 6y + (−3− λ)z = 0

⇐⇒


(2− λ)x− y + z = 0
−2λx+ (3− λ)y = 0 L2 ← L2 + 2L1

(−6 + (3 + λ)(2− λ))x+ (3− λ)y = 0 L3 ← L3 + (3 + λ)L1

⇐⇒


z − y + (2− λ)x = 0

(3− λ)y − 2λx = 0
(3− λ)y + (−λ− λ2)x = 0

⇐⇒


z + (2− λ)x− y = 0

(3− λ)y − 2λx = 0
(λ− λ2)x = 0 L3 ← L3 − L2

Le système n’est pas de rang 3 lorsque 3− λ = 0 ou λ− λ2 = 0.
La première égalité donne λ = 3, dans la deuxième on reconnait 0 1 comme racines
évidentes.
La matrice Cλ n’est donc pas inversible lorsque λ = 0, 1 ou 3.

Exercice 12. 1. a. On a A+B = (aij + bij)1⩽i⩽n
1⩽j⩽n

, donc

Tr(A+B) =
n∑

i=1
(aii + bii) =

n∑
i=1

aii +
n∑

i=1
bii.

On a donc Tr(A+B) = Tr(A) + Tr(B).
b. On a λA = (λaij)1⩽i⩽n

1⩽j⩽n
, donc

Tr(λA) =
n∑

i=1
(λaii) = λ

n∑
i=1

aii.

On a donc Tr(λA) = λTr(A).

2. On a AB =
(

n∑
k=1

aikbkj

)
1⩽i⩽n
1⩽j⩽n

, donc

Tr(AB) =
n∑

i=1

n∑
k=1

aikbki.

D’autre part, on a BA =
(

n∑
k=1

bikakj

)
1⩽i⩽n
1⩽j⩽n

, donc

Tr(BA) =
n∑

i=1

n∑
k=1

bikaki =
n∑

k=1

n∑
i=1

aikbki

en échangeant les sommes. C’est exactement la même chose que ci-dessus sauf que le
nom des indices a été échangé.
Ainsi, on a Tr(AB) = Tr(BA).
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3. Supposons qu’il existe un tel couple.
On aurait alors Tr(AB −BA) = Tr(In), or Tr(In) = n.
Ainsi, on aurait Tr(AB −BA) = n.

Or d’après la première question Tr(AB −BA) = Tr(AB) + Tr(−BA).
D’après la question d’après, on a Tr(−BA) = −Tr(BA).
Et d’après la dernière question, on a Tr(BA) = Tr(AB).
Ainsi, Tr(AB −BA) = Tr(AB)− Tr(AB) = 0.
On aurait donc 0 = n ce qui est bien entendu exclu. Il ne peut donc pas exister de tel
couple.

Exercice 13. 1. a. On trouve A = I + 2N .
b. Remarquons que I et N commutent. On peut donc utiliser la formule du binôme

pour calculer An avec n ⩾ 1. On a

An = (2N + I)n =
n∑

k=0

(
n

k

)
(2N)kIn−k.

Remarquons de plus que N2 = 0. Les seuls termes non nuls de cette somme sont
donc obtenus pour k = 0 ou 1.
On trouve donc An = I + 2nN . Ce qu’on peut aussi écrire :

An =
(

1 + 2n 2n
−2n 1− 2n

)
.

Cette formule est encore vraie pour n = 0.

2. a. On calcule A2 puis on résout A2 = aA+bI. On trouve très rapidement qu’on peut
écrire A2 = 2A− I.

b. Supposons qu’on a à n fixé An = unA+ vnI.

An+1 = A.An = unA
2 + vnA.

Cependant, A2 = 2A− I, on a donc

An+1 = (2un + vn)A− unI.

On trouve donc un+1 = 2un + vn et vn+1 = −un.
c. On a A0 = I donc u0 = 0 et v0 = 1. De plus A = A, donc u1 = 1 et v1 = 0 et

nous venons de trouver les relations de récurrence suivantes :{
un+1 = 2un + vn

vn+1 = −un

On a donc un+2 = 2un+1 + vn+1 = 2un+1 − un. C’est une relation de récurrence
linéaire d’ordre 2. On sait parfaitement exprimer un en fonction de n. Commençons
par résoudre l’équation caractéristique. Il s’agit deX2 = 2X−1 ouX2−2X+1 = 0,
c’est-à-dire (X − 1)2 = 0.
un s’écrit donc un = (λn+ µ)1n = λn+ µ.

Faire n = 0 donne
µ = 0
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et faire n = 1 donne
λ+ µ = 1.

On récupère donc λ = 1 et µ = 0. On en déduit donc

∀n ∈ N, un = n.

Par ailleurs, comme vn = un+1 − 2un, on trouve vn = n+ 1− 2n et donc

∀n ∈ N, vn = −n+ 1.

d. On a donc An = nA+ (−n+ 1)I c’est-à-dire

∀n ∈ N, An =
(

2n+ 1 2n
−2n −2n+ 1

)
.

Cela correspond bien au résultat trouvé dans la première partie.

11 Suites réelles
Exercice 1. 1. On note, pour n ∈ N∗, P(n) : ≪ un existe et un ⩾ 0. ≫ Comme u1 = 1,
P(1) est vraie.
Soit n ∈ N∗ quelconque fixé. On suppose P(n) vraie.
On a, d’après P(n), un existe et un ⩾ 0, donc un + 12 ⩾ 12. On peut donc prendre la
racine de ce terme, ce qui assure l’existence de un+1, et on a

un+1 =
√
un + 12 ⩾

√
12 ⩾ 0

comme la fonction racine carrée est croissante sur R.
Ainsi P(n+ 1) est vraie.
On a démontré par récurrence que (un)n∈N∗ est bien définie et, si ça devient utile dans
la suite, que ∀n ∈ N∗, un ⩾ 0.

2. On a u1 = 1, u2 =
√

13 et u3 =
√

12 +
√

13. La suite (un)n∈N∗ semble croissante.
Démontrons-le par récurrence.
On note, pour n ∈ N∗, P ′(n) : ≪ un ⩽ un+1. ≫

Comme u1 = 1 et u2 =
√

13, P ′(1) est vraie.
Soit n ∈ N∗ quelconque fixé. On suppose P ′(n) vraie.
On a, d’après P ′(n), un ⩽ un+1, donc un +12 ⩽ un+1 +12. Comme d’après la question
précédente, un ⩾ 0, on peut appliquer la fonction racine carrée qui est croissante sur
R+.
Ainsi,

√
un + 12 ⩽

√
un+1 + 12 ce qui se traduit par un+1 ⩽ un+2.

On a donc démontré que P ′(n+ 1) est vraie.
On vient de démontrer par récurrence que la suite (un)n∈N∗ est croissante.

3. Et si on faisait une récurrence pour la troisième fois de l’exercice ?
On note, pour n ∈ N, P ′′(n) : ≪ 0 < un < 4. ≫ Comme u1 = 1, P ′′(1) est vraie.
Soit n ∈ N∗ quelconque fixé. On suppose P ′′(n) vraie.
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On a, d’après P ′′(n), 0 < un < 4, donc 12 < un + 12 < 16. On peut donc prendre la
racine de ce terme (tout est positif), et on a

√
12 < un+1 =

√
un + 12 <

√
16 ⩾ 0

comme la fonction racine carrée est strictement croissante sur R.
Comme

√
12 ⩾ 0, P ′′(n+ 1) est vraie.

On a démontré par récurrence que ∀n ∈ N∗, 0 < un < 4.

4. La suite (un)n∈N∗ est croissante et majorée par 4 (évitez de dire bornée, ça laisse un
doute sur la pertinence de votre argumentation) donc elle est convergente d’après le
théorème des suites monotones.
Notons ℓ sa limite. Comme, d’après la question précédente, ∀n ∈ N, 0 < un < 4, on a

0 ⩽ ℓ ⩽ 4.

Or un+1 −−−−−→
n→+∞

ℓ et un + 12 −−−−−→
n→+∞

ℓ+ 12.

Comme la fonction racine carrée est continue sur R+, elle l’est a fortiori en 12 + ℓ
donc √

un + 12 −−−−−→
n→+∞

√
ℓ+ 12.

Ainsi, comme on a, ∀n ∈ N∗, un+1 =
√
un + 12, en passant à la limite dans cette

relation, on obtient

ℓ =
√
ℓ+ 12

=⇒ ℓ2 = ℓ+ 12
=⇒ ℓ2 − ℓ− 12 = 0.

Or ce trinôme du second degré admet −3 et 4 comme racines évidentes (si ce n’est
pas le cas, déterminez-les comme vous le souhaitez). Ainsi, les seules limites possibles
sont −3 et 4. Mais on a vu que 0 ⩽ ℓ ⩽ 4, donc ℓ = 4.
On a donc démontré que

lim
n→+∞

un = 4.

Exercice 2. Soit n ∈ N. On a un+1 − un = −e−un < 0. Ainsi la suite (un)n∈N est
strictement décroissante.
Si la suite était convergente vers un réel ℓ, on aurait un+1 −−−−−→

n→+∞
ℓ et, par continuité

de la fonction exponentielle, un − e−un −−−−−→
n→+∞

ℓ− e−ℓ.

On doit donc avoir ℓ = ℓ − e−ℓ ce qui est équivalent à e−ℓ = 0. Or cette égalité est
impossible, ce qui implique que la suite ne peut pas être convergente.
D’après le théorème de convergence des suites monotones, comme (un)n∈N est décroissante
et ne converge pas, on a lim

n→+∞
un = −∞.

Exercice 3. 1. On note, pour n ∈ N, P(n) : ≪ un existe et 0 ⩽ un ⩽ 12. ≫ Comme
u0 ∈ [0, 12], P(0) est vraie.
Soit n ∈ N quelconque fixé. On suppose P(n) vraie.
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On a, d’après P(n), un existe et 0 ⩽ un ⩽ 12, donc 0 ⩾ −un− ⩾ −12.. En ajoutant
12, on obtient 12 ⩾ 12− un ⩾ 0. On peut donc appliquer la fonction racine carrée et
comme cette fonction est croissante, on obtient

√
12 ⩾

√
12− un ⩾ 0.

Ainsi on assure l’existence de un+1 et comme
√

12 ⩽ 12, on a

12 ⩾ un+1 ⩾ 0.

On a donc montré que P(n+ 1) est vraie.
On a démontré par récurrence que (un)n∈N est bien définie et que, ∀n ∈ N, un ∈ [0, 12].

2. Si (un)n∈N converge vers un réel ℓ, alors, comme ∀n ∈ N, un ∈ [0, 12], on a ℓ ∈ [0, 12].
Par ailleurs, on a immédiatement un+1 −−−−−→

n→+∞
ℓ et

√
12− un −−−−−→

n→+∞

√
12− ℓ par

continuité de la fonction racine carrée.
On a alors ℓ =

√
12− ℓ, donc ℓ2 = 12− ℓ, soit ℓ2 + ℓ− 12 = 0.

On voit que cette équation admet deux solutions, 3 et −4, mais comme ℓ ∈ [0, 12], la
seule limite possible est ℓ = 3.

3. Soit n ∈ N. On a

|un+1 − 3| =
∣∣∣√12− un − 3

∣∣∣
=

∣∣∣∣∣(
√

12− un)− 3)(
√

12− un + 3)√
12− un + 3

∣∣∣∣∣
= |12− un − 9|∣∣√12− un + 3

∣∣
= |3− un|√

12− un + 3 car
√

12− un + 3 ⩾ 0

= |un − 3|√
12− un + 3 .

Or
√

12− un + 3 ⩾ 3, donc 1√
12− un + 3 ⩽

1
3, ainsi

|un+1 − 3| = |un − 3|√
12− un + 3 ⩽

1
3 |un − 3| .

4. Notons pour n ∈ N, P(n) : ≪ |un − 3| ⩽ 1
3n
|u0 − 3| ≫.

Pour n = 0, on a d’un côté |u0 − 3| et de l’autre 1
30 |u0 − 3| = |u0 − 3| donc P(0) est

vraie.
Soit n ∈ N quelconque fixé. Supposons P(n) vraie.
On a

|un+1 − 3| ⩽ 1
3 |un − 3| .

Or d’après P(n), |un − 3| ⩽ 1
3n
|u0 − 3|.
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Ainsi,
|un+1 − 3| ⩽ 1

3 |un − 3| ⩽ 1
3

1
3n
|u0 − 3| = 1

3n+1 |u0 − 3| .

Ainsi, P(n+ 1) est vraie.

On a donc montré par récurrence que ∀n ∈ N, |un − ℓ| ⩽
1
3n
|u0 − ℓ|.

5. On a 3n −−−−−→
n→+∞

+∞, car 3 > 1, donc 1
3n
|u0 − 3| −−−−−→

n→+∞
0.

Ainsi, par le théorème des gendarmes, |un − 3| −−−−−→
n→+∞

0, autrement dit lim
n→+∞

un = 3.

Exercice 4. 1. f est le quotient de deux fonctions dérivables sur R+ dont le dénominateur
ne s’annule pas. Ainsi, f est dérivable sur R+ et on a

∀x ∈ R+; f ′(x) = 2[3(x+ 1)]− 3[2(x+ 5)]
9(x+ 1)2 = −24

9(x+ 1)2 .

Ainsi, il est clair que ∀x ∈ R+, f ′(x) ⩽ 0. Ainsi, f est décroissante sur R+.
Par ailleurs,

f(x) = 2x+ 10
3x+ 3 = 2x

3x
1 + 5

x

1 + 1
x

= 2
3

1 + 5
x

1 + 1
x

−−−−→
x→+∞

2
3 .

Ainsi, f est décroissante de f(0) = 10
3 à 2

3 en l’infini.

2. On note, pour n ∈ N, P(n) : ≪ un existe et un ∈
[2

3 ,
10
3

]
. ≫ Comme u0 ∈ R+, on peut

appliquer f et on a l’existence de u1 et u1 = f(u0) = f(0) = 10
3 , P(1) est vraie.

Soit n ∈ N∗ quelconque fixé. On suppose P(n) vraie.

On a, d’après P(n), un existe et un ∈
[2

3 ,
10
3

]
⊂ R+.

Ainsi, peu appliquer f à un, ce qui assure l’existence de un+1. De plus, la remarque
sur la décroissance de f permet d’assurer que comme 2

3 ⩽ un ⩽
10
3 , on a

10
3 ⩾ f

(2
3

)
⩾ f(un) ⩾ f

(10
3

)
⩾

2
3 .

Ainsi, un+1 ∈
[2

3 ,
10
3

]
.

On a donc P(n+ 1) qui est vraie.
On a donc démontré par récurrence que (un)n∈N est bien définie et que ∀n ∈ N∗, un ∈[2

3 ,
10
3

]
.

3. Comme ∀n ∈ N∗, un ∈
[2

3 ,
10
3

]
, s’il existe une limite elle est forcément finie et, si on

la note ℓ, on a ℓ ∈
[2

3 ,
10
3

]
.

On a un+1 −−−−−→
n→+∞

ℓ, ainsi que 2(un+5) −−−−−→
n→+∞

2(ℓ+5), puis 3(un+1) −−−−−→
n→+∞

3(ℓ+1).
Par quotient, comme 3(ℓ+ 1) ̸= 0, on a
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2(un + 5)
3(un + 1) −−−−−→n→+∞

2(ℓ+ 5)
3(ℓ+ 1) .

Ainsi, ℓ vérifie
ℓ = 2(ℓ+ 5)

3(ℓ+ 1) ,

donc
3ℓ2 + ℓ− 10 = 0.

Cherchons le discriminant ∆ = 12 − 4× 3× (−10) = 121.

Il a donc deux racines −1− 11
6 = −2 et −1 + 11

6 = 5
3;

Comme −2 /∈
[2

3 ,
10
3

]
, la seule possibilité est ℓ = 5

3 .

4. Soit n ∈ N. On a ∣∣∣∣un+1 −
5
3

∣∣∣∣ =
∣∣∣∣2(un + 5)
3(un + 1) −

5
3

∣∣∣∣
=

∣∣∣∣2un + 10− 5(un + 1)
3(un + 1)

∣∣∣∣
=

∣∣∣∣−3un + 5
3un + 3

∣∣∣∣
= |−3un + 5|

|3un + 3|

= 3

∣∣∣un − 5
3

∣∣∣
|3un + 3|

Or on sait que ∀n ∈ N∗, un ⩾ 2
3 , donc 3un + 3 ⩾ 5.

Ainsi, 1
|3un + 3| = 1

3un + 3 ⩽
1
5 .

On a donc, ∣∣∣∣un+1 −
5
3

∣∣∣∣ = 3

∣∣∣un − 5
3

∣∣∣
|3un + 3| ⩽ 3

∣∣∣un − 5
3

∣∣∣
5 = 3

5

∣∣∣∣un −
5
3

∣∣∣∣ .
Ensuite, faisons une récurrence.

Notons pour n ∈ N∗, P(n) : ≪

∣∣∣∣un −
5
3

∣∣∣∣ ⩽ (3
5

)n−1 ∣∣∣∣u1 −
5
3

∣∣∣∣ ≫.

Pour n = 1, on a d’un côté
∣∣∣∣u1 −

5
3

∣∣∣∣ et de l’autre
(3

5

)0 ∣∣∣∣u1 −
5
3

∣∣∣∣ =
∣∣∣∣u1 −

5
3

∣∣∣∣ donc P(1)
est vraie.
Soit n ∈ N∗ quelconque fixé. Supposons P(n) vraie.
On a ∣∣∣∣un+1 −

5
3

∣∣∣∣ ⩽ 3
5

∣∣∣∣un −
5
3

∣∣∣∣ .
Or d’après P(n),

∣∣∣∣un −
5
3

∣∣∣∣ ⩽ (3
5

)n−1 ∣∣∣∣u1 −
5
3

∣∣∣∣.
Ainsi, ∣∣∣∣un+1 −

5
3

∣∣∣∣ ⩽ 3
5

∣∣∣∣un −
5
3

∣∣∣∣ ⩽ 3
5

(3
5

)n−1 ∣∣∣∣u1 −
5
3

∣∣∣∣ =
(3

5

)n ∣∣∣∣u1 −
5
3

∣∣∣∣ .
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Ainsi, P(n+ 1) est vraie.

On a donc montré par récurrence que ∀n ∈ N∗,
∣∣∣∣un −

5
3

∣∣∣∣ ⩽ (3
5

)n−1 ∣∣∣∣u1 −
5
3

∣∣∣∣
Ensuite, on remarque que comme −1 < 3

5 < 1, on a
(3

5

)n−1
−−−−−→
n→+∞

0.

Donc d’après le théorème des gendarmes, un −
5
3 −−−→n→∞

0. Autrement dit, la suite
(un)n∈N est convergente et on a

lim
n→+∞

un = 5
3 .

5. On trace sur un même graphe la fonction f , et la droite d’équation y = x. On place
u0 sur l’axe des abscisses, puis grâce au graphe de f u1 sur l’axe des ordonnées. On
remarque que la droite horizontale passant par (0, u1) coupe la droite d’équation y = x
en (u1, u1) ce qui permet de le reporter sur l’axe des abscisses... Et on recommence.
La suite se rapproche du point d’intersection entre f et la droite d’équation y = x,
c’est-à-dire la solution de f(ℓ) = ℓ que nous avons déterminé ci-dessus.

0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.5

1

1.5

2

2.5

3

3.5

4

y = x

Cf

u0

u1

(u1, u1)

u1

u2

(u2, u2)

(u3, u3)

u2

u3

u3

(ℓ, ℓ)

Exercice 5. Soit n ∈ N, on a un+1 − un = −u2
n ⩽ 0. Ainsi, la suite (un)n∈N est

décroissante.
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Supposons (un)n∈N convergente et notons ℓ ∈ R sa limite. On aurait alors lim
n→+∞

un+1 = ℓ

et d’après les règles usuelles, lim
n→+∞

un − u2
n = ℓ− ℓ2.

Ainsi, on a forcément ℓ = ℓ− ℓ2 ⇐⇒ ℓ2 = 0⇐⇒ ℓ = 0.
La seule limite possible de la suite (un)n∈N est 0.
Si u0 < 0, la suite étant décroissante, ∀n ∈ N, un ⩽ u0 < 0. Si (un)n∈N était convergente
sa limite serait inférieure ou égale à u0 < 0 ce qui est exclu. Ainsi, si u0 < 0, (un)n∈N
est décroissante et ne converge pas, donc d’après le théorème de convergence des suites
monotones, lim

n→+∞
un = −∞.

Si u0 > 1, on a u1 = u0−u2
0 = u0(1−u0) < 0. Ainsi, le même raisonnement que ci-dessus

mais appliqué à partir du rang n = 1 donne lim
n→+∞

un = −∞.
Pour finir, étudions le cas où u0 ∈ [0, 1]. Notons P(n) : ≪ un ∈ [0, 1] ≫.
Il est évident que P(0) est vraie.
Soit n ∈ N quelconque fixé. Supposons P(n) vraie. On a alors

un+1 = un − u2
n = un(1− un).

Or si un ∈ [0, 1], −1 ⩽ −un ⩽ 0 donc 0 ⩽ 1− un ⩽ 1 puis, comme un > 0,

0 ⩽ un(1− un) ⩽ un.

Et comme un ⩽ 1, en reconnaissant un+1, on a

0 ⩽ un+1 ⩽ 1.

Ainsi, P(n+ 1) est vraie.
On a donc ∀n ∈ N, un ∈ [0, 1].
On a donc une suite (un)n∈N décroissante et minorée par 0 donc convergente vers la seule
limite possible, 0.

Exercice 6. Soit n ∈ N, on a un+1 = un + u2
n, donc un+1 − un = u2

n ⩾ 0. Ainsi, la suite
(un)n∈N est croissante.
Supposons (un)n∈N convergente et notons ℓ ∈ R sa limite. On aurait alors lim

n→+∞
un+1 = ℓ

et d’après les règles usuelles, lim
n→+∞

un + u2
n = ℓ+ ℓ2.

Ainsi, on a forcément ℓ = ℓ+ ℓ2 ⇐⇒ ℓ2 = 0⇐⇒ ℓ = 0.
La seule limite possible de la suite (un)n∈N est 0.
Si u0 > 0, la suite étant croissante, ∀n ∈ N, un ⩾ u0 > 0. Si (un)n∈N était convergente
sa limite serait supérieure ou égale à u0 > 0 ce qui est exclu. Ainsi, si u0 > 0, (un)n∈N
est croissante et ne converge pas, donc d’après le théorème de convergence des suites
monotones, lim

n→+∞
un = +∞.

Si u0 < −1, on a u1 = u0(1 + u0) > 0. Ainsi, le même raisonnement que ci-dessus mais
appliqué à partir du rang n = 1 donne lim

n→+∞
un = +∞.

Pour finir, étudions le cas où u0 ∈ [−1, 0]. Notons P(n) : ≪ un ∈ [−1, 0] ≫.
Il est évident que P(0) est vraie.
Soit n ∈ N quelconque fixé. Supposons P(n) vraie. On a alors

un+1 = un + u2
n = un(1 + un).

Or si un ∈ [−1, 0], 0 ⩽ 1 + un ⩽ 1 donc un ⩽ un(1 + un) ⩽ 0 car un < 0. Et comme
un ⩾ −1, en reconnaissant un+1, on a

−1 ⩽ un+1 ⩽ 0.
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Ainsi, P(n+ 1) est vraie.
On a donc ∀n ∈ N, un ∈ [−1, 0].
On a donc une suite (un)n∈N croissante et majorée par 0 donc convergente vers la seule
limite possible, 0.

Exercice 7. 1. Soit n ∈ N. On a

un+1 − vn+1 = 2un + vn

3 − un + 2vn

3 = un − vn

3 .

La suite (un − vn)n∈N est géométrique de raison 1
3.

En particulier, on a ∀n ∈ N, un − vn = 1
3n

(u0 − v0).

Comme −1 < 1
3 < 1, on a lim

n→+∞
un − vn = 0.

2. Soit n ∈ N. On a

un+1 + vn+1 = 2un + vn

3 + un + 2vn

3 = 3un + 3vn

3 = un + vn.

On remarque ainsi que la suite (un + vn)n∈N est constante. On a donc, ∀n ∈ N,
un + vn = u0 + v0.

Par ailleurs, d’après la question précédente, on avait un − vn = 1
3n

(u0 − v0).

Ainsi, en faisant la somme des deux, on récupère 2un = u0 + v0 + 1
3n

(u0 − v0).

Autrement dit
∀n ∈ N, un = u0 + v0

2 + 1
3n

u0 − v0
2 .

En faisant la différence, on récupère 2vn = u0 + v0 −
1
3n

(u0 − v0). Autrement dit

∀n ∈ N, vn = u0 + v0
2 − 1

3n

u0 − v0
2 .

3. On n’a aucune difficulté à conclure, comme dans la première question, que comme
−1 < 1

3 < 1,

lim
n→+∞

un = lim
n→+∞

vn = u0 + v0
2 .

Exercice 8. 1. On a n

n3 + 1 = n

n3
1

1 + 1
n3
.

Or 1
1+ 1

n3
−−−−−→
n→+∞

1 donc n

n3 + 1 ∼
n

n3 = 1
n2 .

De plus 1
n2 −−−−−→n→+∞

0, ainsi, lim
n→+∞

n

n3 + 1 = 0.

2. On a 5n2

n3 = 5n2

n3

(
1 + 1

5n2

)
.

Or 1 + 1
5n2 −−−−−→n→+∞

1 donc 5n2

n3 ∼
5n2

n3 = 5
n

.

De plus 5
n
−−−−−→
n→+∞

0, ainsi, lim
n→+∞

5n2 + 1
n3 = 0.
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3. On a n7 + n3 + 1
n6 + n2 − 12 = n7

n6
1 + 1

n4 + 1
n7

1 + 1
n4 − 12

n6
.

Or 1+ 1
n4 + 1

n7
1+ 1

n4−
12
n6
−−−−−→
n→+∞

1 donc n7 + n3 + 1
n6 + n2 − 12 ∼

n7

n6 = n .

De plus n −−−−−→
n→+∞

+∞, ainsi, lim
n→+∞

n7 + n3 + 1
n6 + n2 − 12 = +∞.

4. On a n4 + 1
3n4 + n3 + 12n2 − 72n+ 1 = n4

3n4
1 + 1

n4

1 + 1
3n + 4

n2 − 24
n3 + 1

3n4
.

Or 1+ 1
n4

1+ 1
3n

+ 4
n2−

24
n

+ 1
3n4
−−−−−→
n→+∞

1 donc n4 + 1
3n4 + n3 + 12n2 − 72n+ 1 ∼

n4

3n4 = 1
3 .

Ainsi, lim
n→+∞

n4 + 1
3n4 + n3 + 12n2 − 72n+ 1 = 1

3 .

5. On a e−n + n

n2 = n

n2

(
1 + e−n

n

)
.

Or 1 + e−n

n −−−−−→n→+∞
1 donc e−n + n

n2 ∼ n

n2 = 1
n
.

De plus 1
n
−−−−−→
n→+∞

0, ainsi, lim
n→+∞

e−n + n

n2 = 0.

6. On a en + n

n+ ln(n) = en

n

1 + ne−n

1 + ln(n)
n

.

Or 1+ne−n

1+ ln(n)
n

−−−−−→
n→+∞

1 par croissances comparées, donc en + n

n+ ln(n) ∼
en

n
.

De plus, par croissances comparées, e
n

n
−−−−−→
n→+∞

+∞, ainsi, lim
n→+∞

en + n

n+ ln(n) = +∞.

Exercice 9. 1. On a un = n2
(
1− 2

n + 1
n2

)
∼ n2. Ainsi,

un

vn
∼ n2

2n3 = 1
2n −−−−−→n→+∞

0.

Ainsi, elles ne sont pas équivalentes.

2. On a un = n4
(

1− 3
n
− 2
n3 + 1

n4

)
∼ n4.

Par ailleurs, vn = n4
(

1 + 1
n3

)
∼ n4.

Ainsi,
un

vn
∼ n4

n4 = 1 −−−−−→
n→+∞

1.

Ainsi, elles sont équivalentes.

3. En accélérant un peu, on a un ∼ n2 et vn =∼ 2n2.
Ainsi,

un

vn
∼ n2

2n2 = 1
2 −−−−−→n→+∞

1
2 .

Ainsi, elles ne sont pas équivalentes.
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4. En accélérant toujours, on a un ∼ n5 et vn =∼ n4.
Ainsi,

un

vn
∼ n5

n4 = n −−−−−→
n→+∞

+∞.

Ainsi, elles ne sont pas équivalentes.

Exercice 10 (Constante d’Euler, un classique). 1. Notons h la fonction définie et dérivable
sur ]− 1; +∞[ par h(x) = x− ln(1 + x), bien définie et dérivable car sur cet intervalle
1 + x > 0, donc on compose des fonctions dérivables puis on fait une combinaison de
fonctions dérivables.

On a h′(x) = 1 − 1
1 + x

= x

1 + x
. Ainsi, h′(x) est du signe de x puisque 1 + x > 0.

Donc h est décroissante sur ]− 1; 0] et croissante sur [0,+∞[. Ainsi h est minimale en
0. Or h(0) = 0, donc ∀x ∈]− 1 +∞[, h(x) ⩾ 0, ce qui est équivalent à

∀x ∈]− 1; +∞[; ln(1 + x) ⩽ x.

2. Soit n ∈ N, n ⩾ 2.
On a

un+1 − un =
n∑

k=1

1
k
− ln(n+ 1)−

(
n−1∑
k=1

1
k
− ln(n)

)

= 1
n
− ln(n+ 1) + ln(n)

= 1
n
− ln

(
n+ 1
n

)
= 1

n
− ln

(
1 + 1

n

)
.

Or d’après la question précédente, en appliquant l’inégalité à x = 1
n
> −1, on a

ln
(

1 + 1
n

)
⩽

1
n
,

autrement dit un+1 − un = 1
n
− ln

(
1 + 1

n

)
⩾ 0.

La suite (un)n⩾2 est donc croissante.
Passons à l’autre suite. On a

vn+1 − vn =
n+1∑
k=1

1
k
− ln(n+ 1)−

(
n∑

k=1

1
k
− ln(n)

)

= 1
n+ 1 − ln(n+ 1) + ln(n)

= 1
n+ 1 − ln

(
n+ 1
n

)
= 1

n+ 1 + ln
(

n

n+ 1

)
= 1

n+ 1 + ln
(
n+ 1− 1
n+ 1

)
= 1

n+ 1 + ln
(

1− 1
n+ 1

)
.
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Or d’après la question précédente, en appliquant l’inégalité à x = − 1
n+ 1 > −1, on a

ln
(

1− 1
1 + n

)
⩽ − 1

n+ 1 ,

autrement dit vn+1 − vn = 1
n+ 1 + ln

(
1− 1

n+ 1

)
⩽ 0.

La suite (vn)n⩾2 est donc décroissante.
Pour finir, on a

un − vn =
n−1∑
k=1

1
k
− ln(n)−

(
n∑

k=1

1
k
− ln(n)

)

= − 1
n
.

Ainsi, il est clair que un − vn −−−−−→
n→+∞

0.

Les suites (un)n⩾2 et (vn)n⩾2 sont donc adjacentes.

3. Les suites (un)n⩾2 et (vn)n⩾2 sont adjacentes donc elles convergent vers la même
limite, que nous noterons γ selon les requêtes.

4. Remarquons que
n∑

k=1

1
k

= vn + ln(n).

Ainsi, pour n ⩾ 2,
n∑

k=1

1
k

= ln(n)
(

1 + vn

ln(n)

)
.

On a lim
n→+∞

vn = γ donc par quotient, lim
n→+∞

vn

ln(n) = 0.

Ainsi, lim
n→+∞

(
1 + vn

ln(n)

)
= 1.

On a donc
n∑

k=1

1
k
∼

+∞
ln(n).

5. En montrant que ∀n ⩾ 2, un ⩽ γ ⩽ vn écrire une fonction gamma(eps) qui renvoie la
valeur de γ à eps près.
On a (un)n⩾2 qui est croissante et converge vers γ donc ∀n ⩾ 2, un ⩽ γ.
De la même façon, comme (vn)n⩾2 est décroissante et converge vers γ donc ∀n ⩾ 2,
γ ⩽ vn. Ainsi, on a bien l’encadrement proposé.

On a vn − un = 1
n . Lorsque 1

n
< ε on aura donc un et vn qui seront à moins de ε de

γ. Ainsi, on peut écrire

from math import log

def gamma (eps):
n=1
S=1
while 1/n >= eps:

n+=1
S+=1/n

return S-log(n)
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A noter que, si vous souhaitez tester cette fonction, il ne faut pas être trop gourmand
dans le choix de eps, beaucoup d’erreurs d’arrondi apparaissent dans ce calcul.

Exercice 11. 1. Soit n ∈ N∗. Considérons

un+1 − un =
(n+1∑

p=1

1
√
p

)
− 2
√
n+ 2−

( n∑
p=1

1
√
p

)
− 2
√
n+ 1


= 1√

n+ 1
− 2
√
n+ 2 + 2

√
n+ 1

= 1− 2
√

(n+ 1)(n+ 2) + 2(n+ 1)√
n+ 1

= (2n+ 3)− 2
√

(n+ 1)(n+ 2)√
n+ 1

= [(2n+ 3)− 2
√

(n+ 1)(n+ 2)][(2n+ 3) + 2
√

(n+ 1)(n+ 2)]√
n+ 1[(2n+ 3) + 2

√
(n+ 1)(n+ 2)]

= (2n+ 3)2 − 4(n+ 1)(n+ 2)√
n+ 1[(2n+ 3) + 2

√
(n+ 1)(n+ 2)]

= 1√
n+ 1[(2n+ 3) + 2

√
(n+ 1)(n+ 2)]

Ainsi, un+1 − un > 0. La suite (un)n∈N∗ est donc croissante.
Maintenant, considérons

vn+1 − vn =
(n+1∑

p=1

1
√
p

)
− 2
√
n+ 1−

( n∑
p=1

1
√
p

)
− 2
√
n


= 1√

n+ 1
− 2
√
n+ 1 + 2

√
n

= 1− 2(n+ 1) + 2
√
n(n+ 1)√

n+ 1

= 2
√
n(n+ 1)− (2n+ 1)√

n+ 1

= [2
√
n(n+ 1)− (2n+ 1)][2

√
n(n+ 1) + (2n+ 1)]√

n+ 1[2
√
n(n+ 1) + (2n+ 1)]

= 4n(n+ 1)− (2n+ 1)2
√
n+ 1[2

√
n(n+ 1) + (2n+ 1)]

= −1√
n+ 1[2

√
n(n+ 1) + (2n+ 1)]

Ainsi, vn+1 − vn < 0. La suite (vn)n∈N∗ est donc décroissante.
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Pour finir, considérons

vn − un =
( n∑

p=1

1
√
p

)
− 2
√
n−

( n∑
p=1

1
√
p

)
− 2
√
n+ 1


= 2

√
n+ 1− 2

√
n

= 2(
√
n+ 1−

√
n)(
√
n+ 1 +

√
n)√

n+ 1 +
√
n

= 2 (n+ 1)− n√
n+ 1 +

√
n

= 2√
n+ 1 +

√
n

Ainsi, il est clair que lim
n→+∞

vn − un = 0.

Les deux suites sont donc adjacentes et convergent vers leur limite commune notée
ℓ ∈ R.

2. Remarquons que, puisque la (un)n∈N∗ est croissante et la suite (vn)n∈N∗ est donc
décroissante et que les deux tendent vers la même limite ℓ, on a forcément, ∀n ∈ N∗,

un ⩽ ℓ ⩽ vn.

Autrement dit, en retranchant un à chaque terme, on obtient

0 ⩽ ℓ− un ⩽ vn − un.

Or ℓ− un = |un − ℓ| et vn − un = 2√
n+ 1 +

√
n

d’après la question précédente.

Comme
√
n+ 1 ⩾

√
n, on a

√
n+ 1 +

√
n ⩾ 2

√
n donc en prenant l’inverse,

1√
n+ 1 +

√
n
⩽

1
2
√
n
.

Ainsi, on a vn − un = 2√
n+ 1 +

√
n
⩽

1√
n
.

On a donc, en reprenant notre encadrement

|un − ℓ| ⩽
1√
n
.

3.

from math import sqrt

def limite ():
n=1
S=1
while 1/ sqrt(n) >=10**( -2):

n+=1
S+=1/ sqrt(n)

return S -2* sqrt(n+1)
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On aurait aussi pu déterminer pour quel n on a 1√
n

⩽ 10−2 (soit n ⩾ 104) et faire
une boucle for :

from math import sqrt

def limite ():
S=0
for n in range (1 ,10001):

S+=1/ sqrt(n)
return S -2* sqrt (1 ,10001)

4. On a, pour n ⩾ 1, Sn = vn + 2
√
n = 2

√
n

(
1 + vn

2
√
n

)
.

On a vn −−−−−→
n→+∞

ℓ, donc lim
n→+∞

vn

2
√
n

= 0.

Ainsi, lim
n→+∞

1 + vn

2
√
n

= 1, donc Sn ∼+∞ 2
√
n.

Exercice 12. 1. Notons, pour n ∈ N, P(n) : ≪ a ⩽ un ⩽ b et a ⩽ vn ⩽ b. ≫.
Il est clair que P(0) est vraie.
Soit n ∈ N quelconque fixé. Supposons P(n) vraie.

Cela implique que 2a ⩽ un + vn ⩽ 2b, donc a ⩽
un + vn

2 ⩽ b, soit a ⩽ vn+1 ⩽ b.

Par ailleurs, on a a ⩽ un ⩽ b, donc comme a > 0, 1
b
⩽

1
un

⩽
1
a
. De même, on a

1
b
⩽

1
vn

⩽
1
a
.

Ainsi, en ajoutant ces deux inégalités on a

2
b
⩽

1
un

+ 1
vn

⩽
2
a
.

Ce qui se traduit en
2
b
⩽

2
un+1

⩽
2
a
.

En simplifiant par 2 et inversant (car 2
b
> 0), on a

b ⩾ un+1 ⩾ a.

Ainsi, P(n+ 1) est vraie.
On a donc démontré par récurrence que ∀n ∈ N, a ⩽ un ⩽ b et a ⩽ vn ⩽ b.

2. Soit n ∈ N. On a

un+1 = 2
(

1
1

un
+ 1

vn

)
unvn

unvn
= 2unvn

un + vn
.
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3. Soit n ∈ N. On a

vn+1 − un+1 = un + vn

2 − 2unvn

un + vn

= (un + vn)2 − 4unvn

2(un + vn)

= u2
n + 2unvn + v2

n − 4unvn

2(un + vn)

= u2
n − 2unvn + v2

n

2(un + vn)

= (vn − un)2

2(un + vn) .

Ainsi, il est clair que ∀n ∈ N, vn+1 − un+1 ⩾ 0 car un + vn > 0 d’après la question
précédente. On peut le réécrire en ∀n ∈ N∗, vn − un ⩾ 0. Par ailleurs, c’est vrai pour
n = 0 puisque a ⩽ b.

On a donc, pour tout n ∈ N, un ⩽ vn.
Revenons-en au calcul précédent. On a

vn+1 − un+1 = (vn − un)2

2(un + vn)

= 1
2(vn − un)vn − un

un + vn
.

Or, comme un ⩾ 0, on a vn − un

un + vn
⩽
vn + un

un + vn
= 1

Comme vn − un ⩾ 0, on obtient vn+1 − un+1 ⩽
1
2(vn − un).

4. Notons, pour n ∈ N, P(n) : ≪ vn − un ⩽
b− a

2n
. ≫.

Il est clair que P(0) est vraie puisque vn − un = b− a = b− a
20 .

Soit n ∈ N quelconque fixé. Supposons P(n) vraie.

D’après la question précédente, on a vn+1 − un+1 ⩽
1
2(vn − un). Or d’après P(n), on

a vn − un ⩽
b− a

2n
.

Ainsi,
vn+1 − un+1 ⩽

1
2(vn − un) ⩽ 1

2
b− a

2n
= b− a

2n+1 .

Ainsi, P(n+ 1) est vraie.

On a donc démontré par récurrence que ∀n ∈ N, vn − un ⩽
b− a

2n
.

5. On a ∀n ∈ N, 0 ⩽ vn − un ⩽
b− a

2n
. Comme b− a

2n
−−−−−→
n→+∞

0, on a par encadrement
lim

n→+∞
vn − un = 0.
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Par ailleurs, on a, pour n ∈ N,

un+1 − un = = 2unvn

un + vn
− un

= 2unvn − un(un + vn)
un + vn

= unvn − u2
n

un + vn

= un(vn − un)
un + vn

.

Or comme vn − un ⩾ 0, on a un+1 − un ⩾ 0. La suite (un)n∈N est donc croissante.
Ensuite, on a, pour n ∈ N,

vn+1 − vn = un + vn

2 − vn

= un − vn

2 .

Or comme un − vn ⩽ 0, on a vn+1 − vn ⩽ 0. La suite (vn)n∈N est donc décroissante.
La suite (un)n∈N est croissante, la suite (vn)n∈N est décroissante et leur différence
tend vers 0, donc ces deux suites sont adjacentes. Elles convergent donc et tendent
vers la même limite.

Exercice 13. 1. Notons, pour n ∈ N, P(n) : ≪ a ⩽ un ⩽ b et a ⩽ vn ⩽ b. ≫.
Il est clair que P(0) est vraie.
Soit n ∈ N quelconque fixé. Supposons P(n) vraie.

Cela implique que 2a ⩽ un + vn ⩽ 2b, donc a ⩽
un + vn

2 ⩽ b, soit a ⩽ vn+1 ⩽ b.

Par ailleurs, on a a ⩽ un ⩽ b, donc comme a > 0, vn > 0 donc

avn ⩽ unvn ⩽ bvn.

Comme vn ⩾ a, on a avn ⩾ a2 (car a > 0) et comme vn ⩽ b et b > 0, on a bvn ⩽ b2.
Ainsi, on a

a2 ⩽ unvn ⩽ b2.

On peut appliquer la racine, croissante sur R+ et on obtient
√
a2 ⩽

√
unvn ⩽

√
b2.

Autrement dit, comme a et b sont positifs,

a ⩽ vn+1 ⩽ b.

Ainsi, P(n+ 1) est vraie.
On a donc démontré par récurrence que ∀n ∈ N, a ⩽ un ⩽ b et a ⩽ vn ⩽ b.
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2. Soit n ∈ N. On a

vn+1 − un+1 = un + vn

2 −
√
unvn

= un + vn − 2√un
√
vn

2

= (√un −
√
vn)2

2 .

Ainsi, il est clair que ∀n ∈ N, vn+1 − un+1 ⩾ 0. On peut le réécrire en ∀n ∈ N∗,
vn − un ⩾ 0. Par ailleurs, c’est vrai pour n = 0 puisque a ⩽ b.

On a donc, pour tout n ∈ N, un ⩽ vn.
Reprenons notre calcul :

vn+1 − un+1 = (√un −
√
vn)2(√un +√vn)2

2(√un +√vn)2

= (un − vn)2

2(un + 2√un
√
vn + vn)

⩽
(vn − un)2

2(un + vn) car 2√un
√
vn > 0

⩽
1
2(vn − un)vn − un

un + vn
.

Or, comme un ⩾ 0, on a vn − un

un + vn
⩽
vn + un

un + vn
= 1

Comme vn − un ⩾ 0, on obtient vn+1 − un+1 ⩽
1
2(vn − un).

3. Notons, pour n ∈ N, P(n) : ≪ vn − un ⩽
b− a

2n
. ≫

Il est clair que P(0) est vraie puisque vn − un = b− a = b− a
20 .

Soit n ∈ N quelconque fixé. Supposons P(n) vraie.

D’après la question précédente, on a vn+1 − un+1 ⩽
1
2(vn − un). Or d’après P(n), on

a vn − un ⩽
b− a

2n
.

Ainsi,
vn+1 − un+1 ⩽

1
2(vn − un) ⩽ 1

2
b− a

2n
= b− a

2n+1 .

Ainsi, P(n+ 1) est vraie.

On a donc démontré par récurrence que ∀n ∈ N, vn − un
b− a

2n
.

4. On a ∀n ∈ N, 0 ⩽ vn − un ⩽
b− a

2n
. Comme b− a

2n
−−−−−→
n→+∞

0, on a par encadrement
lim

n→+∞
vn − un = 0.

Par ailleurs, on a, pour n ∈ N,

un+1 − un = = √unvn − un

= √
un(√vn −

√
un).
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Or comme vn ⩾ un, on a √vn ⩾
√
un (la fonction racine est croissante) donc √vn −√

un ⩾ 0. Ainsi, un+1 − un ⩾ 0. La suite (un)n∈N est donc croissante.
Ensuite, on a, pour n ∈ N,

vn+1 − vn = un + vn

2 − vn

= un − vn

2 .

Or comme un − vn ⩽ 0, on a vn+1 − vn ⩽ 0. La suite (vn)n∈N est donc décroissante.
La suite (un)n∈N est croissante, la suite (vn)n∈N est décroissante et leur différence
tend vers 0, donc ces deux suites sont adjacentes. Elles convergent donc vers la même
limite.

Exercice 14. On note (un)n∈N la suite obtenue en posant u0 = 2 et un+1 = 2− 1
un

1. Notons donc, pour tout n ∈ N P(n) : ≪ un existe et 1 ⩽ un. ≫

Il est clair que P(0) est vraie au vu des données.
Soit n ∈ N quelconque fixé. Supposons P(n) vraie.
On a 1 ⩽ un, donc on peut prendre l’inverse (fonction décroissante sur R∗+), et on
obtient

1
un

⩽ 1.

En prenant l’opposé, on obtient
−1 ⩽ − 1

un
.

En ajoutant 2, on récupère
1 ⩽ 2− 1

un
.

On obtient bien l’existence de un+1 ainsi que le fait que 1 ⩽ un+1.
Ainsi, P(n+ 1) est vraie.
On a donc démontré que la suite (un)n∈N est bien définie et que pour tout n ∈ N,
1 ⩽ un.

2. On peut soit faire une récurrence (mais c’est lassant) ou considérer, pour n ∈ N,

un+1 − un = 2− 1
un
− un

= 2un − 1− u2
n

un

= −(un − 1)2

un
.

Or comme ∀n ∈ N, un > 0, il est clair que un+1 − un ⩽ 0.
La suite (un)n∈N est donc décroissante.
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3. Il s’agit d’une suite décroissante, minorée donc c’est une suite convergente. De plus,
comme elle est minorée par 1, il est clair que sa limite que nous noterons ℓ est telle
que 1 ⩽ ℓ ⩽ 2.

Ainsi, on a un+1 −−−−−→
n→+∞

ℓ et 2− 1
un
−−−→
n→∞

2− 1
ℓ

.

Ainsi, on a ℓ = 2− 1
ℓ

, donc ℓ2 = 2ℓ−1, puis ℓ2−2ℓ+1 = 0 autrement dit (ℓ−1)2 = 0.

Ainsi, on a forcément ℓ = 1.

4. En calculant les premiers termes, on peut conjecturer que ∀n ∈ N, un = n+ 2
n+ 1.

Notons donc ∀n ∈ N, P ′(n) : ≪ un = n+ 2
n+ 1

≫.

On a u0 = 2 et 0 + 2
0 + 1 = 2 donc P ′(0) est vraie.

Soit n ∈ N quelconque fixé. Supposons P(n) vraie.

On a un+1 = 2− 1
un

= 2− n+ 1
n+ 2 = n+ 3

n+ 2.

Ainsi, P ′(n+ 1) est vraie.

Donc ∀n ∈ N, un = n+ 2
n+ 1.

Pour retrouver le sens de variation, on calcule, pour n ∈ N,

un+1 − un = n+ 3
n+ 2 −

n+ 2
n+ 1 = (n+ 3)(n+ 1)− (n+ 2)2

(n+ 1)(n+ 2) = −1
(n+ 1)(n+ 2) < 0.

Ainsi, la suite (un)n∈N est décroissante.

Pour finir un = n+ 2
n+ 1 =

1 + 2
n

1 + 1
n

−−−−−→
n→+∞

1.

Je me permets de préciser que c’est parce que u0 est bien choisi qu’on obtient facile-
ment l’expression explicite de un et donc qu’on retrouve très facilement les résultats
des questions précédentes.

Exercice 15. 1. Notons donc, pour tout n ∈ N P(n) : ≪ un existe et un ⩾ 1. ≫

Il est clair que P(0) est vraie au vu des données.
Soit n ∈ N quelconque fixé. Supposons P(n) vraie.

On a un ⩾ 1, donc on peut prendre l’inverse qui reste tel que 1
un

> 0, donc 2
un

> 0.

Par ailleurs, comme la fonction carrée est croissante sur R+, on a u2
n ⩾ 1.

Ainsi, u2
n + 2

un
⩾ 1. On obtient bien l’existence de un+1 ainsi que le fait que un+1 ⩾ 1.

Ainsi, P(n+ 1) est vraie.
On a donc démontré que la suite (un)n∈N est bien définie et que pour tout n ∈ N,
un ⩾ 1.

2. On considère, pour n ∈ N,
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un+1 − un = u2
n + 2

un
− un

= un(un − 1) + 2
un
.

Comme un ⩾ 1, on a un(un − 1) ⩾ 0 et 2
un

⩾ 0.

Ainsi, ∀n ∈ N, il est clair que un+1 − un ⩾ 0.
La suite (un)n∈N est donc croissante.

3. Supposons que la suite converge vers une limite ℓ. Alors comme ∀n ∈ N, un ⩾ 1, on
a forcément ℓ ⩾ 1.

Ainsi, on aurait un+1 −−−−−→
n→+∞

ℓ et u2
n + 2

un
−−−−−→
n→+∞

ℓ2 + 2
ℓ ..

On a donc l’équation ℓ = ℓ2 + 2
ℓ . Equation qui implique

ℓ3 − ℓ2 + 2
ℓ

= 0.

On devrait donc avoir ℓ3− ℓ2 + 2 = 0 ou encore ℓ2(ℓ− 1) + 2 = 0 ce qui est impossible
car ℓ2(ℓ− 1) ⩾ 0 puisque ℓ ⩾ 1.
Remarquons qu’on aurait aussi pu factoriser la quantité, remarquer que −1 est racine
évidente et donc que ℓ3 − ℓ2 + 2 = (ℓ + 1)(ℓ2 − 2ℓ + 2). Ce trinôme du second degré
n’ayant pas de racines réelles (son discriminant est strictement négatif), la seule limite
envisageable est −1 qui est impossible puisque ℓ ⩾ 1.
Ainsi, (un)n∈N ne peut pas être convergente. Comme elle est croissante, on a forcément

lim
n→+∞

un = +∞.

Exercice 16. 1. Notons P(n) : ≪ un ∈ [0, 1]. ≫

Vu l’énoncé, on a P(0) et P(1) vraies.
Soit n ∈ N quelconque fixé. Supposons P(n) et P(n+ 1) vraies.
On a, comme la fonction cube est croissante sur R,

0 ⩽ u3
n ⩽ 1.

En ajoutant l’inégalité provenant de P(n+ 1),

0 ⩽ un+1 + u3
n ⩽ 2.

En ajoutant 1 puis en multipliant par 1
3, on a

0 ⩽
1
3(1 + un+1 + u3

n) ⩽ 1.

Soit un+2 ∈ [0, 1]. Ainsi, P(n+ 2) est vraie.
On a donc montré par récurrence double que ∀n ∈ N, un ∈ [0, 1].

2. On a u0 = 0, u1 = 1
2 et u2 = 1

3

(
1 + 1

2 + 03
)

= 1
2 . Un dernier calcul amène u3 =

1
3

(
1 + 1

2 + 1
2

3) = 13
24 .

Il semblerait que la suite soit croissante.
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Notons P ′(n) : ≪ un ⩽ un+1. ≫

Vu l’énoncé et le calcul précédent, on a P ′(0) et P ′(1) vraies (et même P ′(2), mais
c’est inutile).
Soit n ∈ N quelconque fixé. Supposons P ′(n) et P ′(n+ 1) vraies.
On a, comme la fonction cube est croissante sur R, un ⩽ un+1 implique

u3
n ⩽ u3

n+1

En ajoutant l’inégalité provenant de P(n+ 1),

un+1 + u3
n ⩽ un+2 + u3

n+1.

En ajoutant 1 puis en multipliant par 1
3, on a

1
3(1 + un+1 + u3

n) ⩽ 1
3(1 + un+2 + u3

n+1).

Soit un+2 ⩽ un+3. Ainsi, P ′(n+ 2) est vraie.
On a donc montré par récurrence double que ∀n ∈ N, un ⩽ un+1. Autrement dit la
suite (un)n∈N est croissante.

3. La suite (un)n∈N est croissante et majorée par 1. Elle est donc convergente. Notons ℓ
sa limite. On a un+2 −−−−−→

n→+∞
ℓ et 1

3(1 + un+1 + u3
n) −−−−−→

n→+∞

1
3(1 + ℓ+ ℓ3).

On en déduit l’équation
ℓ = 1

3(1 + ℓ+ ℓ3).

⇐⇒ ℓ3 − 2ℓ+ 1 = 0.

On remarque que 1 est racine évidente de ℓ3 − 2ℓ+ 1. Donc il existe trois réels a, b, c
tels que

ℓ3 − 2ℓ+ 1 = (ℓ− 1)(aℓ2 + bℓ+ c)

soit
ℓ3 − 2ℓ+ 1 = aℓ3 + (b− a)ℓ2 + (c− b)ℓ− c.

On en déduit le système 
a = 1

b− a = 0
c− b = −2
−c = 1

⇐⇒


a = 1
b = 1

−1− 1 = −2
c = −1

On a donc
ℓ3 − 2ℓ+ 1 = (ℓ− 1)(ℓ2 + ℓ− 1).

Ainsi, on a

(ℓ− 1)(ℓ2 + ℓ− 1) = 0.
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Cela revient à ℓ = 1 ou ℓ2 + ℓ − 1. Le discriminant de cette dernière équation est
∆ = 5.

On a donc trois possibilité pour ℓ : 1, −1−
√

5
2 ou −1 +

√
5

2 .

Or, on a démontré que ∀n ∈ N, un ∈ [0, 1], donc −1−
√

5
2 < 0 est impossible.

Il reste à trancher entre les deux, que nous noterons ℓ1 = −1 +
√

5
2 et ℓ2 = 1 avec

ℓ1 < ℓ2. D’après la valeur approchée qui nous est donnée, on peut remarquer que
u0 < ℓ1, u1 < ℓ1 et u2 < ℓ1.
Montrons alors que ∀n ∈ N, un ⩽ ℓ1.

Notons P ′′(n) : ≪ un ⩽ ℓ1. ≫

Vu l’énoncé, on a P ′′(0) et P ′′(1) vraies.
Soit n ∈ N quelconque fixé. Supposons P ′′(n) et P ′′(n+ 1) vraies.
On a, comme la fonction cube est croissante sur R,

u3
n ⩽ ℓ31.

En ajoutant l’inégalité provenant de P ′′(n+ 1),

0un+1 + u3
n ⩽ ℓ1 + ℓ31.

En ajoutant 1 puis en multipliant par 1
3, on a

1
3(1 + un+1 + u3

n) ⩽ 1
3(1 + ℓ1 + ℓ31).

Or 1
3(1 + ℓ1 + ℓ31) = ℓ1 (c’est comme ça qu’on a trouvé ℓ1).

Ainsi, un+2 ⩽ ℓ1. Ainsi, P ′′(n+ 2) est vraie.
On a donc montré par récurrence double que ∀n ∈ N, un ⩽ ℓ1.
Comme ∀n ∈ N, un ⩽ ℓ1 < ℓ2 = 1, il est impossible que la suite (un)n∈N converge

vers ℓ2. Elle converge vers ℓ1 = −1 +
√

5
2 .

On a donc
lim

n→+∞
un = −1 +

√
5

2 .

Exercice 17 (Pour s’entrainer à manipuler la définition de limite). 1. Supposons ℓ /∈ N.
En prenant ε = min(ℓ − ⌊ℓ⌋, ⌊ℓ⌋ + 1 − ℓ), on remarque que, il existe un entier n0 tel
que, ∀n ⩾ n0,

|un − ℓ| < ε,

autrement dit
ℓ− ε < un < ℓ+ ε.

Cependant, puisque ε ⩽ ℓ− ⌊ℓ⌋, ℓ− ε ⩾ ⌊ℓ⌋, et comme ε ⩽ ⌊ℓ⌋+ 1− ℓ, on a

⌊ℓ⌋ < un < ⌊ℓ⌋+ 1.

Or il est rigoureusement impossible d’avoir un entier compris strictement entre deux
entiers successifs.
On a donc forcément ℓ ∈ N.
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2. On a désormais lim
p→+∞

un = ℓ ∈ N. D’après la définition de limite appliquée à ε = 1
2,

on récupère qu’il existe un n0 ∈ N tel que, pour tout n ⩾ n0,

|un − ℓ| <
1
2 ,

autrement dit
ℓ− 1

2 < un < ℓ+ 1
2 .

Or comme un ∈ N, le seul entier possible est un = ℓ.

3. Nous venons de démontrer que toute suite d’entiers convergente est stationnaire à
partir d’un certain rang.

12 Polynômes
1. Factorisation de polynômes
Exercice 1. 1. Cette équation est équivalente à x2− 4x− 12 = 0. Le discriminant vaut

∆ = (−4)2 − 4× 1× (−12) = 64.

Les deux racines sont 4− 8
2 = −2 et 4 + 8

2 = 6.

2. Cette équation est équivalente à x2 + (3−
√

3)x− 3
√

3 = 0.
Le discriminant vaut

∆ = (3−
√

3)2 − 4× 1× (−3
√

3) = 9− 6
√

3 + 3 + 12
√

3.

Soyons astucieux, on a

∆ = 9 + 6
√

3 + 3 = (3 +
√

3)2.

Ainsi, les deux racines sont −3 +
√

3− (3 +
√

3)
2 = −3 et −3 +

√
3 + (3 +

√
3)

2 =
√

3.

3. Comme précédemment... On trouve 6−
√

29
7 et 6 +

√
29

7 .

4. On peut être plus malin. L’équation est équivalente à

2x2 + 7x− 9 = 0.

On remarque que 1 est racine évidente. Par ailleurs le produit des deux racines fait
−9

2. Ainsi, la deuxième est forcément −9
2 .

Les deux racines sont −9
2 et 1.

5. Le discriminant de ce trinôme est ∆ = [−(2−m)]2 − 4 = m2 − 4m = m(m− 4).
Ainsi, il faut discuter selon la valeur de m.

• Si m ∈]0, 4[, il n’y a pas de solutions.
• Si m = 0, une seule solution 1 (c’est une identité remarquable).
• Si m = 4, une seule solution −1 (c’est aussi une identité remarquable).
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• Sim < 0 oum > 4 deux solutions, 2−m−
√
m(m− 4)

2 et 2−m+
√
m(m− 4)

2 .

6. On peut faire un changement de variable, poser X = x2... ou tout simplement remar-
quer que

x4 − 2x2 + 1 = (x2 − 1)2 = (x− 1)2(x+ 1)2.

Ainsi,
x4 − 2x2 + 1 = 0⇐⇒ (x− 1)2(x+ 1)2 = 0.

On a donc deux solutions, 1 et −1.

Exercice 2. Comme souvent dans le cas d’exercices très calculatoires, je ne détaillerai
que la rédaction de certains cas, pour les autres, je vous laisse la calquer sur ce que vous
avez vu précédemment.

1. On remarque que P (2) = 0. On ne trouve pas d’autres racines évidentes. On sait qu’il
existe donc a, b, c trois réels tels que P = (X − 2)(aX2 + bX + c).
Ainsi, on a P = aX3 + (b− 2a)X2 + (c− 2b)X − 2c.
Par identification, on a le système :

a = 1
b− 2a = −2
c− 2b = 1
−2c = −2

⇐⇒


a = 1
b = 0
c = 1
1 = 1

On maintiendra bien les 4 équations jusqu’à vérification

qu’elle soit vraie pour conserver l’équivalence et s’éviter de vérifier les solutions obte-
nues.
Ainsi, on a P = (X − 2)(X2 + 1).
En fait, on aurait pu (dû ?) remarquer que P = X2(X − 2) + (X − 2) et factoriser
directement...
Si on veut factoriser sur C, on remarque que

P = (X − 2)(X2 − i2) = (X − 2)(X − i)(X + i).

2. On remarque immédiatement que P (1) = 0. Par ailleurs, on a P ′ = 4X3 − 3X2 − 1,
donc P ′(1) = 0. Ainsi, 1 est racine double de P , donc on sait qu’il existe un polynôme
Q de degré 2 tel que P = (X−1)2Q. Comme Q est de degré 2, on sait qu’il va s’écrire
aX2 + bX + c où a, b et c sont trois réels.
On a donc P = (X − 1)2(aX2 + bX + c) = (X2 − 2X + 1)(aX2 + bX + c).
En développant, on a

P = aX4 + (b− 2a)X3 + (c− 2b+ a)X2 + (−2c+ b)X + c.

Par identification, on a



a = 1
b− 2a = −1

a− 2b+ c = 0
b− 2c = −1

c = 1

⇐⇒



a = 1
b = 1
c = 1
−1 = −1

1 = 1
Ainsi, P = (X − 1)2(X2 +X + 1).
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Factorisons X2 + X + 1. Son discriminant est ∆ = −3. Ainsi, il ne peut pas être

factorisé sur R mais il a deux racines complexes conjuguées −1− i
√

3
2 = e−

2iπ
3 et

−1 + i
√

3
2 = e

2iπ
3

Ainsi, on a P = (X − 1)2(X − e 2iπ
3 )(X − e− 2iπ

3 ).
Ou si on factorise sur R, P = (X − 1)2(X2 +X + 1).
D’autres solutions auraient pu être trouvées. Par exemple, on remarque que P =
X3(X − 1)− (X − 1) = (X − 1)(X3 − 1).
Et ensuite, on factorise X3 − 1 en cherchant les racines complexes.

3. On trouve deux racines évidentes, −1 et 2.
Ainsi, il existe a, b tels que P = (X + 1)(X − 2)(aX + b).
En calculant P (0), on trouve −20 = −2b et en calculant P (1), on trouve −2(a+ b) =
−24, ce qui nous permet de récupérer b = 10 puis −2a = −4 soit a = 2.
Ainsi, on a P = (2X + 10)(X + 1)(X − 2) = 2(X + 5)(X + 1)(X − 2).

4. Remarquons que 1 est racine évidente. Par ailleurs, P ′ = 6X2 − 6X, donc P ′(1) = 0.
Ainsi, 1 est racine multiple de P .
Comme P est de degré 3, il existe a, b deux réels tels que P = (X − 1)2(aX + b).
On peut développer puis identifier ou tenter quelques valeurs. Par exemple, P (0) = 1,
et P (0) = b, donc b = 1.
Enfin, le terme dominant de P est 2X3 et, en développant sa forme factorisée, il s’agit
de aX3, donc a = 2.
Ainsi, P = (2X + 1)(X − 1)2.

5. Rappelons-nous que tous les coups sont permis. On trouve rapidement trois racines
évidentes : P (1) = P (−1) = P (2) = 0.
Cherchons si un de ces trois racines est double. On a P ′ = 4X3−3X2−6X+1. Ainsi,
P (−1) = 0. Donc −1 est racine double. On a trouvé 4 racines (comptées avec leur
multiplicité) pour un polynôme de degré 4. Ainsi, P = α(X − 1)(X + 1)2(X − 2). Or
le coefficient dominant de P est 1 et α.
Ainsi, P = (X − 1)(X + 1)2(X − 2)

6. Remarquons que P (−1) = 0 et que P ′ = 12X3 + 3X2 − 18X − 9 avec P ′(−1) = 0.
Ainsi, −1 est racine multiple de P . Ainsi, il existe a, b, c trois réels tels que

P = (X + 1)2(aX2 + bX + c).

En développant, on trouve

P = (X2 +2X+1)(aX2 +bX+c) = aX4 +(2a+b)X3 +(a+2b+c)X2 +(b+2c)X+c.

Par identification, on a :

a = 3
2a+ b = 1

a+ 2b+ c = −9
b+ 2c = −9

c = −2

⇐⇒



a = 3
b = −5

3− 10− 2 = −9
−5− 4 = −9

c = −2
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Ainsi, P = (X + 1)2(3X2 − 5X − 2).
On peut remarquer que 2 est racine évidente de 3X2−5X−2 et que comme le produit
des racine fait −2

3 l’autre fait −1
3 (ou factoriser à l’aide du discriminant).

On a alors 3X2 − 5X − 2 = 3(X − 2)
(
X + 1

3

)
sans oublier le coefficient dominant.

On encore 3X2 − 5X − 2 = (X − 2)(3X + 1).
Ainsi, P = (X + 1)2(X − 2)(3X + 1).

7. On remarque que P (1) = P (−2) = 0. Ainsi, il existe a, b, c trois réels tels que

P = (X + 2)(X − 1)(aX2 + bX + c).

En développant, on trouve

P = (X2+X−2)(aX2+bX+c) = aX4+(a+b)X3+(−2a+b+c)X2+(−2b+c)X−2c.

Par identification, on a :

a = 2
a+ b = 21

−2a+ b+ c = 50
−2b+ c = −3
−2c = −70

⇐⇒



a = 2
b = 19
c = 35
−3 = −3
−70 = −70

Ainsi, on a P = (X + 2)(X − 1)(2X2 + 19X + 35).
Factorisons 2X2+19X+35. Son discriminant est ∆ = 192−4×2×35 = 361−280 = 81.

Ainsi, il a deux racines −19− 9
4 = −7 et −19 + 9

4 = −5
2.

Ainsi, il se factorise en 2X2 + 19X + 35 = 2(X + 7)
(
X + 5

2

)
.

On a donc P = 2(X + 2)(X − 1)(X + 7)
(
X + 5

2

)
.

8. Remarquons que P (1) = 0, ainsi, il existe (a, b, c) ∈ R3 tel que P = (X − 1)(aX2 +
bX + c).
On a alors P = aX3 + (−a+ b)X2 + (−b+ c)X − c.

Par unicité de l’écriture développée réduite, on a le système



a = 6
−a+ b = −5
−b+ c = −3
−2b+ c = −3

−c = 2

⇐⇒


a = 6
b = 1
c = −2
−2 = 2

Ainsi, P = (X − 1)(6X2 +X − 2).
Le discriminant de 6X2 +X − 2 est ∆ = 12 − 4× 6× (−2) = 49.

Ainsi, ce polynôme a deux racines −1− 7
2× 6 = −8

12 = −2
3 et −1 + 7

2× 6 = 1
2 .

Ainsi, 6X2 +X − 2 = 6
(
X + 2

3

)(
X − 1

2

)
.
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Merci de ne pas oublier le coefficient dominant, donc P = 6(X−1)
(
X + 2

3

)(
X − 1

2

)
.

En arrangeant un peu les choses pour éviter toute fraction, on peut conclure que

P = (X − 1)(3X + 2)(2X − 1).

9. On trouve deux racines évidentes, 1 et 2. Ainsi, il existe a, b, c trois réels tels que
P = (X − 1)(X − 2)(aX2 + bX + c).
En développant, on a

P = (X2−3X+2)(aX2+bX+c) = aX4+(−3a+b)X3+(2a−3b+c)X2+(2b−3c)X+2c.

Par identification, on a :

a = 1
−3a+ b = −4

2a− 3b+ c = 4
2b− 3c = 1

2c = −2

⇐⇒



a = 1
b = −1
c = −1
1 = 1
−2 = −2

Ainsi, on a P = (X − 1)(X − 2)(X2 −X − 1). Puis on factorise le polynôme d’ordre
2 dont le discriminant est 5. On trouve alors

P = (X − 1)(X − 2)
(
X − 1−

√
5

2

)(
X − 1 +

√
5

2

)
.

10. Remarquons déjà que P = 3(X4 +X3 −X − 1) = 3[(X + 1)X3 − (X + 1)] = 3(X +
1)(X3 − 1).
En utilisant une identité remarquable, on a P = 3(X + 1)(X − 1)(X2 +X + 1). Puis
on factorise le polynôme d’ordre 2 dont le discriminant est −3. On trouve alors

P = 3(X + 1)(X − 1)(X2 +X + 1) = 3(X − 1)(X + 1)(X − e
2iπ

3 )(X − e−
2iπ

3 ).

Notons que l’on aurait pu passer par les complexes pour factoriser X3 − 1, comme
vous le verrez dans la question 11.

11. Comme P (−2) = 0, il existe il existe a, b, c trois réels tels que P = (X + 2)(aX2 +
bX + c).
En développant, on a

P = aX3 + (2a+ b)X2 + (2b+ c)X + 2c.

Par identification, on a :
a = 2

2a+ b = 6
2b+ c = 3

2c = −2

⇐⇒


a = 2
b = 2
c = −1
−2 = −2

Ainsi, P = (X + 2)(2X2 + 2X − 1). Puis on factorise le polynôme d’ordre 2 dont le
discriminant est 12. On trouve alors
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P = 2(X + 2)
(
X − −1−

√
3

2

)(
X − −1 +

√
3

2

)
. Ou encore

P = 2(X + 2)
(
X + 1 +

√
3

2

)(
X + 1−

√
3

2

)
.

12. On trouve que 1 et 2 sont racines évidentes. Comme P ′ = 3X2 − 8X + 5 et que
P ′(1) = 0, 1 est racine d’ordre multiple. Comme deg(P ) = 3 et que son coefficient
dominant est 1, on ne peut qu’avoir

P = (X − 1)2(X − 2).

13. On trouve que −3,−1 et 2 sont racines évidentes. Puis que 2 est racine double. Comme
le coefficient dominant de P est 2, on a

P = 2(X + 3)(X + 1)(X − 2)2.

14. On peut soit voir que 2 est racine évidente, et factoriser pour trouver : P = (X −
2)(X2 + 2X + 4) = (X − 2)(X + 1 + i

√
3)(X + 1− i

√
3).

Sinon, on cherche les racines sous forme trigonométrique ρeiθ. On trouve rapidement
que ρ3 = 23, donc ρ = 2 puisque ρ > 0.
Ensuite, on a 3θ = 2kπ, k ∈ Z ce qui permet de trouver trois solutions

2, 2e
2iπ

3 , 2e
4iπ

3 = 2e−
2iπ

3

ce qui donne la même factorisation que ci-dessus.

15. C’est 1
3 la racine évidente qui permet de faire comme ci-dessus (factorisation via

discriminant ou complexes sous forme trigonométrique). On conclue par :

P = (3X − 1)(9X2 + 3X + 1) = (3X − 1)(X − −1− i
√

3
6 )(X − −1 + i

√
3

6 ).

16. Comme−1 est racine évidente, on trouve rapidement que P = (X+1)(mX2−mX+1).
Maintenant, il faut distinguer des cas :

• Si m = 0, P = X + 1.
• Si m ̸= 0, on essaie de factoriser le polynôme mX2−mX+1 dont le discriminant

est ∆ = m2 − 4m = m(m− 4).
a. Si m = 4, on a une seule racine et on trouve P = (X + 1)(2X − 1)2.

b. Si m /∈ [0, 4], on prend le discriminant et on trouve

P = m(X + 1)
(
X − m−

√
m(m− 4)
2m

)(
X − m+

√
m(m− 4)
2m

)
.

166 / 359



c. Sim ∈]0, 4[, on a deux racines complexes conjuguées, on ne peut pas factoriser
outre mesure le polynôme. Vous verrez l’an prochain que

P = m(X + 1)
(
X − m− i

√
m(4−m)
2m

)(
X − m+ i

√
m(4−m)
2m

)
.

Exercice 3. Il suffit de faire le tableau de signe si on a la factorisation. Je vous les
donne, les méthodes sont à s’inspirer par les exercices précédents.

1. Aucun piège, on obtient :

4X2 + 33X − 27 = 4(X + 9)(X − 3
4).

Un tableau de signe pour conclure (ou une jolie phrase).

2. Le discriminant de ce trinôme est

(4−
√

2)2 + 16
√

2 = 16− 8
√

2 + 2 + 16
√

2 = 16 + 8
√

2 + 2 = (4 +
√

2)2.

Ainsi, on a
X2 + (4−

√
2)X − 4

√
2 = (X + 4)(X −

√
2).

Un tableau de signe pour conclure (ou une jolie phrase).

3. On trouve que 1 est racine évidente d’ordre 2, puis que

X3 + 2X2 − 7X + 4 = (X + 4)(X − 1)2.

Ce polynôme est donc du signe de X + 4. Doit-on aller plus loin pour conclure ?

Exercice 4. Pour toutes ces questions, on réfléchit à quel doit être le degré du polynôme
recherché, on pose ses coefficients (a, b, c...), on élève au carré et on identifie. Si on y
arrive, c’est bon. Sinon, c’est que ce n’était pas un carré.

1. On cherche a, b, c tels que P = (aX2 + bX + c)2 = a2X4 + 2abX3 + (2ac + b2)X2 +
2bcX + c2.

Ainsi, on doit avoir



a2 = 1
2ab = 4

2ac+ b2 = 12
2bc = 16
c2 = 16

.

On doit avoir a = 1 ou a = −1. Si a = 1, alors on trouve b = 2, donc c = 4 et ainsi
les deux équations suivantes sont vérifiées donc toutes le sont. Ainsi, on a

P = (X2 + 2X + 4)2.

(Il est bien entendu qu’il y a deux solutions : n’oubliez pas l’opposé !).

2. La même technique amène à Q = (X2 +X + 1)2.

3. C’est encore plus long mais pas plus difficile de montrer que R = (X3 +X2 +X+1)2.
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2. Exercices plus théoriques
Exercice 5. 1. On a P (a) = a, P (b) = b et P (c) = c et ainsi, on a Q(a) = Q(b) =
Q(c) = 0.

2. Remarquons que le degré de Q est inférieur ou égal à 2 puisqu’il s’agit de la somme
de 4 polynômes de degré inférieur ou égal à 2.
Or Q a trois racines distinctes, donc Q est le polynôme nul, soit P −X = 0K[X]. Ainsi,
on a montré que P = X.

3. Il suffit de prendre R = α
(X − b)(X − c)
(a− b)(a− c) + β

(X − a)(X − c)
(b− a)(b− c) + γ

(X − a)(X − b)
(c− a)(c− b) .

Imaginons qu’il existe un second polynôme S vérifiant les mêmes conditions. On aurait
alors deg(R− S) ⩽ max(deg(R),deg(S)) ⩽ 2.
Par ailleurs, (R − S)(a) = (R − S)(b) = (R − S)(c) = 0, donc le polynôme R − S
admettrait au moins trois racines alors que deg(R−S) ⩽ 2. On a alors R−S = 0K[X],
donc R = S.
Un seul polynôme vérifie ces conditions.

Exercice 6. 1. On a P1 = X + 1.

Ensuite, on a P2 = 1 +X + X(X + 1)
2 . Ainsi P2 = (X + 1)(X + 2)

2 .

Pour finir, on a P3 = P2 + X(X + 1)(X + 2)
3! = (X + 1)(X + 2)

2 + X(X + 1)(X + 2)
6 .

Ainsi, on a P3 = (X + 1)(X + 2)(X + 3)
6 .

2. Notons P(n) : ≪ Pn = 1
n!

n∏
k=1

(X + k). ≫

Il est clair que P(1) est vraie d’après la question précédente.
Soit n ∈ N∗ quelconque fixé. Supposons P(n) vraie.

Comme Pn+1 = Pn +

n∏
i=0

(X + i)

(n+ 1)! .

D’après P(n), on a

Pn+1 = 1
n!

n∏
k=1

(X + k) +

n∏
i=0

(X + i)

(n+ 1)!

= 1
(n+ 1)!

(
(n+ 1)

n∏
k=1

(X + k) +
n∏

i=0
(X + i)

)

= 1
(n+ 1)!

n∏
k=1

(X + k) ((n+ 1) +X)

= 1
(n+ 1)!

n+1∏
k=1

(X + k).

Ainsi, P(n+ 1) est vraie.

On a donc montré par récurrence que ∀n ∈ N∗, Pn = 1
n!

n∏
k=1

(X + k).
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Exercice 7. 1. Notons P = ∑n
k=0 akX

k l’écriture développée réduite de P ou a0, . . . , an.
On a P (−X) = ∑n

k=0 ak(−X)k = ∑n
k=0(−1)kakX

k.
Ainsi, P (X) = P (−X) amène, par unicité de l’écriture développée réduite de P :
∀k ∈ [[0, n ≫, (−1)kak = ak.

Ainsi, lorsque k est pair, l’équation est ak = ak mais si k est impair, c’est ak = −ak

donc ak = 0.
Ainsi, les polynômes sont ceux dont tous les coefficients correspondants à des puis-
sances impaires sont nuls.

2. De la même façon, notons P = ∑n
k=0 akX

k l’écriture développée réduite de P ou
a0, . . . , an.
On a P (−X) = ∑n

k=0 ak(−X)k = ∑n
k=0(−1)kakX

k.
Ainsi, −P (X) = P (−X) amène, par unicité de l’écriture développée réduite de P :
∀k ∈ [[0, n ≫, (−1)kak = −ak.

Ainsi, lorsque k est impair, l’équation est ak = ak mais si k est pair, c’est ak = −ak

donc ak = 0.
Ainsi, les polynômes sont ceux dont tous les coefficients correspondants à des puis-
sances paires sont nuls.

3. Une récurrence immédiate montre que, ∀n ∈ N, P (n) = P (0).
Ainsi, le polynôme Q = P − P (0) a une infinité de racines (tous les entiers), donc il
est nul !
Ainsi, on a P = P (0), donc P est constant.

4. Remarquons que ∀k ∈ Z, P (2kπ) = P (0) = 0. Donc P a une infinité de racines, et
ainsi seul le polynôme nul satisfait cette relation.

Exercice 8. Supposons qu’il existe un tel réel T . Dans ce cas, une récurrence immédiate
amène à, ∀n ∈ N, P (nT ) = P (0).
On pose alors Q = P − P (0) et on remarque que Q admet une infinité de racines (tous
les nT , où n ∈ N). Ainsi, Q est le polynôme nul, puis P = P (0) donc P est constant.

13 Probabilités
1. Avec du dénombrement
Exercice 1. 1. Si on tire deux boules simultanément, on modélise l’expérience en uti-

lisant des combinaisons. Ainsi Ω sera l’ensemble des combinaisons à deux éléments
de [[1, 9]] que l’on munira de la probabilité uniforme. Formellement, on peut écrire
Ω = {C ⊂ [[1, 9]]/Card(C) = 2}.

On a Card(Ω) =
(

9
2

)
= 36.

Ensuite, on note A l’événement ≪ obtenir deux boules de même parité ≫.
Ainsi, A = {C ⊂ {1, 3, 5, 7, 9}/Card(C) = 2} ∪ {C ⊂ {2, 4, 6, 8}/Card(C) = 2}.
On aurait pu dire que A est l’union disjointe des tirages où on pioche deux boules
impaires et ceux où on pioche deux boules paires, soit l’ensemble des combinaisons à
deux éléments prises dans {1, 3, 5, 7, 9} réuni avec l’ensemble des combinaisons à deux
éléments prises dans {2, 4, 6, 8}.
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Comme l’union est disjointe, on a Card(A) = Card({C ⊂ {1, 3, 5, 7, 9}/Card(C) =
2}) + Card({C ⊂ {2, 4, 6, 8}/Card(C) = 2}).

Et donc Card(A) =
(

5
2

)
+
(

4
2

)
= 10 + 6 = 16.

Ainsi, P (A) = 16
36 = 4

9.

2. Si on tire deux boules l’une après l’autre sans remise, on modélise l’expérience en listes
sans répétition. Ainsi Ω sera l’ensemble des listes sans répétition à deux éléments
de [[1, 9]] que l’on munira de la probabilité uniforme. Formellement, on peut écrire
Ω = {(a, b) ∈ [[1, 9]]2/a ̸= b}.

On a Card(Ω) =
(

9
7

)
= 9× 8 = 72.

Ensuite, on note A l’événement ≪ obtenir deux boules de même parité ≫.
Ainsi, A = {(a, b) ∈ {1, 3, 5, 7, 9}2/a ̸= b} ∪ {(a, b) ∈ {2, 4, 6, 8}2/a ̸= b}.
On aurait pu dire que A est l’union disjointe des tirages où on pioche deux boules
impaires et ceux où on pioche deux boules paires, soit l’ensemble des listes sans
répétition à deux éléments prises dans {1, 3, 5, 7, 9} réuni avec l’ensemble des listes
sans répétition à deux éléments prises dans {2, 4, 6, 8}.
Comme l’union est disjointe, on a Card(A) = Card({(a, b) ∈ {1, 3, 5, 7, 9}2/a ̸= b}) +
Card({(a, b) ∈ {2, 4, 6, 8}2/a ̸= b}).

Et donc Card(A) = 5!
3! + 4!

2! = 20 + 12 = 32.

Ainsi, P (A) = 32
72 = 4

9.

3. Si on tire deux boules l’une après l’autre avec remise, on modélise l’expérience en
utilisant des listes. Ainsi Ω sera l’ensemble des listes à deux éléments de [[1, 9]] que
l’on munira de la probabilité uniforme. Formellement, on peut écrire Ω = [[1, 9]]2

On a Card(Ω) = 92 = 81.
Ensuite, on note A l’événement ≪ obtenir deux boules de même parité ≫.
Ainsi, A = {1, 3, 5, 7, 9}2 ∪ {2, 4, 6, 8}2.
On aurait pu dire que A est l’union disjointe des tirages où on pioche deux boules
impaires et ceux où on pioche deux boules paires, soit l’ensemble des listes à deux
éléments prises dans {1, 3, 5, 7, 9} réuni avec l’ensemble des listes à deux éléments
prises dans {2, 4, 6, 8}.
Comme l’union est disjointe, on a Card(A) = Card({1, 3, 5, 7, 9}2)+Card({2, 4, 6, 8}2).
Et donc Card(A) = 52 + 42 = 41.

Ainsi, P (A) = 41
81.

4. Le tirage simultané ou sans remise ne change rien au niveau des probabilités.
Le tirage avec remise donne une probabilité légèrement supérieure, ce qui était prévisible
puisque la boule qu’on a obtenu au premier tirage peut-être à nouveau obtenue au
second.
Par ailleurs, les questions 2 et 3 auraient pu être traitées en utilisant une modélisation
par événements élémentaires du type A1 : ≪ obtenir une boule paire au premier ti-
rage ≫ et A2 : ≪ obtenir une boule paire au second tirage ≫.
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Ainsi, on cherchait à calculer P ((A1 ∩ A2) ∪ (A1 ∩ A2)) = P (A1 ∩ A2) + P (A1 ∩ A2)
car les événements sont disjoints.
Ensuite, selon le cas, soit on utilise des probabilités conditionnelles (question 2), soit
on invoque l’indépendance des événements (question 3).

Exercice 2. 1. On note dans tout l’exercice Ω = [[1, 6]]2 que nous munirons de la pro-
babilité uniforme. On a Card(Ω) = 62 = 36.

On a A = {2, 4, 6} × [[1, 6]], donc P (A) = 3× 6
62 = 1

2.

On a B = [[1, 6]]× {1, 3, 5}, donc P (B) = 6× 3
62 = 1

2.

Enfin, C = {1, 3, 5}2 ∪ {2, 4, 6}2, ainsi P (C) = P ({1, 3, 5}2 ∪ {2, 4, 6}2). Par incompa-
tibilité, on a

P (C) = P ({1, 3, 5}2) + P ({2, 4, 6}2) = 32

62 + 32

62 = 1
4 + 1

4 = 1
2 .

On a donc A ∩B ∩ C = ∅, donc P (A ∩B ∩ C) = 0. De plus, P (A)P (B)P (C) = 1
8

2. On A ∩B = {2, 4, 6} × {1, 3, 5}, donc P (A ∩B) = 32

62 = 1
4 .

De plus, P (A)P (B) = 1
4.

3. On a A ∩ C = {2, 4, 6}2, donc P (A ∩ C) = 32

62 = 1
4 .

De plus, P (A)P (C) = 1
4.

Encore une fois, B ∩ C = {1, 3, 5}2, donc P (B ∩ C) = 32

62 = 1
4 .

De plus, P (B)P (C) = 1
4.

4. Les événements A,B et C sont deux à deux indépendants mais pas mutuellement
indépendants.

Exercice 3. 1. Tant que nous faisons des tirages sans remises, nous prendrons Ω l’en-
semble des 4-listes sans répétition de [[1, n]] que nous munirons de la probabilité uni-
forme. Notons déjà que Card(Ω) = n!

(n− 4)! . Notons Ak l’événement ≪ le plus petit
numéro tiré est k ≫.
Ainsi, A1 est l’ensemble des 4-listes sans répétition de [[1, n]] qui contiennent le numéro

1. Elles sont constituées par 1 et trois éléments de l’ensemble [[2, n]]. Il y a
(
n− 1

3

)
façons de déterminer ces 3 éléments. Une fois le contenu du tirage fixé, il reste 4! façons

d’organiser ces éléments. Ainsi, Card(A1) =
(
n− 1

3

)
4! = (n− 1)!

3!(n− 4)!4! = 4(n− 1)!
(n− 4)! .

Ainsi

P (A1) =
4 (n−1)!

(n−4)!
n!

(n−4)!
= 4
n
.
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2. Remarquons que si n ⩽ 4, c’est impossible. Si n ⩾ 5, on a de la même façon A2
est l’ensemble des 4-listes sans répétition de [[2, n]] qui contiennent le numéro 2. Elles

sont constituées par 2 et trois éléments de l’ensemble [[3, n]]. Il y a
(
n− 2

3

)
façons

de déterminer ces 3 éléments. Une fois le contenu du tirage fixé, il reste 4! façons

d’organiser ces éléments. Ainsi, Card(A2) =
(
n− 2

3

)
4! = (n− 2)!

3!(n− 5)!4! = 4(n− 2)!
(n− 5)! .

Ainsi

P (A2) =
4 (n−2)!

(n−5)!
n!

(n−4)!
= 4(n− 4)
n(n− 1) .

Notons avec satisfaction que la probabilité est nulle si n = 4.

3. On commence à comprendre, cette fois-ci, on remarque que si k ⩾ n− 2, c’est impos-
sible. Sinon, on a de la même façon Ak est l’ensemble des 4-listes sans répétition de
[[k, n]] qui contiennent le numéro k. Elles sont constituées par k et trois éléments de

l’ensemble [[k+ 1, n]]. Il y a
(
n− k

3

)
façons de déterminer ces 3 éléments. Une fois le

contenu du tirage fixé, il reste 4! façons d’organiser ces éléments. Ainsi,

Card(Ak) =
(
n− k

3

)
4! = (n− k)!

3!(n− k − 3)!4! = 4 (n− k)!
(n− k − 3)! .

Ainsi

P (Ak) =
4 (n−k)!

(n−k−3)!
n!

(n−4)!
= 4(n− k)!(n− 4)!

n!(n− k − 3)! .

On remarque qu’on peut écrire :

P (Ak) = 4(n− k)(n− k − 1)(n− k − 2)
n(n− 1)(n− 2)(n− 3) .

On peut à cette occasion remarquer que si k ⩾ n − 2, cette expression fait 0 donc
reste valable.

4. Notons Bk l’événement ≪ le plus grand numéro tiré est k ≫.
On doit avoir k ⩾ 4, sinon c’est impossible (donc la probabilité est nulle).
Dans le cas où k ⩾ 4, on a Bk est l’ensemble des 4-listes sans répétition de [[1, k]] qui
contiennent le numéro k. Elles sont constituées par k et trois éléments de l’ensemble

[[1, k− 1]]. Il y a
(
k − 1

3

)
façons de déterminer ces 3 éléments. Une fois le contenu du

tirage fixé, il reste 4! façons d’organiser ces éléments. Ainsi,

Card(Bk) =
(

(k − 1)
3

)
4! = (k − 1)!

3!(k − 4)!4! = 4(k − 1)!
(k − 4)! .

Ainsi,

P (Bk) =
4 (k−1)!

(k−4)!
n!

(n−4)!
= 4(k − 1)!(n− 4)!

(k − 4)!n! .

Cela se simplifie en
P (Bk) = 4(k − 1)(k − 2)(k − 3)

n(n− 1)(n− 2)(n− 3) .
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On peut à cette occasion remarquer que le résultat reste valable si k ⩾ 3 : cette
expression fait 0. 4(k − 1)!(n− 4)!

n!(k − 4)! .

5. Dans ce cas, on prend Ω = [[1, n]]4 que l’on munit de la probabilité uniforme. Une vraie
difficulté apparait : le nombre de fois que le plus petit ou le plus grand des numéros
apparait. Cela complique énormément les considérations précédentes et nous allons
devoir trouver une façon de voir les choses bien plus efficace.
On introduit Ck l’événement ≪ tous les numéros sont plus grands que k ≫. Ainsi,
Ck = [[k, n]]4.

Ainsi, pour tout k ∈ [[1, n]], P (Ck) = (n− k + 1)4

n4 . Par convention, on prendra Cn+1 =
∅ et P (Cn+1) = 0 ce qui est compatible avec la formule précédente.
On remarque alors que Ak = Ck \ Ck+1, on a donc, comme Ck+1 ⊂ Ck,

P (Ak) = P (Ck)− P (Ck+1) = (n− k + 1)4 − (n− k)4

n4 .

On introduit Dk l’événement ≪ tous les numéros sont plus petit que k ≫. Ainsi, Dk =
[[1, k]]4.

Ainsi, pour tout k ∈ [[1, n]], P (Dk) = k4

n4 . Par convention, on prendra D0 = ∅ et
P (D0) = 0 ce qui est compatible avec la formule précédente.
On remarque alors que Bk = Dk \Dk−1, on a donc, comme Dk−1 ⊂ Dk,

P (Bk) = P (Dk)− P (Dk−1) = k4 − (k − 1)4

n4 .

Remarquons que cette technique est effectivement plus efficace que la précédente
puisqu’elle marche aussi bien dans le cas précédent que dans celui-ci.

Par exemple, sans remise, on aurait eu P (Dk) =
k!

(k−4)!
n!

(n−4)!
=
(k

4
)(n

4
) , donc

P (Bk) =
(k

4
)
−
(k−1

4
)(n

4
) =

(k−1
3
)(n

4
)

la dernière égalité d’après la formule de Pascal. Si on ne fait pas apparaitre les coeffi-
cients binomiaux, il suffit de faire une réduction au même dénominateur pour obtenir
le résultat.

Exercice 4. 1. On modélisera l’urne par l’ensemble [[1, n]] et on supposera que les entiers
de 1 à 10 représentent les boules rouges, les autres les blances.
Ainsi, on prend Ω l’ensemble des combinaisons à 10 éléments pris parmi [[1, n]]. On le
munit de la probabilité uniforme.
Notons A l’événement ≪ quatre boules exactement sont rouges ≫. A est l’ensemble des
combinaisons qui s’écrivent C ∪D où C est une combinaison à 4 éléments de [[1, 10]]

et D une combinaison à 6 éléments de [[11, n]]. Ainsi, Card(A) =
(

10
4

)(
n− 10

6

)
. On

peut donc dire que pn = P (A) =
(10

4
)(n−10

6
)( n

10
) .
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Autrement dit,

pn = (10!(n− 10)!)2

4!6!2(n− 16)!n! .

2. On peut programmer en Python la simulation du problème, puis essayer d’évaluer la
probabilité de récupérer 4 boules en rouges en faisant un grand nombre de tirages et en
regardant la fréquence où on obtient exactement 4 boules rouges. Enfin en tâtonnant,
on peut essayer de trouver lorsqu’elle est maximale ou encore le faire proprement
en lisant toutes les probabilités en partant de n = 16... et on regarde quand c’est
maximum.
Par exemple :

from random import random

def nbboulesblanchespiochees (n):
X=0
nbb =10
for k in range (10):

if random () <=nbb /(n-k):
X+=1
nbb -=1

return X

def freq4(n,N):
f=0
for k in range(N):

if nbboulesblanchespiochees (n)==4:
f+=1

return f/N

def listeprobas (maximum ,N):
liste =[0]*( maximum -15)
for k in range (16, maximum +1):

liste[k -16]= freq4(k,N)
return liste

def maxiproba (maximum , N):
liste= listeprobas (maximum ,N)
maxi= liste [0]
pos =0
for k in range (1, len(liste)):

if liste [k]>maxi:
maxi= liste[k]
pos=k

return pos +16

Mathématiquement, on va étudier le sens de variation de la suite (pn)n∈N. Comme il
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s’agit d’une suite strictement positive on va considérer le rapport pn+1
pn

:

pn+1
pn

=
(10!(n−9)!)2

4!6!2(n−15)!(n+1)!
(10!(n−10)!)2

4!6!2(n−16)!n!

= (10!(n− 9)!)24!6!2(n− 16)!n!
4!6!2(n− 15)!(n+ 1)!(10!(n− 10)!)2

= (n− 9)2

(n− 15)(n+ 1)

= n2 − 18n+ 81
n2 − 14n− 15

= (n2 − 14n− 15) + (−4n+ 96)
n2 − 14n− 15

= 1 + 4 −n+ 24
n2 − 14n− 15

= 1 + 4 −n+ 24
(n− 15)(n+ 1)

Ainsi, pn+1
pn

⩾⇐⇒ −n+ 24 ⩾ 0⇐⇒ n ⩽ 24.

La suite est donc croissante jusqu’en n = 24, pour n = 24 et n = 25 elle vaut la même
chose, puis elle est décroissante.
Ainsi, elle est maximale pour n = 24 ou 25 (c’est la même valeur).

Remarquons alors que pour n = 25, 4
10 = 10

25, autrement dit, la probabilité est
maximale lorsque la proportion de boules blanches dans l’urne est la même que la
proportion de boules blanches dans les boules piochées.

Exercice 5. 1. Notons Ω l’ensemble des répartitions. Ω = [[1, 3]]5 puisque le ième terme
de la liste d’un élément de Ω indique dans quelle urne on place la boule numéro i.
Ainsi, Card(Ω) = 35.

2. Munissons Ω de la probabilité uniforme.
Notons A l’événement évoqué. On a A = {(i, i, i, i, i)/i ∈ [[1, 3]]}.

Ainsi P (A) = 3
35 = 1

34 .

3. On garde le même univers et la même probabilité. Notons B cet événement.
On a B = B1 ∪B2 ∪B3 où Bi est l’événement ≪ l’urne i ≫ est la seule urne vide.
Ainsi, B1 = [[2, 3]]5 \ {(2, 2, 2, 2, 2), (3, 3, 3, 3, 3)}. On a ainsi, Card(B1) = 25− 2. De la
même façon, on a Card(B2) = Card(B3) = 25 − 2.
Par incompatibilité des événements, on a Card(B) = Card(B1)+Card(B2)+Card(B3) =
3(25 − 2).

Ainsi, P (B) = 3(25 − 2)
35 = 25 − 2

34 .

4. Notons C cet événement. On a C = A ∪B.
Ainsi, P (C) = P (A ∪B). Or comme A ∩B = ∅, on a

P (C) = P (A) + P (B) = 1
34 + 25 − 2

34 = 25 − 1
34 .
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5. On a C = U1 ∪ U2 ∪ U3 où Ui est l’événement ≪ l’urne i est vide.
Ainsi,

P (C) = P (U1)+P (U2)+P (U3)−P (U1∩U2)−P (U1∩U3)−P (U2∩U3)+P (U1∩U2∩U3).

Or, par symétrie, on peut simplifier cette quantité en

P (C) = 3P (U1)− 3P (U1 ∩ U2) + P (U1 ∩ U2 ∩ U3).

Or U1 = [[2, 3]]5, donc P (U1) = 25

35 .

De plus U1 ∩ U2 = {(3, 3, 3, 3, 3)}, donc P (U1 ∩ U2) = 1
35 .

Pour finir U1 ∩ U2 ∩ U3 = ∅, donc P (U1 ∩ U2 ∩ U3) = 0.
On peut donc en conclure que

P (C) = 325

35 − 3 1
35 + 0 = 25 − 1

34 .

Exercice 6 (Les allumettes de Banach). 1. Considérons l’expérience aléatoire piocher
dans la poche gauche ou la poche droite qui est répétée 2N−k fois (il a 2N allumettes
et il en reste k). On se place donc dans Ω = {g, d}2N−k avec la probabilité uniforme.
On a Card(Ω) = 22N−k.

Considérons l’événement G : ≪ il finit le paquet gauche et il reste k allumettes dans
le paquet droit ≫.
Les éléments de G sont les listes contenant N éléments g et N − k éléments d dont
le dernier élément est g. Ainsi, il y en a autant que de façons de choisir les N − 1
positions des éléments g dans les 2N − k − 1 premières positions.

Ainsi, P (G) =
(2N−k−1

N−1
)

22N−k
. On trouve la même chose pour la poche droite. Les deux

événements sont incompatibles et leur réunion forme l’événement que l’on cherche,

donc la probabilité recherchée vaut 2
(2N−k−1

N−1
)

22N−k
=
(2N−k−1

N−1
)

22N−k−1 .

2. Cette fois-ci il a en réalité pioché N + 1 allumettes (donc une de trop lorsqu’il se
rend compte que le paquet est vide) ainsi, cela revient au même que la question
précédente sauf qu’il faut considérer qu’une des poches contient N + 1 allumettes.

Ainsi, la probabilité recherchée vaut
(2N−k

N

)
22N−k

.

Exercice 7. 1. Par indépendance des manches, si l’ordre des n victoires et n défaites

est fixé, alors la probabilité que cela se réalise est pnqn. De plus, il y a
(

2n
n

)
façons

de fixer la position des n victoires parmi les 2n manches. Ainsi, la probabilité de faire

une partie nulle est
(

2n
n

)
pnqn.
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2. Notons Ak l’événement ≪ A gagne exactement k manches ≫.
De la même façon, par indépendance des manches, si l’ordre des k victoires et 2n− k
défaites est fixé, alors la probabilité que cela se réalise est pkq2n−k. De plus, il y a(

2n
k

)
façons de fixer la position des n victoires parmi les 2n manches. Ainsi, P (Ak) =(

2n
k

)
pkq2n−k.

Enfin, sinon note G l’événement A gagne, alors G =
2n⋃

k=n+1
Ak donc

P (G) = P

 2n⋃
k=n+1

Ak

 .
Par incompatibilité des événements, on a

P (G) =
2n∑

k=n+1

(
2n
k

)
pkq2n−k.

3. En inversant p et q, on trouve immédiatement que la probabilité que B gagne (notons
cet événement H) est P (H) = ∑2n

k=n+1
(2n

k

)
p2n−kqk.

Ainsi,

P (G)− P (H) =
2n∑

k=n+1

(
2n
k

)
pkq2n−k −

2n∑
k=n+1

(
2n
k

)
p2n−kqk

=
2n∑

k=n+1

(
2n
k

)
(pkq2n−k − p2n−kqk)

=
2n∑

k=n+1

(
2n
k

)
pkq2n−k(1− p2n−2kq2k−2n)

=
2n∑

k=n+1

(
2n
k

)
pkq2n−k

(
1−

(
q

p

)2(k−n)
)
.

Or, si p > 1
2 alors q < 1

2 < p, donc q

p
< 1 donc 1−

(
q

p

)2(k−n)
> 0 Ainsi, on n’ajoute

que des termes strictement positifs, donc P (G)− P (H) > 0.

Mais si p ⩽ 1
2 alors q ⩽ 1

2 ⩽ p, donc q
p
⩾ 1 donc 1−

(
q

p

)2(k−n)
⩽ 0 Ainsi, on n’ajoute

que des termes négatifs, donc P (G)− P (H) ⩽ 0.

On a donc p >
1
2 si et seulement si la probabilité que A gagne est strictement

supérieure à celle que B gagne.

Exercice 8. 1. a. Supposons que les poissons sont animaux de 1 àN et que les animaux
marqués sont numérotés de 1 à a. Ainsi, l’ensemble des échantillons possibles est

l’ensemble des combinaisons à n éléments pris dans [[1, N ]]. Il y en a
(
N

n

)
.

b. Il s’agit des combinaisons qui s’écrivent A ∩ B où A est une combinaison de k
éléments de [[1, a]] et B est une combinaison d’éléments de n − k éléments de

[[a+ 1, N ]]. Ainsi, il y en a
(
a

k

)(
N − a
n− k

)
.
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c. Si on munit Ω de la probabilité uniforme, on a
(a

k

)(N−a
n−k

)(N
n

) .

On peut écrire

p(N) = a!
k!(a− k)!

(N − a)!
(n− k)!(N + k − a− n)!

n!(N − n)!
N ! .

2. a. Il suffit de poser le calcul,

q(N) = a!
k!(a− k)!

(N − a)!
(n− k)!(N + k − a− n)!

n!(N − n)!
N !

k!(a− k)!
a!

(n− k)!(N + k − a− n− 1)!
(N − 1− a)!

(N − 1)!
n!(N − n− 1)!

= (N − a)(N − n)
(N + k − a− n)N .

b. On a

q(N)− 1 = (N − a)(N − n)− (N + k − a− n)N
(N + k − a− n)N

= N2 − (a+ n)N + an− (N2 + (k − a− n)N)
(N + k − a− n)N

= (n+ a− k − a− n)N + an

(N + k − a− n)N

= −kN + an

(N + k − a− n)N .

Cette quantité est strictement négative si et seulement si N >
an

k
.

c. q(N)−1 < 0⇐⇒ p(N) < P (N−1), donc la suite (p(N))N⩾a+n est croissante puis
strictement décroissante à partir du moment où N >

an

k
. Ainsi, on peut prendre

N0 = ⌊an
k
⌋ pour avoir son maximum. Attention, si par hasard an

k
est un entier,

il y a N0 et N0 + 1 qui fonctionnent.

3. Dans ce cas, N0 = ⌊200× 150
15 ⌋ = 2000.

Exercice 9. 1. Toute la difficulté est de bien modéliser le problème.
On va dire que le placard est un ensemble E = {gi, di/i ∈ [[1, 10]] où gi représente la
chaussure gauche numéro i et di la droite.
Ensuite, on va noter Ω l’ensemble des combinaisons à 4 éléments de E. Ainsi Card(Ω) =(

20
4

)
= 20× 19× 18× 17

4× 3× 2 = 5× 19× 3× 17 = 4845.

On munit Ω de la probabilité uniforme.
Notons A l’événement ≪ obtenir deux paires de chaussures ≫.
Ainsi,A = {{gi, di, gj , dj}/ où {i, j} est une combinaison à deux éléments de [[1, 10]]} .

Ainsi, Card(A) =
(

10
2

)
= 5× 9 = 45.

On a donc P (A) = 5× 9
5× 19××3× 17 = 3

19× 17 = 3
323 .
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2. Notons B cet événement. Il est plus facile de remarquer que B est l’événement

≪ n’avoir que des chaussures isolées. ≫. Il y a
(

10
4

)
façons de choisir les 4 paires

de chaussures différentes et il y a deux possibilités par chaussures. On aurait pu écrire
formellement

B = {{ai, bj , ck, dℓ}/(a, b, c, d) ∈ {g, d}2, {i, j, k, ℓ} combinaison à 4 éléments de [[1, 10]]}.

Ainsi,

Card(B) =
(

10
4

)
24 = 10× 9× 8× 7× 24

4× 3× 2 = 10× 3× 7× 24.

On aurait pu écrire formellement

B = {{ai, bj , ck, dℓ}/(a, b, c, d) ∈ {g, d}2, {i, j, k, ℓ} combinaison à 4 éléments de [[1, 10]]}.

Enfin,

P (B) = 10× 3× 7× 24

5× 19× 3× 17 = 32× 7
323 = 224

323 .

On a donc P (B) = 1− P (B) = 99
323 .

3. Notons C cet événement. On remarque que C est exactement B \A avec A ⊂ B, donc

P (C) = P (B \A) = P (B)− P (A) = 99
323 −

3
323 = 96

323 .

2. Sans dénombrement
Exercice 10. Notons A l’événement ≪ A atteint la cible ≫ et B l’événement ≪ B atteint
la cible ≫.
On a P (A ∪B) = 5

8 .
Par ailleurs,

P (A ∪B) = P (A) + P (B)− P (A ∩B).
De plus, on sait que A et B sont indépendants, donc

P (A ∪B) = P (A) + P (B)− P (A)P (B).

Enfin, on sait que P (B) = 1
2P (A). Donc

P (A ∪B) = P (A) + 1
2P (A)− 1

2(P (A))2.

Autrement dit, on a l’équation
5
8 = 3

2P (A)− 1
2(P (A))2.

C’est équivalent à
1
2(P (A))2 − 3

2P (A) + 5
8 = 0.

Son discriminant est ∆ = 9
4 − 4 5

16 = 1.
Ainsi, il y a deux solutions

P (A) = 3
2 − 1 = 1

2 ou P (A) = 3
2 + 1 = 5

2 .

Seule la première est acceptable. Ainsi, on peut affirmer que P (A) = 1
2.
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Exercice 11. 1. Nous avons besoin de noter certains événements :

• N : ≪ le test est négatif ≫ ;
• S : ≪ la personne est en état d’ébriété ≫.

On cherche donc à déterminer P (S|N). Ainsi, on a d’après la formule de probabilité
des causes,

P (S|N) = P (N |S)P (S)
P (N)

.

Or, d’après la formule des probabilités totales appliquées au système complet d’événements
(S, S),

P (N) = P (N |S)P (S) + P (N |S)P (S) = P (N |S)P (S) + (1− P (N |S))(1− P (S)).

Ainsi,
P (N) = 90

100
2

100 +
(

1− 95
100

)(
1− 2

100

)
.

Donc
P (N) = 180

10000 + 490
10000 = 670

10000 .

Ainsi,

P (S|N) =
90
100

2
100

670
10000

= 180
670 = 18

67 .

On trouve à peu près 0, 27.

2. Cette fois-ci, c’est P (S|N) = P (N |S)P (S)
P (N) .

Or on a P (N |S)P (S) =
(
1− P (N |S)

)
P (S) = 20

10000 et P (N) = 1− P (N) = 9330
10000 .

Ainsi, P (S|N) =
20

10000
9330
10000

= 2
933 .

On trouve à peu près 0, 001.

3. Cette fois-ci, on cherche P ((N ∩ S) ∪ (N ∩ S)). Par incompatibilité des événements,
on a

P ((N ∩ S) ∪ (N ∩ S)) = P (N ∩ S) + P (N ∩ S).

Ainsi,
P ((N ∩ S) ∪ (N ∩ S)) = P (N |S)P (S) + P (N |S)P (S).

Soit encore,

P ((N ∩ S) ∪ (N ∩ S)) = (1− P (N |S))P (S) + (1− P (N |S))P (S).

Et donc
P ((N ∩ S) ∪ (N ∩ S)) =

(
1− 90

100

) 2
100 +

(
1− 95

100

) 98
100 .

On a donc
P ((N ∩ S) ∪ (N ∩ S)) = 20

10000 + 490
10000 = 51

1000 .

La probabilité que le résultat soit faux est donc autour 0, 05.
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Exercice 12. 1. On a, d’après la formule du crible,

P (A1 ∪A2 ∪A3 ∪A4) = P (A1) + P (A2) + P (A3) + P (A4)
−P (A1 ∩A2)− P (A1 ∩A3)− P (A1 ∩A4)
−P (A2 ∩A3)− P (A2 ∩A4)− P (A3 ∩A4)
+P (A1 ∩A2 ∩A3) + P (A1 ∩A2 ∩A4)
+P (A1 ∩A3 ∩A4) + P (A2 ∩A3 ∩A4)
−P (A1 ∩A2 ∩A3 ∩A4).

En éliminant le terme nul et en regroupant les termes égaux par symétrie du problème,
on a

P (A1 ∪A2 ∪A3 ∪A4) = 4P (A1)− 6P (A1 ∩A2) + 4P (A1 ∩A2 ∩A3).

Le plus rapide est de calculer ces probabilités avec du dénombrement (même si on peut
tout à fait le faire autrement). On note Ω = [[1, 4]]n que l’on munit de la probabilité
uniforme.

On a A1 = [[2, 4]]n, donc P (A1) =
(3

4

)n

.

De même, on a A1 ∩A2 = [[3, 4]]n, donc P (A1 ∩A2) =
(2

4

)n

.

Enfin, A1 ∩A2 ∩A3 = {(4, . . . , 4)}, donc P (A1 ∩A2 ∩A3) =
(1

4

)n

.

Ainsi, on a P (A1 ∪A2 ∪A3 ∪A4) = 4
(3

4

)n

− 6
(1

2

)n

+4
(1

4

)n

.

2. On a A1∪A2∪A3∪A4 est l’événement ≪ au moins une boule n’a jamais été piochée ≫,
donc on a pn = P (A1 ∪A2 ∪A3 ∪A4) ce qui donne immédiatement le résultat de-
mandé.

3. Comme 1
4 ,

1
2 et 3

4 sont entre −1 et 1, on trouve immédiatement que lim
n→+∞

pn = 1.

Il parait prévisible qu’en piochant beaucoup de fois, on finisse par récupérer tous les
numéros.

Exercice 13. 1. Notons l’événement T : ≪ on utilise la pièce truquée ≫ et Fi : ≪ on
fait face au lancer i ≫. En utilisant la formule des probabilités totales appliquée au
système complet d’événements (T, T ), on a P (F1) = P (F1|T )P (T ) + P (F1|T )P (T ).
Ainsi, on a

P (F1) = 11
5 + 1

2
4
5 = 3

5 .

2. Il s’agit d’appliquer la formule de probabilité des causes, ainsi on a

P (T |F1) = P (F1|T )P (T )
P (F1) =

11
5

3
5

= 1
3 .

3. En utilisant la formule des probabilités totales appliquée au système complet d’événements
(T, T ), on a

P

(
n⋂

k=1
Fk

)
= P

(
n⋂

k=1
Fk

∣∣∣∣T
)
P (T ) + P

(
n⋂

k=1
Fk

∣∣∣∣T
)
P (T ).
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Or P
(

n⋂
k=1

Fk|T
)

= 1 et

P

(
n⋂

k=1
Fk

∣∣∣∣T
)

=
n∏

k=1
P (Fk|T ) = 1

2n

par indépendance des lancers sachant T (une fois la pièce fixée).
Ainsi, on a

P

(
n⋂

k=1
Fk

)
= 1

5 + 1
2n

4
5

On va désormais utiliser la formule de probabilité des causes, et on a

pn = P

(
T

∣∣∣∣ n⋂
k=1

Fk

)
= P (⋂n

k=1 Fk|T )P (T )
P (⋂n

k=1 Fk) = .

Ainsi,

pn = P

(
T

∣∣∣∣ n⋂
k=1

Fk

)
=

1
5

1
5 + 1

2n
4
5
.

On a donc pn = 1
1 + 4

2n

.

4. On a bien évidemment, lim
n→+∞

pn = 1, autrement dit plus on a lancé la pièce en
obtenant que des faces, plus on peut penser que la pièce est truquée.

5. On cherche à résoudre

pn ⩾
95
100 ⇐⇒

1
1 + 4

2n

⩾
95
100

⇐⇒ 20
19 ⩾ 1 + 4

2n

⇐⇒ 1
19 ⩾

4
2n

⇐⇒ 1
76 ⩾

1
2n

⇐⇒ − ln(76) ⩾ −n ln(2) car la fonction ln est strictement croissante

⇐⇒ n ⩾
ln(76)
ln(2) .

Or ln(76)
ln(2) ≃ 6, 25, donc on prend n = 7.

Au bout de 7 face consécutifs, on a une probabilité supérieure à 0, 95 d’utiliser la pièce
truquée.

Exercice 14. 1. Notons, pour tout l’exercice, l’événement Ai : ≪ on joue avec la pièce
A au ième lancer ≫ et Fi : ≪ on obtient face au rang i ≫.
Ainsi, pour tout n ∈ N∗, on a pn = P (An). En utilisant la formule des probabilités
totales appliqué au système complet d’événements (An, An)

P (An+1) = P (An+1|An)P (An) + P (An+1|An)P (An).
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Or P (An+1|An) = P (Fn|An) = 1
2 et P (An+1|An) = P (Fn|An) = 1− 2

3 = 1
3.

Ainsi,
P (An+1) = 1

2P (An) + 1
3P (An).

On remarque que cette formule reste vraie si le système complet d’événements avait
des événements négligeables.
Ainsi, on a

P (An+1) = 1
2P (An) + 1

3(1− P (An)).

Ainsi, on a
pn+1 = 1

6pn + 1
3 .

Cherchons ℓ ∈ R, tel que ℓ = 1
6ℓ+ 1

3 soit ℓ = 2
5.

On pose alors, pour tout n ∈ N∗, un = pn −
2
5 .

Ainsi, pour n ∈ N, on a

un+1 = pn+1 −
2
5 = 1

6pn + 1
3 −

2
5 .

Or pn = un + 2
5, donc

un+1 = 1
6

(
un + 2

5

)
+ 5

15 −
6
15 = 1

6un.

On constate donc que (un)n∈N est une suite géométrique de raison 1
6 .

Ainsi, pour tout n ∈ N∗, on a un = 1
6n−1u1.

Or u1 = p1 −
2
5 = 1

2 −
2
5 = 1

10 .

Ainsi, un = 1
6n−1

1
10 = 1

6n

6
10 et donc

∀n ∈ N∗, pn = 2
5 + 3

5
1
6n
.

2. Soit n ∈ N∗. Il s’agit encore une fois d’appliquer la formule des probabilités totales
au système complet d’événements (An, An).On a alors

P (Fn) = P (Fn|An)P (An) + P (Fn|An)P (An) = 1
2pn + 2

3(1− pn).

En utilisant le résultat que l’on vient de faire, on a

P (Fn) = 1
2

(2
5 + 3

5
1
6n

)
+ 2

3

(3
5 −

3
5

1
6n

)
.

En conclusion, on a P (Fn) = 3
5 −

1
10

1
6n

.
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Exercice 15. 1. Notons Fi l’événement ≪ faire face au ième lancer. ≫

Ainsi, p1 = P (F1) = a.
De même, on a p2 = P (F1 ∪ (F1 ∩ F2)). Comme les événements sont incompatibles,
on a

p2 = P (F1) + P (F1 ∩ F2).

Or comme les lancers sont indépendants, on a

p2 = P (F1) + P (F1)P (F2).

Ainsi, p2 = 1− a+ a2.

2. Notons, pour n ⩾ 1, Tn l’événement ≪ avoir exactement n points ≫. Appliquons la
formule des probabilités totales au système complet d’événements (F1, F1),
Ainsi, on a pn+2 = P (Tn+2) = P (Tn+2|F1)P (F1) + P (Tn+2|F1)P (F1).
Or P (Tn+2|F1) = P (Tn) = pn et P (Tn+2|F1) = P (Tn+1) = pn+1.

Ainsi, on a, pour tout n ∈ N∗, pn+2 = (1− a)pn + apn+1.

3. Il s’agit d’une suite vérifiant une relation de récurrence linéaire d’ordre 2. On remarque
même qu’on peut étendre la définition de cette suite : si on pose p0 = 1, on a bien
p2 = 1− a+ a2 et (1− a)p0 + ap1 = 1− a+ a2.

Résolvons l’équation caractéristique associée :

X2 = aX + (1− a)⇐⇒ X2 − aX + (a− 1) = 0.

Remarquons que 1 est racine évidente, et donc, comme le produit des racines vaut
a− 1, l’autre vaut a− 1.
Ainsi, il existe λ et µ deux réels tels que ∀n ∈ N,

pn = λ+ (a− 1)nµ.

En faisant n = 0, on récupère λ + µ = 1 et en faisant n = 1, on a λ + µ(a − 1) = a.

On a donc le système :
{

λ+ µ = 1
λ+ (a− 1)µ = a

⇐⇒
{

λ+ µ = 1
(a− 2)µ = a− 1 L2 ← L2 − L1

Comme a ̸= 0, on a ⇐⇒

 λ = 1
2−a

µ = 1− a
2− a

On a donc, pour tout n ∈ N,

pn = 1
2− a + 1− a

2− a(a− 1)n = 1− (a− 1)n+1

2− a .

Exercice 16. 1. a. On a évidemment u0 = 1 et uN = 0.
b. Pour k ∈ [[1, N − 1]], on a On utilise la formule des probabilités totales associée au

système complet d’événements (G,G) où G est ≪ A gagne la première partie. ≫ On
a alors P (Ak,0) = PG(Ak,0)P (G) + PG(Ak,0)P (G).
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Or PG(Ak,0) = P (Ak+1,1) et PG(Ak,0) = P (Ak−1,1), donc l’égalité devient

P (Ak,0) = P (Ak+1,1)p+ P (Ak−1,1)q.

Soit, avec la supposition de l’énoncé,

∀k ∈ [[1, N − 1]], uk = uk+1p+ uk−1q.

c. On peut réécrire l’égalité précédente en

∀k ∈ [[0, N − 2]], puk+2 − uk+1 + quk = 0.

Résolvons l’équation caractéristique associée :

pX2 −X + q = 0.

Remarquons que 1 est racine évidente, et donc, comme le produit des racines vaut
q

p
, l’autre vaut q

p
.

Si p = q = 1
2, alors il n’y a qu’une racine double et on a l’existence de λ et µ deux

réels tels que, ∀k ∈ [[0, N ]], uk = (λk + µ)1n = λk + µ.
En faisant k = 0, on récupère µ = 1. En faisant k = N , on récupère λN + 1 = 0,
donc λ = − 1

N
.

Ainsi, pour tout k ∈ [[0, N ]], on a uk = − 1
N k + 1 = N−k

N .

Si p ̸= q, on a deux racines distinctes, donc il existe λ et µ deux réels tels que
∀k ∈ [[0, N ]], on a

uk = λ+ µ

(
q

p

)k

.

En faisant k = 0, on récupère λ+µ = 1 et en faisant k = N , on a λ+µ
(

q
p

)N
= 0.

Ainsi, on a le système :

 λ+ µ = 1
λ+

(
q
p

)N
µ = 0

⇐⇒

 λ+ µ = 1((
q
p

)N
− 1

)
µ = −1 L2 ← L2 − L1

Comme a ̸= 0, on a ⇐⇒


λ =

(
q
p

)N(
q
p

)N
−1

µ = −1(
q
p

)N
−1

Ainsi, on a, pour tout k ∈ [[0, N ]], uk =
( q

p

)N − ( q
p

)k( q
p

)N − 1
d. Inutile de tout refaire, il faut simplement échanger p et q et k avec N − k.

Ainsi, si p = q = 1
2, on a vk = k

N

Et si p ̸= q, on a vk =
(p

q

)N − (p
q

)N−k(p
q

)N − 1
.

Calculons, pour k ∈ [[0, N ]], uk + vk.

185 / 359



Si p = q = 1
2, uk + vk = N − k

N
+ k

N
= 1.

Si p ̸= q, on a

uk + vk =
( q

p

)N − ( q
p

)k( q
p

)N − 1
+
(p

q

)N − (p
q

)N−k(p
q

)N − 1
.

En multipliant le numérateur et le dénominateur de la première fraction par pN

et la seconde par qN , on a

uk + vk = qN − qkpN−k

qN − pN
+ pN − pN−kqk

pN − qN
= pN − qN

pN − qN
= 1.

On trouve que dans tous les cas, ∀k ∈ [[0, N ]], uk +vk = 1. Autrement dit, il y aura
presque surement un gagnant et un perdant ce qu’on peut reformuler en affirmant
que le jeu se termine presque surement.

2. Il s’agit de calculer lim
N→+∞

uk.

Si p = q = 1
2, on a uk = N − k

N
= 1− k

N
−−−−−→
N→+∞

1.

Si p > 1
2, on a q < 1

2 donc q

p
< 1, ainsi on a

uk =
( q

p

)N − ( q
p

)k( q
p

)N − 1
−−−−−→
N→+∞

−
(

q
p

)k

−1 =
(
q

p

)k

.

Enfin, si p < 1
2, on a q

p
> 1, donc

uk =
( q

p

)N − ( q
p

)k( q
p

)N − 1
=

1−
(

q
p

)k−N

1−
(

q
p

)−N
−−−−−→
N→+∞

1.

Ainsi, la probabilité que le joueur A se ruine est bien :


1 si p ⩽ 1

2(
q

p

)k

si p > 1
2 .

Dans un jeu équitable ou défavorable, il est presque certain qu’un joueur finisse ruiné
fasse à un joueur beaucoup plus riche que lui. Avec un jeu favorable, le jeu peu durer
indéfiniment avec une probabilité qui dépend de la fortune de départ en plus des
probabilités de gain.

Exercice 17 (Un peu de réflexion). 1. Notons V l’événement : ≪ le candidat à choisi
une boite vide ≫.

On supposera que la répartition des boites est équiprobable donc P (V ) = 2
3 .

Notons C l’événement : ≪ le candidat gagne en changeant de boite ≫.
On a alors, d’après la formule des probabilités totales appliquée au système complet
d’événements (V, V ),

P (C) = P (C|V )P (V ) + P (C|V )P (V ).
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Ainsi,
P (C) = 1× 2

3 + 0× 1
3 = 2

3 .

Ainsi, la stratégie de changer de boite amène à une victoire de probabilité 2
3 .

En notant D l’événement : ≪ le candidat gagne sans changer de boite ≫, on a de la
même façon :

P (D) = P (D|V )P (V ) + P (D|V )P (V ) = 0× 2
3 + 1× 1

3 = 1
3 .

Ainsi, la stratégie de ne pas changer de boite amène à une victoire de probabilité 1
3 .

2. En fait, c’est à peu près la même chose. Essayons une autre formalisation. Notons A
l’événement ≪ Alice est graciée ≫, et de la même façon les événements B et C.
Et notons G le gardien désigne Bob.
On a, d’après la formule de Bayes appliquées au système complet d’événements
(A,B,C),

P (C|G) = P (G|C)P (C)
P (G|A)P (A) + P (G|B)P (B) + P (G|C)P (C) .

Ce qu’on remplace en

P (C|G) =
1× 1

3
1
2

1
3 + 0× 1

3 + 1× 1
3

= 2
3 .

Alors que

P (A|G) = P (G|A)P (A)
P (G|A)P (A) + P (G|B)P (B) + P (G|C)P (C) .

et donc
P (A|G) =

1
2 ×

1
3

1
2

1
3 + 0× 1

3 + 1× 1
3

= 1
3 .

Ainsi, dans ce cas, Alice n’a obtenu aucune information la concernant (normal, le
gardien aurait toujours pu désigner l’un des deux autres prisonnier), mais Claire peut
être un peu soulagée.

14 Limites et continuité
Exercice 1. 1. Soit ε > 0. On cherche η > 0 tel que si x ∈]−1−η,−1+η[,

∣∣(x2 + x+ 1)− 1
∣∣ <

ε.

Considérons cette dernière inéquation. On a

∣∣∣(x2 + x+ 1)− 1
∣∣∣ < ε⇐⇒

∣∣∣x2 + x
∣∣∣ < ε

⇐⇒ |x| |x+ 1| < ε
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Remarquons que si on prend η = min
(

1, ε2

)
, on a −1 − η < x < −1 + η, donc

−2 < x < 0 puis |x| < 2. De plus, on a |x+ 1| < ε

2 donc

|x| |x+ 1| < ε

ce que nous voulions.
Ainsi, lim

x→−1
(x2 + x+ 1) = 1.

2. Soit ε > 0.

Remarquons que l’on a 2x− 1
x+ 1 = 2(x+ 1)− 3

x+ 1 = 2− 3
x+ 1 .Ainsi, l’inégalité

∣∣∣∣2x− 1
x+ 1 − 2

∣∣∣∣ <
ε est équivalente à

|3|x+ 1 < ε⇐⇒ |x+ 1| > 3
ε
.

En prenant A = max
(

0, 3
ε
− 1

)
, on a pour tout x > A, |x+ 1| > 3

ε ce qui démontre
l’inégalité souhaitée.

Ainsi, lim
x→+∞

2x− 1
x+ 1 = 2.

3. Soit M ∈ R.

Remarquons que si M ⩽ 0, l’inégalité 1
(x− 1)2 > M est toujours vérifiée, donc on

prendre n’importe quoi pour η.
Si M > 0, on a

1
(x− 1)2 > M ⇐⇒ (x− 1)2 <

1
M
⇐⇒ |x− 1| < 1√

M

car la fonction racine carrée est strictement croissante sur R+. Cette dernière inégalité
est équivalente à

1− 1√
M

< x < 1 + 1√
M
.

Ainsi, en prenant η = 1√
M

, on a pour tout x ∈
]
1− 1√

M
; 1+ 1√

M

[
\{1}, (x−1)2 <

1
M

donc l’inégalité recherchée.

Ainsi, on a bien, lim
x→1

1
(x− 1)2 = +∞.

Exercice 2. 1. On a, pout tout x ̸= −1, f(x) = (x− 1)(x+ 1)
x+ 1 = x − 1. Ainsi, il est

clair que lim
x→−1

f(x) = −2.

La même forme permet de démontrer que lim
x→+∞

f(x) = +∞.

2. On a, pout tout x ̸= −1, f(x) = (x+ 1)(x2 − x+ 1)
(x+ 1)(x4 − x3 + x2 − x+ 1 = x2 − x+ 1

x4 − x3 + x2 − x+ 1) .

Ainsi, il est clair que lim
x→−1

f(x) = 3
5 .

En +∞, on écrit

f(x) = x3

x5
1 + 1

x3

1 + 1
x5

= 1
x2

1 + 1
x3

1 + 1
x5
.
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Ainsi, il est clair que
1 + 1

x3

1 + 1
x5
−−−−→
x→+∞

1 et comme 1
x2 −−−−→x→+∞

0, donc par produit, on

a lim
x→+∞

f(x) = 0.

3. On a, pour x ⩾ 0 et x ̸= 3, f(x) = (x− 3)(
√
x+
√

3)
x− 3 =

√
x+
√

3. Ainsi, lim
x→3

f(x) =

2
√

3.
La même forme donne la limite en +∞. Mais sinon, on aurait pu écrire f(x) =
x√
x

1− 3
x

1−
√

3√
x

=
√
x

1− 3
x

1−
√

3√
x

.

Ainsi, il est clair que
1− 3

x

1−
√

3√
x

−−−−→
x→+∞

1 et comme
√
x −−−−→

x→+∞
+∞, donc par produit,

on a lim
x→+∞

f(x) = +∞.

4. Pour x ⩾ −1 et x ̸= 3, on a f(x) = x+ 1− 4
(x− 3)(

√
x+ 1 + 2)

= 1√
x+ 1 + 2

.

Ainsi, lim
x→3

f(x) = 1
4 .

La même forme donne évidemment lim
x→+∞

f(x) = 0.

5. Pour x ⩾ 1 et x ̸= 4, on a

f(x) = (x− 4)(x+ 4)(
√
x− 1 +

√
3)

(x− 1)− 3 = (x+ 4)(
√
x− 1 +

√
3).

Ainsi, lim
x→4

f(x) = 8× 2
√

3 = 16
√

3.

De plus lim
x→+∞

f(x) = +∞ par produit de limites.

6. Le domaine de définition est pénible à chercher, mais on est clairement bien défini sur
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un intervalle ouvert autour de 1, mais pas en 1. Sur cet intervalle, on a

f(x) =

(
1−

(
2−
√

4− 3x
)) (

1 +
√

2−
√

1
3−2x

)
(
1−

(
2−

√
1

3−2x

))(
1 +

√
2−
√

4− 3x
)

=

(√
4− 3x− 1

) (
1 +

√
2−

√
1

3−2x

)
(√

1
3−2x − 1

)(
1 +

√
2−
√

4− 3x
)

=
((4− 3x)− 1)

(
1 +

√
2−

√
1

3−2x

)(√
1

3−2x + 1
)

(
1

3−2x − 1
)(

1 +
√

2−
√

4− 3x
) (√

4− 3x+ 1
)

=
3 (1− x)

(
1 +

√
2−

√
1

3−2x

)(√
1

3−2x + 1
)

(3− 2x)

(1− (3− 2x))
(

1 +
√

2−
√

4− 3x
) (√

4− 3x+ 1
)

= −
3 (1− x)

(
1 +

√
2−

√
1

3−2x

)(√
1

3−2x + 1
)

(3− 2x)

2 (1− x)
(

1 +
√

2−
√

4− 3x
) (√

4− 3x+ 1
)

= −
3
(

1 +
√

2−
√

1
3−2x

)(√
1

3−2x + 1
)

(3− 2x)

2
(

1 +
√

2−
√

4− 3x
) (√

4− 3x+ 1
)

On a alors lim
x→1
−3

2
1−

√
2−
√

4− 3x

1−
√

2−
√

1
3−2x

= −3
2.

7. La fonction est définie sur ]−∞,−1[∪]0,+∞[. Pour x > 0, on a

f(x) = x ln(x)− x ln(x+ 1).

Par croissance comparée, on a lim
x→0

x ln(x) = 0 et par produit, on a lim
x→0

x ln(x+1) = 0.

Ainsi, lim
x→0

x ln
(

x

x+ 1

)
= 0.

8. Pour x > 0, on a f(x) = x
(
1− ln(x)

x

)
. Or ln(x)

x
−−−−→
x→+∞

0 par croissances comparées.

Ainsi,
(

1− ln(x)
x

)
−−−−→
x→+∞

1.

Par conséquent, par produit de limites, on trouve lim
x→+∞

x− ln(x) = +∞.

9. On trouve pour x ∈ R,

f(x) = ex

x4
1− x2e−x

1 + 1
x4

.

Or 1− x2e−x −−−−→
x→+∞

1 par croissances comparées et 1 + 1
x4 −−−−→x→+∞

1.

De plus, par croissances comparées, e
x

x4 −−−−→x→+∞
+∞, ainsi, par produits de limites,

on a lim
x→+∞

ex − x2

x4 + 1 = +∞.
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10. On a, pour x > 0, x−x = e−x ln(x).

Tout d’abord, comme, par croissances comparées lim
x→0
−x ln(x) = 0, par composition

de limite et continuité de la fonction exponentielle, on a lim
x→0

e−x ln(x) = 1. Ainsi,
lim
x→0

x−x = 1.

Ensuite comme lim
x→+∞

−x ln(x) = −∞, par composition de limite, on a lim
x→+∞

e−x ln(x) =
0. Autrement dit lim

x→+∞
x−x = 0.

11. On a, pour x > −2, (x+ 2)−x = e−x ln(x+2).

Or −x ln(x + 2) −−−−→
x→+∞

−∞ par produit, donc par composition avec exponentielle
qui est une fonction continue, on a lim

x→+∞
(x+ 2)−x = 0.

12. On a, pour x ∈ R, 2−x2+2 = e(−x2+2) ln(2).

Or (−x2 + 2) ln(2) −−−−→
x→+∞

−∞ par produit, donc par composition avec exponentielle

qui est une fonction continue, on a lim
x→+∞

2−x2+2 = 0.

Exercice 3. Pour x /∈ {−1, 1}, on a

a

x2 − 1 −
b

x+ 1 = a

x2 − 1 −
b(x− 1)

(x+ 1)(x− 1)

= a− bx+ b

(x+ 1)(x− 1)

= −b(x+ 1) + a+ 2b
(x+ 1)(x− 1)

= − b

x− 1 + a+ 2b
(x+ 1)(x− 1)

On peut alors calculer les limites en utilisant les règles habituelles.
Si a+ 2b = 0, alors on a lim

x→−1

(
a

x2 − 1 −
b

x+ 1

)
= b

2.

Si a + 2b > 0, alors on a lim
x→−1
x>−1

(
a

x2 − 1 −
b

x+ 1

)
= −∞ et lim

x→−1
x<−1

(
a

x2 − 1 −
b

x+ 1

)
=

+∞
Si a + 2b < 0, alors on a lim

x→−1
x>−1

(
a

x2 − 1 −
b

x+ 1

)
= +∞ et lim

x→−1
x<−1

(
a

x2 − 1 −
b

x+ 1

)
=

−∞

Exercice 4. 1. Sur R∗−, f est une fonction de référence continue. Sur R∗+, f est le produit
de deux fonctions de références donc continue. La fonction f est donc continue sur
R∗.
En 0, on a f(0) = 0, lim

x→0
x<0

f(x) = lim
x→0
x<0

x2 = 0 et enfin lim
x→0
x>0

f(x) = lim
x→0
x>0

xex = 0. Ainsi,

lim
x→0

f(x) = f(0).

f est donc continue en 0.
On peut en conclure que f est continue sur R.

2. Sur R∗−, g est une fonction constante donc continue. Sur R∗+, x 7→ −x est continue et
exp est continue sur R, donc x 7→ e−x est continue et par suite x 7→ 1− e−x aussi. La
fonction g est donc continue sur R∗.
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En 0, on a g(0) = 0, lim
x→0
x<0

g(x) = lim
x→0
x<0

0 = 0 et enfin lim
x→0
x>0

g(x) = lim
x→0
x>0

1− e−x = 0. Ainsi,

lim
x→0

g(x) = g(0).

g est donc continue en 0.
On peut en conclure que g est continue sur R.

3. Sur R∗−, h est une fonction constante donc continue. Sur ]0, e[, h est le produit de deux
fonctions continues donc continue. Enfin, sur ]e,+∞[, h est une fonction de référence
continue. La fonction h est donc continue sur R \ {0, e}.
En 0, on a h(0) = 0, lim

x→0
x<0

h(x) = lim
x→0
x<0

0 = 0 et enfin lim
x→0
x>0

h(x) = lim
x→0
x>0

x ln(x) = 0 par

croissances comparées. Ainsi, lim
x→0

h(x) = h(0).

h est donc continue en 0.
Enfin, en e, on a h(e) = e et lim

x→e
x<e

h(x) = lim
x→e
x<e

x ln(x) = e et enfin lim
x→e
x>e

h(x) = lim
x→e
x>e

x = e.

Ainsi, lim
x→e

h(x) = h(e).

h est donc continue en e.
On peut en conclure que h est continue sur R.

Exercice 5. 1. Sur ]−∞, 1[, f est constante donc continue. Sur ]1,+∞[, f est la combi-
naison linéaire d’une fonction constante et d’une fonction de référence continue. Ainsi,
f est continue sur R \ {1}.

En 1, on a lim
x→1
x<1

f(x) = lim
x→1
x<1

0 = 0 et lim
x→1
x>1

f(x) = lim
x→1
x>1

1 − 1
x2 = 0. Ainsi, lim

x→1
f(x) = 0.

On peut donc prolonger f par continuité en posant f(1) = 0. Ainsi, f est désormais
une fonction continue sur R.

2. Sur ]−∞, 0[, g est constante donc continue. Sur ]0, 1[, g est une fonction de référence
continue. Sur ]1,+∞[, g est constante donc continue. Ainsi, g est continue sur R \
{0, 1}.
En 0, on a lim

x→0
x<0

g(x) = lim
x→0
x<0

0 = 0 et lim
x→0
x>0

g(x) = lim
x→0
x>0

x = 0. Ainsi, lim
x→0

g(x) = 0. On

peut donc prolonger g par continuité en posant f(0) = 0.
En 1, on a lim

x→1
x<1

g(x) = lim
x→1
x<1

x = 1 et lim
x→1
x>1

g(x) = lim
x→1
x>1

1 = 1. Ainsi, lim
x→1

g(x) = 1. On

peut donc prolonger g par continuité en posant g(1) = 1.
Ainsi, une fois prolongée par continuité en 0 et en 1, g est désormais une fonction
continue sur R.

Exercice 6. Notons T > 0 une période de f . Soit x ∈ R.
On a déjà démontré par récurrence que, ∀n ∈ N, f(x+nT ) = f(x). (On peut se rapporter
aux exercices du chapitre sur les éléments d’analyse.)
Ainsi, il est clair que lim

n→+∞
f(x+ nT ) = f(x).

Par ailleurs, on sait qu’il existe ℓ ∈ R tel que lim
x→+∞

f(x) = ℓ. Or comme lim
n→+∞

x+nT =
+∞, ainsi, par composition, lim

n→+∞
f(x+ nT ) = ℓ.

On a donc, ∀x ∈ R, f(x) = ℓ. Autrement dit, f est constante.

Exercice 7. 1. C’est un polynôme, donc f est définie et continue sur R.
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2. C’est un quotient de polynômes, donc f est définie et continue sur l’ensemble des réels
tels que x2 + x+ 1 ̸= 0. Or le discriminant de ce polynôme est strictement négatif (il
vaut −3), donc x2 + x+ 1 ne s’annule pas.
f est donc définie et continue sur R.

3. Sur ]−∞,−1]∪ [1,+∞[, x 7−→ x2 − 1 est définie, continue et positive. On peut donc
la composer avec la fonction racine carrée qui est continue sur R+.
Ainsi, f est définie et continue sur ]−∞,−1] ∪ [1,+∞[.

4. C’est un quotient de polynômes, donc f est définie et continue sur l’ensemble des réels
tels que x2 + 2x − 3 ̸= 0. Or le le dénominateur s’annule uniquement en −3 et en 1
(racines évidentes, ou discriminant, comme vous le souhaitez).
f est donc définie et continue sur R \ {−3, 1}.

5. Sur [1,+∞[, x 7−→ x− 1 est définie, continue et positive. On peut donc la composer
avec la fonction racine carrée qui est continue sur R+.
Ainsi, f est définie et continue sur [1,+∞[.

6. Sur ]−1,+∞[, x 7−→ x+ 1 est définie, continue et strictement positive. On peut donc
la composer avec la fonction logarithme népérien qui est continue sur R∗+.
Ainsi, f est définie et continue sur ]− 1,+∞[.

Exercice 8. 1. Plus le trait est discontinu, plus l’indice est élevé. En bleu la courbe
représentative de f1, en rouge de f2, en orange de f3 et en jaune de f4. Les couleurs
ne sont pas très visibles.

x

y

1

1

0

2. f est constante donc continue sur [0, 1− 1
n [ et est affine donc continue sur ]1− 1

n , 1].
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Par ailleurs,
lim

x→1− 1
n

x<1− 1
n

fn(x) = lim
x→1− 1

n

x>1− 1
n

fn(x) = fn

(
1− 1

n

)
,

donc elle est continue en 1− 1
n .

Ainsi, elle est continue sur [0, 1].

3. Soit x ∈ [0, 1[. Comme 1 − 1
n −−−−−→n→+∞

1 donc il existe n0 ∈ N tel que ∀n ⩾ n0,

0 < x < 1− 1
n
.

Ainsi, ∀n ⩾ n0, fn(x) = 1.
Par ailleurs ∀n ∈ N∗, fn(1) = 0.

Ainsi, ∀x ∈ [0, 1], lim
n→+∞

fn(x) =
{

1 si x ∈ [0, 1[
0 si x = 1

Autrement dit ∀x ∈ [0, 1], f(x) =
{

1 si x ∈ [0, 1[
0 si x = 1

f(1) = 0 et pour x < 1, f(x) = 1.

4. Elle est évidemment continue sur [0, 1[ (constante) mais elle n’est pas continue en 1
car lim

x→1
x<1

f(x) = 1 ̸= 0 = f(1).

Exercice 9. 1. Commençons par chercher quand le dénominateur s’annule. Or en re-
marquant qu’on a certaines racines évidentes, on trouve que x3 + x2 − 2x = x(x2 +
x− 2) = x(x− 1)(x+ 2).
Ainsi, f est un quotient de polynômes donc est définie et continue partout où son
dénominateur ne s’annule pas, donc sur R \ {−2, 0, 1}.
Par ailleurs, remarquons que x2 + 2x − 3 = (x − 1)(x + 3) (toujours grâce aux ra-
cines évidentes). Ainsi, on a pour tout x ∈ R \ {−2, 0, 1}, f(x) = (x− 1)(x+ 3)

x(x− 1)(x+ 2) =
x+ 3

x(x+ 2) .

On remarque alors que lim
x→1

f(x) = 4
3. On peut donc prolonger f par continuité en 1

en posant f(1) = 4
3 .

Par ailleurs, les limites en 0 et −2 sont des quotients de valeurs finies sur 0 donc valent
+∞ ou −∞ à gauche et à droite selon les signes des quantités. Aucun prolongement
n’est possible en 0 ou −2.

2. Plaçons-nous sur D =] − ∞,−2[∪] − 2, 0]∪]2,+∞[, ainsi, ∀x ∈ D, x2 − 4 ̸= 0 et
x2 − 2x ⩾ 0.
Sur D, le numérateur est la somme d’un polynôme (donc défini et continu) et de la
composition de x 7→ x2 − 2x (qui est définie, continue et positive) avec la fonction
racine carrée qui est bien définie et continue sur R+. Donc le numérateur définit bien
une fonction continue sur D. Par ailleurs, le dénominateur est un polynôme qui ne
s’annule pas sur D. Ainsi f est bien définie et continue sur D.
Il est clair que f n’admet pas de limite en −2 : le dénominateur tend vers 0 et le
numérateur vers −4 + 2

√
2.
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Pour tout x > 2, on a

f(x) = x− 2 +
√
x2 − 2x

(x− 2)(x+ 2) =
√
x− 2 +

√
x√

x− 2(x+ 2)
.

Ainsi le numérateur tend vers
√

2 en 2 et le dénominateur vers 0. Il n’y a donc pas de
limite finie en 2.
f ne se prolonge par continuité nulle part.

3. Pour avoir x2 − 2x ⩾ 0, on se place sur ]−∞, 0] ∪ [2,+∞[.
De plus, cherchons quand x− 2 +

√
x2 − 2x = 0, ce qui implique x− 2 = −

√
x2 − 2x

ce qui implique (x− 2)2 = x2 − 2x donc x2 − 4x+ 4 = x2 − 2x, soit x = 2. Ainsi, le
dénominateur ne s’annule qu’en 2.
Notons donc D =]−∞, 0]∪]2,+∞[. Par ailleurs, sur D,
Sur D, le dénominateur est la somme d’un polynôme (donc défini et continu) et de
la composition de x 7→ x2 − 2x (qui est définie, continue et positive) avec la fonction
racine carrée qui est bien définie et continue sur R+. Donc le dénominateur définit
bien une fonction continue sur D qui ne s’annule pas. Par ailleurs, le numérateur est
un polynôme. Ainsi f est bien définie et continue sur D.
Le seul prolongement par continuité envisageable est en 2. On a, pour x > 2,

f(x) = (x− 2)(x+ 2)
x− 2 +

√
x2 − 2x

=
√
x− 2(x+ 2)√
x− 2 +

√
x
.

Ainsi, lim
x→2
x>2

f(x) = 0 donc on peut prolonger f par continuité en posant f(2) = 0.

4. Sur R∗, f est le quotient de deux fonctions continues dont le dénominateur ne s’annule
pas. Ainsi, f est définie et continue sur R∗.

Remarquons que si x > 0, f(x) = x2 − 2x
x

= x − 2. Et si x < 0, f(x) = x2 + 2x
x

=
x+ 2.
Ainsi, lim

x→0
x>0

f(x) = −2 et lim
x→0
x<0

f(x) = 2. f n’admet donc pas de limite en 0 et ne peut

donc pas être prolongée par continuité.

5. Remarquons que x2+x−6 = (x−2)(x+3) (factorisation en cherchant les deux racines
qui s’avèrent être évidentes). Ainsi, sur R \ {−3, 2}, f est un quotient de polynômes
dont le dénominateur ne s’annule pas. f est donc définie et continue sur R \ {−3, 2}.
Remarquons que le numérateur admet 2 comme racine évidente, donc on peut le
factoriser par x− 2.
On a donc x3 + x2 − 8x+ 4 = (x− 2)(x2 + 3x− 2) (ce qui se trouve en identifiant les
coefficients ou en devinant la factorisation et en la vérifiant).
On a donc, pour tout x ∈ R \ {−3, 2},

f(x) = (x− 2)(x2 + 3x− 2)
(x− 2)(x+ 3) = x2 + 3x− 2

x+ 3 .

On a donc lim
x→2

f(x) = 8
5 . On peut donc prolonger f par continuité en 2 en posant

f(2) = 8
5 .

Par contre, f n’admet pas de limite en−3 (le numérateur tend vers -2 et le dénominateur
vers 0), donc elle ne se prolonge pas par continuité en −3.
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Exercice 10. 1. Soit x ∈ I.
Remarquons que, si f(x) ⩾ g(x) (soit max(f(x), g(x)) = f(x) et min(f(x), g(x)) =
g(x)), alors on a

f(x) + g(x) + |f(x)− g(x)|
2 = f(x) + g(x) + f(x)− g(x)

2 = f(x) = sup(f, g)(x)

et
f(x) + g(x)− |f(x)− g(x)|

2 = f(x) + g(x)− f(x) + g(x)
2 = g(x) = inf(f, g)(x).

Et si f(x) < g(x) (soit max(f(x), g(x)) = g(x) et min(f(x), g(x)) = f(x)), alors on a

f(x) + g(x) + |f(x)− g(x)|
2 = f(x) + g(x)− f(x) + g(x)

2 = g(x) = sup(f, g)(x)

et
f(x) + g(x)− |f(x)− g(x)|

2 = f(x) + g(x) + f(x)− g(x)
2 = f(x) = inf(f, g)(x).

Ainsi, on a bien sup(f, g) = f + g + |f − g|
2 et inf(f, g) = f + g − |f − g|

2 .

2. Si f et g sont bien continues en x0 alors |f − g| aussi par composition. Par com-
binaison linéaire, il en est de même pour sup(f, g) et inf(f, g) puisque sup(f, g) =
f + g + |f − g|

2 et inf(f, g) = f + g − |f − g|
2 .

Exercice 11. Si on a (f(x))2 − 3f(x) + 2 = 0 alors, comme les racines évidentes de
X2 − 3X + 2 sont 1 et 2, on a f(x) = 1 ou f(x) = 2.
S’il existe a et b tels que f(a) = 1 et f(b) = 2, en appliquant le théorème des valeurs
intermédiaires entre a et b, on aurait l’existence d’un réel c tel que f(c) = 3

2 ce qui est
impossible.
Ainsi, il n’y a que deux fonctions continues qui satisfont cette condition, ce sont les
fonctions constantes égales à 1 et à 2.

Exercice 12. 1. On a, pour x > 0, f(x) = x2

x

1 + 1
x2

1 + 1
x

= x
1 + 1

x2

1 + 1
x

.

Ainsi, il est clair que lim
x→+∞

f(x) = +∞, donc f n’est pas bornée.

2. On a, par les opération usuelles, lim
x→−∞

f(x) = 0. Donc il existe un réel A ⩽ −1 tel
que ∀x ∈]−∞, A[, −1 ⩽ f(x) ⩽ 1 (c’est la définition de limite nulle pour ε = 1.)
Par ailleurs, sur [A,−1], f est une fonction continue (quotient de fonctions continues
dont le dénominateur ne s’annuel pas). Ainsi, il existe deux réels m et M tels que,
∀x ∈ [A,−1], m ⩽ f(x) ⩽M .
Ainsi, ∀x ∈] − ∞,−1], min(−1,m) ⩽ f(x) ⩽ max(1,M). Ainsi, f est bornée sur
]−∞,−1].

Exercice 13. 1. f est une fonction continue et dérivable sur R (c’est un polynôme) et
on a ∀x ∈ R, f ′(x) = 3x2 + 1 > 0.
Par ailleurs, lim

x→−∞
f(x) = −∞ et lim

x→+∞
f(x) = +∞.

Ainsi, f est continue, strictement croissante de R dans R tout entier, donc établit une
bijection de R dans R.
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2. f est un quotient de polynôme, donc dérivable sur son ensemble de définition qui est
R \ {1}.

Ainsi, on a ∀x ∈ R \ {1}, f ′(x) = 2(x− 1)− (2x+ 1)
(x− 1)2 = − 3

(x− 1)2 .

Ainsi, f est strictement décroissante sur ]1,+∞[, continue et on a lim
x→+∞

f(x) = 2

(car, pour x ̸= 0, on a f(x) =
2 + 1

x

1− 1
x

) et lim
x→1
x>1

f(x) = +∞.

Ainsi, f établit une bijection de ]1,+∞[ dans ]2,+∞[.
Pour le deuxième cas, c’est plus compliqué. On remarque que sur ] − ∞, 1[ f est
continue, strictement décroissante lim

x→−∞
f(x) = 2 et lim

x→1
x<1

f(x) = −∞. Ainsi, f établit

une bijection de ]−∞, 1[ dans ]−∞, 2[.
On peut donc conclure que ∀y ∈ R \ {2}, y admet un unique antécédent par f dans
R \ {1}. Si y > 2, on se sert de la première partie de la question, et si y < 2 de la
suite. Ainsi, f établit une bijection de R \ {1} dans R \ {2}.
Il aurait été presque aussi simple de chercher directement un antécédent et de montrer
son unicité sans utiliser le théorème de la bijection.

3. On a f(−2) = −1 = f(0) donc elle n’est pas injective donc certainement pas bijective.

Exercice 14. Remarquons que f est la somme de fonction dérivables sur ]a, b[ (inverses
de polynômes dont le dénominateur ne s’annule pas). Ainsi, on a

f ′(x) = − 1
(x− a)2 −

1
(x− b)2 < 0.

La fonction f est strictement décroissante et continue sur ]a, b[. De plus, on a lim
x→a
x>a

f(x) =

+∞ et lim
x→b
x<b

f(x) = −∞. f établit donc une bijection de ]a, b[ dans R.

Ensuite, pour déterminer sa réciproque. On prend y ∈ R. Cherchons x ∈]a, b[ tel que
f(x) = y. C’est équivalent à

1
x− a

+ 1
x− b

= y

⇐⇒ (x− b) + (x− a) = y(x− a)(x− b) car x− a ̸= 0 et x− b ̸= 0

⇐⇒ yx2 − (a+ b)yx− 2x+ aby + a+ b

⇐⇒ yx2 − (ay + by + 2)x+ (bay + a+ b) = 0.

Si y = 0, on a x = a+ b

2 , donc un unique antécédent et il est bien dans l’intervalle ]a, b[.
Si y ̸= 0, on a un trinôme du second degré et il vaut

∆ = (ay + by + 2)2 − 4y(bay + a+ b)

= a2y2 + b2y2 + 4 + 2aby2 + 4ay + 4by − 4aby2 − 4ay − 4by

= (a2 + b2 − 2ab)y2 + 4

= (a− b)2y2 + 4.
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Ainsi, ∆ > 0, donc on a deux racines. On a donc

x1 = ay + by + 2−
√

(a− b)2y2 + 4
2y et x2 = ay + by + 2 +

√
(a− b)2y2 + 4

2y .

On les réécrit en

x1 = a+ b

2 − 2−
√

(a− b)2y2 + 4
2y et x2 = a+ b

2 + 2 +
√

(a− b)2y2 + 4
2y .

Remarquons que f
(
a+ b

2

)
= 0 (c’est la remarque précédente).

Ainsi, si y > 0, comme f est décroissante, l’antécédent de y est forcément strictement
inférieur à a+ b

2 . Il s’agit donc de x1. Mais si y < 0, l’antécédent de y est forcément

strictement supérieur à a+ b

2 . Il s’agit donc encore une fois de x1.
Ainsi, f−1 est la fonction définie sur R par

f−1(y) =


a+ b

2 − 2 +
√

(a− b)2y2 + 4
2y si y ̸= 0

a+ b

2 si y = 0

Il aurait été possible de s’épargner l’utilisation du théorème de la bijection à condition
de montrer que x1 ∈]a, b[ et x2 /∈]a, b[ pour n’importe quel y ∈ R∗. Ça se fait, mais il
faut le faire proprement. Ce n’est pas forcément plus économique.

Exercice 15. Considérons f : R −→ R
x 7−→ x15 − x11 − 2.

Il est clair que f est conti-

nue sur R (polynôme) et les techniques classiques assurent que lim
x→−∞

f(x) = −∞ et
lim

x→+∞
f(x) = +∞. Ainsi, d’après le théorème des valeurs intermédiaires, il existe c ∈ R

tel que f(c) = 0, ce qui revient à l’existence d’une solution à l’équation demandée.
A noter qu’on peut généraliser cette démonstration pour montrer que tout polynôme de
degré impair s’annule au moins une fois sur R.

Exercice 16. Posons g la fonction définie sur [a, b] par ∀x ∈ [a, b], g(x) = f(x) −
x. Il s’agit d’une fonction continue sur [a, b] comme combinaison linéaire de fonctions
continues sur [a, b].
Par ailleurs, on a g(a) = f(a) − a ⩾ 0 car f(a) ∈ [a, b] et g(b) = f(b) − b ⩽ 0 car
f(b) ∈ [a, b].
Ainsi, d’après le théorème des valeurs intermédiaires, il existe c ∈ [a, b] tel que g(c) = 0,
c’est-à-dire f(c) = c.
Pour l’autre cas, notons x1 un élément de [a, b] tel que f(x1) = a et x2 un autre élément
de [a, b] tel que f(x2) = b (ils existent car [a, b] ⊂ f([a, b])).
On a alors g(x1) = a− x1 ⩽ 0 car x1 ∈ [a, b] et g(x2) = b− x2 ⩾ 0 car x2 ∈ [a, b].
Ainsi, on applique le théorème des valeurs intermédiaires sur l’intervalle [min(x1, x2); max(x1, x2)]
(g est bien continue puisque cet intervalle est inclus dans [a, b]) pour obtenir l’existence
d’un c tel que g(c) = 0. On termine comme précédemment.

Exercice 17. Posons h = f − g. h est continue sur R comme combinaison linéaire de
fonctions continues sur R.
Par ailleurs, si g est bornée sur R, cela signifie qu’il existe deux réels m et M tels que
∀x ∈ R, m ⩽ g(x) ⩽M.
Ainsi, ∀x ∈ R, f(x)−M ⩽ f(x)− g(x) ⩽ f(x)−m, soit f(x)−M ⩽ h(x) ⩽ f(x)−m.
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On a donc lim
x→+∞

f(x)−M = +∞, donc lim
x→+∞

h(x) = +∞. De plus, lim
x→−∞

f(x)−m =
−∞, donc lim

x→−∞
h(x) = −∞. Ainsi, comme h est continue, d’après le théorème des

valeurs intermédiaires, il existe c ∈ R tel que h(c) = 0, soit f(c) = g(c).

Exercice 18. f est bornée sur R signifie qu’il existe deux réels m et M tels que ∀x ∈ R,
m ⩽ f(x) ⩽M.
Ainsi, ∀x ∈ R, m ⩽ f(g(x)) ⩽M . Donc f ◦ g est bornée.
Comme g est continue sur R, il existe m′ et M ′ deux réels tels que, ∀x ∈ [m,M ],
m′ ⩽ g(x) ⩽M ′.
On a alors, ∀x ∈ R, comme f(x) ∈ [m,M ], m′ ⩽ g(f(x)) ⩽ M ′. Ainsi, g ◦ f est bornée
sur R.

Exercice 19. 1. Notons T > 0 une période de f . f est continue sur [0, T ] donc bornée
sur [0, T ]. Ainsi, il existe deux réels m et M tels que ∀x ∈ [0, T ], m ⩽ f(x) ⩽M.

Si x /∈ [0, T ], remarquons que x− ⌊ x
T
⌋T ∈ [0, T ] et f(x) = f

(
x− ⌊ x

T
⌋T
)

.

Donc, ∀x ∈ R, m ⩽ f(x) ⩽M . f est bornée sur R.

2. Si lim
x→−∞

f(x) = ℓ1 alors il existe un réel a < 0 tel que ∀x ∈]−∞, a[, |f(x)− ℓ1| ⩽ 1
soit ℓ1 − 1 ⩽ f(x) ⩽ ℓ1 + 1.
De même, si lim

x→+∞
f(x) = ℓ2 alors il existe un réel b > 0 tel que ∀x ∈]b,+∞[,

|f(x)− ℓ2| ⩽ 1 soit ℓ2 − 1 ⩽ f(x) ⩽ ℓ2 + 1.
Et enfin, sur [a, b], f est continue donc bornée, ainsi, il existe deux réels m et M tels
que ∀x ∈ [a, b], m ⩽ f(x) ⩽M.

On a donc, pour tout x ∈ R,

min(ℓ1 − 1, ℓ2 − 1,m) ⩽ f(x) ⩽ max(ℓ1 + 1, ℓ2 + 1,M).

f est donc bornée sur R.

3. Comme lim
x→−∞

f(x) = +∞, il existe un réel a < 0 tel que ∀x < a f(x) > f(0) + 1.

De même, comme lim
x→+∞

f(x) = +∞, il existe un réel b > 0 tel que ∀x > b f(x) >
f(0) + 1.
Sur [a, b], sur [a, b], f est continue donc est bornée et atteint ses bornes, donc en
particulier sa borne inférieure. Ainsi, il existe γ ∈ [a, b] tel que f(γ) = inf

[a,b]
f(x).

Comme 0 ∈ [a, b], f(0) ⩾ f(γ).
Ainsi, ∀x ∈ R, f(x) ⩾ f(γ) (car si x < a, f(x) > f(0) + 1, de même si x > b, et sinon
c’est ce qu’on vient de dire).
Autrement dit, f atteint sa borne inférieure en γ.

4. Notons ℓ = limx→+∞ f(x) = limx→−∞ f(x).
Si f est constante égale à ℓ alors elle remplit les conditions.
Si f n’est pas constante, alors il existe c ∈ R telle que f(c) ̸= ℓ. On supposera f(c) < ℓ
pour la suite.

Comme lim
x→−∞

f(x) = ℓ, il existe un réel a < 0 tel que ∀x < a |f(x)− ℓ| < ℓ− f(c)
2 ,

donc f(c) + ℓ

2 < f(x) < 3ℓ− f(c)
2 .

199 / 359



De même, comme lim
x→+∞

f(x) = ℓ, il existe un réel b > 0 tel que ∀x > b |f(x)− ℓ| <
ℓ− f(c)

2 , donc f(c) + ℓ

2 < f(x) < 3ℓ− f(c)
2 .

Ainsi, ∀x ∈ R \ [a, b], f(x) > f(c) + ℓ

2 .

Par ailleurs, sur [a, b], f est continue donc est bornée et atteint ses bornes, donc
en particulier sa borne inférieure. Ainsi, il existe γ ∈ [a, b] tel que f(γ) = inf

[a,b]
f(x).

Comme f(c) < f(c) + ℓ

2 , c ∈ [a, b], donc f(γ) ⩽ f(c) < f(c) + ℓ

2 .

Ainsi, ∀x ∈ R, f(x) ⩾ f(γ).
Remarquons que si f(c) > ℓ, on aurait pu appliquer le même raisonnement à −f et
on aurait trouvé que −f avait une borne inférieure et l’atteignait, donc f avait une
borne supérieure et l’atteignait.

Exercice 20. Commençons par démontrer ce qui est suggéré. On va montrer la contra-
posée, autrement que si pour tous a, b, c trois éléments de I avec a < b < c tels que
f(b) < max(f(a), f(c)) et f(b) > min(f(a), f(c)), alors f est strictement monotone,
autrement dit que f(b) est strictement compris entre f(a) et f(c).
Prenons a, b ∈ I avec a < b. On suppose que f(a) < f(b). On veut montrer que f est
strictement croissante.
Prenons, x, y ∈ I avec x < y. On a plusieurs cas.

• Si x < y ⩽ a < b. Alors, on a f(x) < f(a) < f(b) car f(a) < f(b) et donc
f(x) < f(y) < f(b) car f(x) < f(b).

• Si x ⩽ a < y < b. On a alors f(a) < f(y) < f(b) car f(a) < f(b) et donc
f(x) < f(y) < f(b) car f(y) < f(b).

• Si x ⩽ a < b ⩽ y. On a alors f(x) < f(a) < f(b) car f(a) < f(b) et donc
f(x) < f(a) < f(y) car f(x) < f(b).

• Si a < x < y ⩽ b. On a alors f(a) < f(x) < f(b) car f(a) < f(b) et donc
f(a) < f(x) < f(y) car f(a) < f(y).

• Si a < x < b < y. On a alors f(a) < f(x) < f(b) car f(a) < f(b) et donc
f(x) < f(y) < f(b) car f(x) < f(b).

• Si a < b ⩽ x < y. On a alors f(a) < f(b) < f(y) car f(a) < f(b) et donc
f(a) < f(x) < f(y) car f(a) < f(y).

Ainsi, dans tous les cas, on a f(x) < f(y), donc f est strictement croissante.
Si on avait f(a) > f(b) alors en considérant g = −f , on aurait eu g strictement croissante,
donc f strictement décroissante.
Le cas f(a) = f(b) n’est pas pertinent. Il suffit de prendre un troisième élément et la
propriété n’est pas vérifiée.
Ainsi, on a montré que si pour tous a, b, c trois éléments de I avec a < b < c tels que
f(b) < max(f(a), f(b)) et f(b) > min(f(a), f(c), alors f est strictement monotone. C’est
équivalent à, si f n’est pas strictement monotone, il existe a, b, c trois éléments de I avec
a < b < c tels que f(b) ⩾ max(f(a), f(c)) ou f(b) ⩽ min(f(a), f(c)).
Prenons désormais une fonction continue et injective. Nous la supposons non strictement
monotone. Ainsi, il existe a, b, c trois éléments de I avec a < b < c tels que f(b) ⩾
max(f(a), f(c)) ou f(b) ⩽ min(f(a), f(c)).
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Si on a f(b) ⩾ max(f(a), f(c)), on note k = f(b) + max(f(a), f(c))
2 , si on a f(b) ⩽

min(f(a), f(c)), on note k = f(b) + min(f(a), f(c))
2 .

Ainsi, k est compris strictement entre f(a) et f(b) et entre f(b) et f(c). Ainsi, on peut
appliquer le théorème des valeurs intermédiaires qui assure l’existence de γ1 ∈]a, b[ tel
que f(γ1) = k et de γ2 ∈]b, c[ tel que f(γ2) = k.
On a donc f(γ1) = f(γ2) avec γ1 ̸= γ2, ce qui est exclu puisque f est injective.
Ainsi, f ne peut pas être non strictement monotone.
Les seules fonctions continues et injectives sont donc strictement monotones.

15 Espaces vectoriels
Exercice 1. 1. Nous allons détailler les deux méthodes vues en cours pour ce premier

exercice. Il faut savoir faire les deux, toutes ne s’appliquant pas partout.
Première méthode : Trois points à vérifier.

(i) Remarquons que A ⊂ R3 et R3 est un espace vectoriel.
(ii) Comme 0 + 2× 0− 3× 0 = 0, on a (0, 0, 0) ∈ A.
(iii) Prenons (x, y, z) et (x′, y′, z′) deux éléments de A et λ, µ deux réels. Montrons

que λ(x, y, z) + µ(x′, y′, z′) ∈ A.
On a

λ(x, y, z) + µ(x′, y′, z′) = (λx+ µx′, λy + µy′, λz + µz′).

Puis on a
(λx+ µx′) + 2(λy + µy′)− 3(λz + µz′) = λx+ µx′ + 2λy + 2µy′ − 3λz − 3µz′

= λ(x+ 2y − 3z) + µ(x′ + 2y′ − 3z′).

Or (x, y, z) ∈ A, donc x+ 2y− 3z = 0 et (x′, y′, z′) ∈ A, donc x′ + 2y′ − 3z′ = 0.
Ainsi,

(λx+ µx′) + 2(λy + µy′)− 3(λz + µz′) = λ× 0 + µ× 0 = 0.

On a donc λ(x, y, z) + µ(x′, y′, z′) ∈ A.

Ces trois points permettent d’assurer que A est un sous-espace vectoriel de R3.
Deuxième méthode : Là encore, on commence par remarquer que A ⊂ R3 qui est
un espace vectoriel.
Ensuite, on réécrit A d’une différente manière. On remarque que

(x, y, z) ∈ A⇐⇒ x+ 2y − 3z = 0.

Soit encore
(x, y, z) ∈ A⇐⇒ x = −2y + 3z.

Ainsi,
A = {(−2y + 3z, y, z)/(y, z) ∈ R2}

= {y(−2, 1, 0) + z(3, 0, 1)/(y, z) ∈ R2}
= Vect

(
(−2, 1, 0), (3, 0, 1)

)
.

Ainsi, A est le sous-espace vectoriel engendré par une famille de deux vecteurs. C’est
donc un sous-espace vectoriel...
La deuxième méthode a comme avantage d’exhiber une famille génératrice de A.
Cependant, on ne peut pas toujours l’appliquer, ce qui explique qu’il faille connâıtre
les deux.
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2. Remarquons que B ⊂ R3 qui est un espace vectoriel.
Une toute petite réécriture montre que

B = {x(1, 1, 0) + y(1,−1, 2)/(x, y) ∈ R2} = Vect
(
(1, 1, 0), (1,−1, 2)

)
.

Ainsi, B est bien un sous-espace vectoriel.

3. On a 0 + 2×0−0 ̸= 2 donc (0, 0, 0) /∈ C. Ainsi C n’est pas un (sous-)espace vectoriel.

4. Cherchons si (0, 0, 0) ∈ D donc s’il existe un couple (x, y) tel que (2x − 3y, x +

1,−x + 3y) = (0, 0, 0). C’est équivalent à


2x− 3y = 0
x+ 1 = 0

−x+ 3y = 0
⇐⇒


3y = 2
x = −1

3y = −1
⇐⇒


3y = 2
x = −1
0 = −3 L3 ← L3 − L1

Ce système n’admet pas de solution donc (0, 0, 0) /∈ D,

ainsi D n’est pas un espace vectoriel.

5. Première méthode : Trois points à vérifier.

(i) Remarquons que E ⊂ R3 et R3 est un espace vectoriel.
(ii) Comme 2× 0 = 0 et 0 = 3× 0, donc on a (0, 0, 0) ∈ E.
(iii) Prenons (x, y, z) et (x′, y′, z′) deux éléments de E et λ, µ deux réels. Montrons

que λ(x, y, z) + µ(x′, y′, z′) ∈ A.
On a

λ(x, y, z) + µ(x′, y′, z′) = (λx+ µx′, λy + µy′, λz + µz′).

Puis on a 2(λx+ µx′)− (λy + µy′) = λ(2x− y) + µ(2x′ − y′).
Or (x, y, z) et (x′, y′, z′) deux éléments de E donc 2x− y = 0 et 2x′ − y′ = 0.
Ensuite, (λy + µy′)− 3(λz + µz′) = λ(y − 3z) + µ(y′ − 3z′).
Or (x, y, z) et (x′, y′, z′) deux éléments de E donc y − 3z = 0 et y′ − 3z′ = 0.
On a donc λ(x, y, z) + µ(x′, y′, z′) ∈ E.

Ces trois points permettent d’assurer que E est un sous-espace vectoriel de R3.
Deuxième méthode : Là encore, on commence par remarquer que E ⊂ R3 qui est
un espace vectoriel.
Ensuite, on réécrit E d’une différente manière. On remarque que

(x, y, z) ∈ A⇐⇒ 2x = y et y = 3z.

Soit encore
(x, y, z) ∈ A⇐⇒ x = 1

2y et z = 1
3y.

Ainsi,
E =

{(
1
2y, y,

1
3y
)/

y ∈ R2
}

=
{
y
(

1
2 , 1,

1
3

)/
y ∈ R2

}
= Vect

((
1
2 , 1,

1
3

))
= Vect

(
(3, 6, 2)

)
.

Ainsi, E est le sous-espace vectoriel engendré par une famille d’un seul vecteur. C’est
donc un sous-espace vectoriel...
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6. On a 0 − 3 × 0 + 9 × 0 ̸= 2 donc (0, 0, 0, 0) /∈ F . Ainsi F n’est pas un (sous-)espace
vectoriel.

7. Prenons (1, 1, 0) ∈ G et (1,−1, 0) ∈ G. On a (1, 1, 0)+(1,−1, 0) = (2, 0, 0) /∈ G. Ainsi,
G n’est pas un espace vectoriel.

8. Oui. Attention c’est un piège !
On a bien H ⊂ R3 qui est un espace vectoriel.
Il faut réaliser que x2 + y2 = 0 est équivalent à x = y = 0 lorsque x et y sont réels.
Donc en réalité, H = {(0, 0, z)/z ∈ R} = Vect

(
(0, 0, 1)

)
.

Ainsi H est bien un sous-espace vectoriel de R3.

9. Non ! C’est la suite du piège !
Prenez par exemple (1, i, 0) ∈ H ′, ainsi que (−1, i, 0), mais (1, i, 0) + (−1, i, 0) =
(0, 2i, 0) /∈ H ′.
Il faut réaliser que x2 + y2 = 0 est équivalent à x− iy = 0 ou x+ iy = 0, autrement
dit

H ′ = {(x, y, z) ∈ C3/x− iy = 0 oux+ iy = 0}

soit
H ′ = {(x, y, z) ∈ C3/x− iy = 0} ∪ {(x, y, z) ∈ C3/x+ iy = 0}.

Or on peut deviner qu’il s’agit d’une union de sous-espaces vectoriels, ce qui n’est
presque jamais un espace vectoriel (sauf si éventuellement l’un est inclus dans l’autre).

Exercice 2. A chaque fois, on nomme l’espace dont on parle, on écrit (x, y, z) ∈ E si et
seulement ci. . ., on résout le système et on arrive à mettre E sous forme de sous-espace
vectoriel engendré, comme dans la version alternative de résoudre l’exercice 1. On vérifie
ensuite que la famille est bien libre, comme dans l’exercice 2.

1. On pose par exemple E = {(x, y, z) ∈ R3/x+ 2y = 0}, donc

(x, y, z) ∈ E ⇐⇒ x+ 2y = 0⇐⇒ x = −2y.

Ainsi, E = {(−2y, y, z)/(y, z) ∈ R2}, puis
E = {y(−2, 1, 0) + z(0, 0, 1)/(y, z) ∈ R2}.
On a donc E = Vect

(
(−2, 1, 0), (0, 0, 1)

)
. Or (−2, 1, 0) et (0, 0, 1) ne sont pas co-

linéaires, donc forment une famille libre, donc une base de E.

2. Notons E = {(x, y, z) ∈ R3/2x− z = 0 ety + z = 0}.

On a donc (x, y, z) ∈ E ⇐⇒
{

2x− z = 0
y + z = 0

⇐⇒

 x = 1
2z

y = −z

Ainsi, E = {(1
2z,−z, z)/z ∈ R}, puis E = {z(1

2 ,−1, 1)/z ∈ R}.
On a donc E = Vect

(
(1

2 ,−1, 1)
)

= Vect
(
(1,−2, 2)

)
. Or (1,−2, 2) est un vecteur non

nul donc forme une famille libre, donc une base de E.
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3. On pose par exemple E = {(x, y, z) ∈ R3/x+ 5y−3z = 0 et −x−4y+ 2z = 0}, donc

(x, y, z) ∈ E ⇐⇒
{

x+ 5y − 3z = 0
−x− 4y + 2z = 0

⇐⇒
{
x+ 5y − 3z = 0

y − z = 0 L2 ← L2 + L1

⇐⇒
{
x = −2y
z = y L2 ← L2 + L1

Ainsi, E = {(−2y, y, y)/y ∈ R},
puis E = {y(−2, 1, 1)/y ∈ R}.
On a donc E = Vect

(
(−2, 1, 1)

)
. Or (−2, 1, 1) est un vecteur non nul donc forme une

famille libre, donc une base de E.

4. Notons E = {(x, y, z) ∈ R3/2x+ y − 3z = 0 et4x+ 2y − 5z = 0}.

On a donc (x, y, z) ∈ E ⇐⇒
{

2x+ y − 3z = 0
4x+ 2y − 5z = 0

⇐⇒
{

2x+ y − 3z = 0
z = 0 L2 ← L2 − L1

⇐⇒
{
y = −2x
z = 0 L2 ← L2 − L1

Ainsi, E = {(−2y, y, 0)/y ∈ R}, puis E = {y(−2, 1, 0)/y ∈ R}.
On a donc E = Vect

(
(−2, 1, 0)

)
. Or (−2, 1, 0) est un vecteur non nul donc forme une

famille libre, donc une base de E.

5. Notons E = {(x, y, z) ∈ R3/4x− 2y + 6z = 0 et− 2x+ y − 3z = 0}.

On a donc (x, y, z) ∈ E ⇐⇒
{

4x− 2y + 6z = 0
−2x+ y − 3z = 0

⇐⇒
{

0 = 0 L1 ← L1 + 2L2
−2x+ y − 3z = 0 L2 ← L2 − L1

⇐⇒ y = 2x+ 3z
Ainsi, E = {(x, 2x+ 3z, z)/(x, z) ∈ R2}, puis E = {x(1, 2, 0) + z(0, 3, 1)/(x, z) ∈ R2}.
On a donc E = Vect

(
(1, 2, 0), (0, 3, 1)

)
. Or

(
(1, 2, 0), (0, 3, 1)

)
est une famille de deux

vecteurs non colinéaires donc c’est une famille libre donc une base de E.

6. Remarquons que (0, 0, 0) ne satisfait pas le système donc il ne définit pas un espace
vectoriel. La question n’a pas de sens.

7. Notons E = {(x, y, z) ∈ R3/x− 3y − z = 0 et2x− 5y + 2z = 0 et 3x− 7y + 5z = 0}.

On a donc (x, y, z) ∈ E ⇐⇒


x− 3y − z = 0

2x− 5y + 2z = 0
3x− 7y + 5z = 0

⇐⇒


x− 3y − z = 0

y + 4z = 0 L2 ← L2 − 2L1
2y + 8z = 0 L3 ← L3 − 3L1
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⇐⇒


x− 3y − z = 0

y + 4z = 0
0 = 0 L3 ← L3 − 2L2

⇐⇒
{
x = −11z
y = −4z L2 ← L2 − L1

Ainsi, E = {(−11z,−4z, z)/z ∈ R}, puis E = {z(−11,−4, 1)/z ∈ R}.
On a donc E = Vect

(
(−11,−4, 1)

)
. Or (−11,−4, 1) est un vecteur non nul donc forme

une famille libre, donc une base de E.

8. Notons E = {(x, y, z) ∈ R3/x− 3y − z = 0 et2x− 5y + 2z = 0 et 3x− 7y + 6z = 0}.

On a donc (x, y, z) ∈ E ⇐⇒


x− 3y − z = 0

2x− 5y + 2z = 0
3x− 7y + 6z = 0

⇐⇒


x− 3y − z = 0

y + 4z = 0 L2 ← L2 − 2L1
2y + 9z = 0 L3 ← L3 − 3L1

⇐⇒


x− 3y − z = 0

y + 4z = 0
z = 0 L3 ← L3 − 2L2

⇐⇒


x = 0
y = 0
z = 0

Ainsi, E = {(0, 0, 0)}. Il s’agit du sous espace vectoriel réduit au vecteur nul, il n’a
pas de base.

Exercice 3. 1. La famille est forcément liée puisqu’elle contient 3 vecteurs dans un
espace vectoriel de dimension 2 et 2 < 3.
Si on prend par exemple les deux premiers vecteurs, on remarque que, si λ, µ sont
deux réels tels que

λ(1, 0) + µ(1, 1) = (0, 0) =⇒
{
λ+ µ = 0

µ = 0

=⇒
{
λ = 0
µ = 0 Donc la famille est libre.

Ainsi, on a extrait une famille libre de deux éléments dans un espace vectoriel de
dimension 2, donc elle est engendre R2 tout entier, comme F1.

2. La famille est forcément liée puisqu’elle contient 4 vecteurs dans un espace vectoriel
de dimension 3 et 3 < 4.
Si on enlève par exemple le vecteur le plus compliqué, on remarque que, si λ, µ, ν sont
trois réels tels que

λ(1, 2, 3) + µ(3, 4, 6) + ν(1, 1, 1) = (0, 0, 0) =⇒


λ+ 3µ+ ν = 0

2λ+ 4µ+ ν = 0
3λ+ 6µ+ ν = 0

=⇒


λ+ 3µ+ ν = 0

λ+ µ = 0 L2 ← L2 − L1
2λ+ 3µ = 0 L3 ← L3 − L1
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=⇒


λ+ 3µ+ ν = 0

λ+ µ = 0
µ = 0 L3 ← L3 − 2L2

=⇒ λ = µ = ν = 0 donc la famille est libre.
Ainsi, on a extrait une famille libre de trois éléments dans un espace vectoriel de
dimension 3, donc elle est engendre R3 tout entier, comme F2.

3. Soient λ, µ, ν trois complexes tels que

λ(1, i, 0) + µ(0, i, 1) + ν(0, i, 0) = (0, 0, 0) =⇒


λ = 0

iλ+ iµ+ iν = 0
µ = 0

=⇒ λ = µ = ν = 0 donc la famille F3 est libre.

4. Soient λ, µ, ν trois complexes tels que

λ(0, 1, i, 0) + µ(0, i, 0, 1) + ν(0, i, 0, 0) = (0, 0, 0, 0) =⇒


0 = 0

λ+ iµ+ iν = 0
iλ = 0
µ = 0

=⇒ λ = µ = ν = 0 donc la famille F4 est libre.

5. Soient λ1, λ2, λ3, λ4 quatre réels tels que

λ1(1, 0, 1, 0)+λ2(0, 1, 0, 1)+λ3(1, 1, 1, 0)+λ4(0, 1, 1, 2) = (0, 0, 0, 0) =⇒


λ1 + λ3 = 0

λ2 + λ3 + λ4 = 0
λ1 + λ3 + λ4 = 0

λ2 + 2λ4 = 0

=⇒


λ1 + λ3 = 0

λ2 + λ3 + λ4 = 0
λ4 = 0 L3 ← L3 − L1

λ2 + 2λ4 = 0

=⇒


λ1 + λ3 = 0
λ2 + λ3 = 0 L2 ← L2 − L3

λ4 = 0
λ2 = 0 L4 ← L4 − 2L3

=⇒


λ1 + λ3 = 0

λ3 = 0 L2 ← L2 − L4
λ4 = 0
λ2 = 0

=⇒


λ1 = 0 L1 ← L1 − L2
λ3 = 0
λ4 = 0
λ2 = 0

=⇒ λ1 = λ2 = λ3 = λ4 = 0 donc la famille F5 est libre.

6. On remarque immédiatement que (2, 1, 1) = (1, 0, 1) + (1, 1, 0) donc Vect(F1) =
Vect

(
(1, 0, 1), (1, 1, 0)

)
.

Or ces deux derniers vecteurs ne sont pas colinéaires donc forment une famille libre.
Ainsi, la famille

(
(1, 0, 1), (1, 1, 0)

)
est libre et engendre le même sous-espace vectoriel

que F6. Non, on peut enlever le premier (ou l’un des autres).
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7. La famille contient 4 vecteurs dans un espace de dimension 3 donc elle est liée.
On pourrait faire comme précédemment, enlever un vecteur et voir si ça vient. Mais
imaginons que nous n’ayons aucune idée de comment démarrer.
Soient λ1, λ2, λ3, λ4 quatre réels tels que
λ1(2,−3,−1) + λ2(1, 0, 1) + λ3(−8, 6,−2) + λ4(−1, 1, 0) = (0, 0, 0)

⇐⇒


2λ1 + λ2 − 8λ3 − λ4 = 0
−3λ1 + 6λ3 + λ4 = 0
−λ1 + λ2 − 2λ3 = 0

⇐⇒


−λ1 + λ2 − 2λ3 = 0 L1 ← L1 + L2
−3λ1 + 6λ3 + λ4 = 0
−λ1 + λ2 − 2λ3 = 0

⇐⇒


−λ1 + λ2 − 2λ3 = 0
−3λ1 + 6λ3 + λ4 = 0

0 = 0 L3 ← L3 − L1

⇐⇒
{
λ2 = λ1 + 2λ3
λ4 = 3λ1 − 6λ3

Ainsi, on remarque que si on enlève le premier et le troisième vecteur, on a une
famille libre. Par ailleurs, on peut exprimer le 1er vecteur en fonction du second et
du quatrième (il suffit de faire λ1 = 1 et λ3 = 0) et le troisième en fonction du second
et du quatrième (il suffit de faire λ1 = 0 et λ3 = 1).
Ainsi, la famille

(
(1, 0, 1), (−1, 1, 0)

)
est libre et engendre le même espace vectoriel que

F7.

Exercice 4. 1. On a vu dans l’exercice précédent que la sous-famille
(
(1, 0), (1, 1)

)
était

libre et engendrait R2 tout entier. Ainsi, F1 est génératrice et
(
(1, 0), (1, 1)

)
en est

une base extraite.

2. On remarque que les vecteurs (1, 1) et (2, 1) sont libres (ils ne sont pas colinéaires) et
sont dans R2 de dimension 2. Ainsi,

(
(1, 1), (2, 1)

)
est une base de R2 et donc F2 était

bien génératrice. Oui. On enlève celui qu’on veut.

3. Vu qu’il y a deux vecteurs dans cette famille, que nous sommes dans un espace vectoriel
de dimension 2, elle sera génératrice si et seulement si c’est une base donc si et
seulement si elle est libre (toujours parce qu’elle a deux vecteurs dans un espace
vectoriel de dimension 2).
Soient λ, µ deux complexes tels que λ(1, i) + µ(i, 1) = (0, 0).

=⇒
{
λ+ iµ = 0
iλµ = 0

=⇒
{
λ+ iµ = 0

2µ = 0 L2 ← L2 − iL1

Et donc λ = µ = 0.
La famille F3 est libre, est de cardinal 2 dans un espace vectoriel de dimension 2, donc
elle est génératrice et c’est une base.

4. Vu qu’il y a trois vecteurs dans cette famille, que nous sommes dans un espace vectoriel
de dimension 3, elle sera génératrice si et seulement si c’est une base donc si et
seulement si elle est libre (toujours parce qu’elle a trois vecteurs dans un espace
vectoriel de dimension 3).
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Soient λ, µ, ν trois réels tels que λ(1, 2,−3) + µ(2, 2, 0) + ν(1, 0,−3) = (0, 0, 0).

=⇒


λ+ 2µ+ ν = 0

2λ+ 2µ = 0
−3λ− 3ν = 0

=⇒


λ+ 2µ+ ν = 0

λ+ µ = 0 L2 ←
1
2L2

λ+ ν = 0 L3 ← −
1
3L3

=⇒


µ+ ν = 0 L1 ← L1 − L2
λ+ µ = 0
−µ+ ν = 0 L3 ← L3 − L2

=⇒


µ+ ν = 0
λ+ µ = 0

2ν = 0 L3 ← L3 + L1

Et donc λ = µ = ν = 0.
La famille F4 est libre, est de cardinal 3 dans un espace vectoriel de dimension 3, donc
elle est génératrice et c’est une base.

5. Elle n’a que trois vecteurs dans un espace vectoriel de dimension 4, donc elle ne peut
pas être génératrice.

6. Vu qu’il y a quatre vecteurs dans cette famille et que nous sommes dans un espace
vectoriel de dimension 4, elle sera génératrice si et seulement si c’est une base donc si
et seulement si elle est libre (parce qu’elle a quatre vecteurs dans un espace vectoriel
de dimension 4).
Soient λ1, λ2, λ3, λ4 quatres réels tels que λ1(1, 0, 1, 0) + λ2(0, 1, 0, 1) + λ3(1, 1, 1, 0) +
λ4(0, 0, 1, 2) = (0, 0, 0, 0).

=⇒


λ1 + λ3 = 0
λ2 + λ3 = 0

λ1 + λ3 + λ4 = 0
λ2 + 2λ4 = 0

=⇒


λ1 + λ3 = 0
λ2 + λ3 = 0

λ4 = 0 L3 ← L3 − L1
λ2 + 2λ4 = 0

=⇒


λ1 = 0
λ3 = 0
λ4 = 0 L3 ← L3 − L1
λ2 = 0

Et donc λ1 = λ2 = λ3 = λ4 = 0.

La famille F6 est libre, est de cardinal 4 dans un espace vectoriel de dimension 4, donc
elle est génératrice et c’est une base.

7. Vu qu’il y a trois vecteurs dans cette famille, que nous sommes dans un espace vectoriel
de dimension 3, elle sera génératrice si et seulement si c’est une base donc si et
seulement si elle est libre (toujours parce qu’elle a trois vecteurs dans un espace
vectoriel de dimension 3).
Soient λ, µ, ν trois réels tels que λ(0, 1, 1) + µ(1, 0, 1) + ν(1, 1, 0) = (0, 0, 0).

208 / 359



=⇒


µ+ ν = 0
λ+ µ = 0
λ+ ν = 0

=⇒


µ+ ν = 0
λ− ν = 0 L2 ← L2 − L1
λ+ ν = 0

=⇒


µ+ ν = 0
λ− ν = 0

2λ = 0 L3 ← L3 + L2

=⇒


ν = 0
µ = 0
λ = 0L3 ← L3 + L1

Et donc λ = µ = ν = 0.
La famille F7 est libre, est de cardinal 3 dans un espace vectoriel de dimension 3, donc
elle est génératrice et c’est une base.

8. On a (2, 1, 1) = (1, 0, 1) + (1, 1, 0), ainsi, Vect(F8) = Vect
(
(1, 0, 1), (1, 1, 0)

)
.

Or cette dernière famille n’est pas génératrice (seulement deux vecteurs), donc F8 non
plus.

9. En imaginant que nous n’avons pas déjà vu cette famille dans l’exercice précédent (où
nous avions trouvé une famille qui engendrait le même espace vectoriel et qui n’était
pas génératrice puisqu’elle n’avait que deux vecteurs).
Soient (a, b, c) ∈ R3, et λ1, λ2, λ3, λ4 quatre réels tels que
λ1(2,−3,−1) + λ2(1, 0, 1) + λ3(−8, 6,−2) + λ4(−1, 1, 0) = (a, b, c)

=⇒


2λ1 + λ2 − 8λ3 − λ4 = a
−3λ1 + 6λ3 + λ4 = b
−λ1 + λ2 − 2λ3 = c

=⇒


−λ1 + λ2 − 2λ3 = a+ b L1 ← L1 + L2
−3λ1 + 6λ3 + λ4 = b
−λ1 + λ2 − 2λ3 = b

=⇒


−λ1 + λ2 − 2λ3 = a+ b
−3λ1 + 6λ3 + λ4 = b

0 = −a− b+ c L3 ← L3 − L1

Ainsi, si −a − b + c ̸= 0, on ne peut pas l’exprimer comme combinaison linéaire des
vecteurs de F9, comme par exemple le vecteur (1, 0, 0).
Donc F9 n’est pas génératrice.

Exercice 5. 1. Il suffit de remarquer qu’il s’agit d’une famille de deux vecteurs qui
forment une famille libre car ils ne sont pas colinéaires. Comme il s’agit d’une famille
libre de deux vecteurs de R2 qui est un espace vectoriel de dimension 2, cette famille
est une base de R2.

2. On cherche (x1, x2) ∈ R2 tel que x = x1u+ x2v. C’est équivalent à{
3x1 + x2 = 5
−x1 + 2x2 = −2

⇐⇒
{

3x1 + x2 = 5
−7x1 = −12 L2 ← L2 − 2L1
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⇐⇒


x2 = 5− 36

7 = −1
7

x1 = 12
7

Ainsi, on a x = 12
7 u−

1
7v, ainsi ses coordonnées sont

(12
7 ,−

1
7

)
.

Exercice 6. 1. Le plus simple est de remarquer que les deux derniers vecteurs forment
une famille libre (ils sont non colinéaires), donc Vect(F) est de dimension au moins
2. Comme on est dans R2, dim(Vect(F)) ⩽ 2.
Ainsi F est de rang 2 donc génératrice puisque c’est une famille de R2 qui est de
dimension 2.

2. Oui, on vient d’expliquer ci-dessus que cette famille est justement une base de R2.

3. Oui, on vient de le dire...

Exercice 7. 1. Non, les bases de R2 n’ont que deux vecteurs.

2. Il suffit d’en prendre deux non colinéaires pour avoir ce que l’on désire, puisque une
famille libre de R2 en formera une base car dim(R2) = 2.

3. Ça dépend de la base choisie. Si par exemple on a pris (u,w), on cherche x1 et x2
deux réels tels que x = x1u+ x2w. C’est équivalent au système :{

2x1 + 3x2 = 5
5x1 + x2 = −2

⇐⇒
{

2x1 + 3x2 = 5
−13x3 = −29 L2 ← 2L2 − 5L1

⇐⇒


x1 = 1

2

(
5− 329

13

)
= 65− 87

2× 13 = −11
13

x2 = 29
13

Ainsi, on a x = −11
13u + 29

13v. Les coordonnées de x dans la base (u,w) sont donc(
−11

13 ,
29
13

)
.

Exercice 8. 1. Non, elle n’a que deux vecteurs alors que nous sommes dans R3 qui est
de dimension 3.

2. Remarquons que (u, v) est une famille libre puisque u et v ne sont pas colinéaires.
Elle est donc une base de l’espace vectoriel qu’elle engendre et est de rang 2.

3. On cherche x1 et x2 deux réels tels que x = x1u+ x2v. C’est équivalent au système :
x1 + 3x2 = 1

2x1 + 2x2 = 4
3x1 + 1x2 = 7

⇐⇒


x1 + 3x2 = 1
−4x2 = 2 L2 ← L2 − 2L1
−8x2 = 4 L3 ← L3 − 3L1

⇐⇒


4x1 = 10 L1 ← 4L1 + 3L2
−4x2 = 2 L2 ← L2 − 2L1

0 = 0 L3 ← L3 − 2L2
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⇐⇒


x1 = 5

2
x2 = −1

2

Ainsi, on a x = 5
2u −

1
2v. Ainsi, x ∈ Vect(F) et les coordonnées de x dans la base

(u, v) de F sont donc
(5

2 ,−
1
2

)
.

4. On cherche y1 et y2 deux réels tels que x = y1u+ y2v. C’est équivalent au système :
y1 + 3y2 = −1

2y1 + 2y2 = 6
3y1 + 1y2 = 9

⇐⇒


y1 + 3y2 = −1
−4y2 = 8 L2 ← L2 − 2L1
−8y2 = 12 L3 ← L3 − 3L1

⇐⇒


4y1 = 10 L1 ← 4L1 + 3L2
−4y2 = 2 L2 ← L2 − 2L1

0 = −8 L3 ← L3 − 2L2

Le système n’admet pas de solutions. Ainsi, y n’est pas dans Vect(u, v).

Exercice 9. 1. Nous sommes dans un espace vectoriel de dimension 2 et que la famille
contient 3 vecteurs, elle ne peut donc pas être libre.

2. Oui, elle est constituée d’un seul vecteur non nul.

3. Oui, peu importe le vecteur choisi, puisque qu’aucun de ces vecteurs n’est colinéaire
à (13, 1), donc à eux deux, cela formera une famille libre.

4. On a une famille libre de deux vecteurs, donc elle engendre un sous-espace vectoriel
de dimension 2, ainsi rg(G1) = 2.

5. Oui car il s’agit d’une famille libre de deux vecteurs et on est dans un espace vectoriel
de dimension 2.

Exercice 10. 1. Montrons que cette famille est libre. Soient λ, µ, ν trois complexes tels
que

λ(1, i,−1) + µ(1, 0,−i) + ν(0, i, i) = (0, 0, 0).

⇐⇒


λ+ µ = 0
iλ+ iν = 0

−λ− iµ+ iν = 0

⇐⇒


λ+ µ = 0
iλ+ iν = 0

(−1 + i− i)λ = 0 L3 ← L3 + iL1 − L2

⇐⇒


µ = 0
ν = 0
λ = 0

Ainsi, λ = µ = ν = 0. La famille est donc libre. Comme elle est constituée par 3
vecteurs dans un espace vectoriel C3 de dimension 3, il s’agit d’une base.
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2. Soient λ, µ, ν trois complexes tels que

λ(1, i,−1) + µ(1, 0,−i) + ν(0, i, i) = (0, 0,−1).

⇐⇒


λ+ µ = 0
iλ+ iν = 0

−λ− iµ+ iν = −1

⇐⇒


λ+ µ = 0
iλ+ iν = 0

(−1 + i− i)λ = −1 L3 ← L3 + iL1 − L2

⇐⇒


µ = −1
ν = −1
λ = 1

Ainsi, (0, 0,−1) = (1, i,−1)−(1, 0,−i)−(0, i, i). Les coordonnées de x dans cette base
sont (1,−1,−1).

Exercice 11. 1. Notons F = Vect
(
(1, 1, 1), (i, 0, 0), (1 + i, 1, 1), (i, i, i)

)
.

On a

F = Vect
(
(1, 1, 1), (i, 0, 0), (1 + i, 1, 1), (i, i, i)

)
= Vect

(
(1, 1, 1), (i, 0, 0), (1 + i, 1, 1)− (i, 0, 0), (i, i, i)− i(1, 1, 1)

)
= Vect

(
(1, 1, 1), (i, 0, 0), (1, 1, 1), (0, 0, 0)

)
= Vect

(
(1, 1, 1), i(1, 0, 0)

)
= Vect

(
(1, 1, 1), (1, 0, 0)

)
= Vect

(
(1, 1, 1)− (1, 0, 0), (1, 0, 0)

)
= Vect

(
(0, 1, 1), (1, 0, 0)

)
Ainsi, il est clair que F est engendré par deux vecteurs non colinéaires qui forment
donc une famille libre. On a donc dim(F ) = 2, autrement dit la famille considérée est
de rang 2.

2. C’est déjà fait si vous avez répondu à la question précédente efficacement.

Exercice 12. 1. a. Remarquons que K2[X] ⊂ K[X] qui est un sous-espace vectoriel.
De plus 0K[X] ∈ K2[X].
Enfin, prenons λ, µ ∈ K et P,Q ∈ K2[X].
On a deg(λP + µQ) ⩽ max(deg(P ), deg(Q)) ⩽ 22, donc λP + µQ ∈ K2[X].
Ainsi, K2[X] est un sous-espace vectoriel de K[X] donc un K-espace vectoriel.

b. Tous ces vecteurs sont des vecteurs de K2[X].
Si P ∈ K2[X], il existe a, b, c ∈ K tels que P = a+bX+cX2. Ainsi, Vect(1, X,X2) =
K2[X].

c. Soient a, b, c ∈ K tels que a+bX+cX2 = 0K[X]. Par unicité de l’écriture développée
réduite, on a a = b = c = 0, donc la famille (1, X,X2) est libre.

d. La famille (1, X,X2) est libre et génératrice de K2[X], donc une base de K2[X].
Ainsi, on a dim(K2[X]) = 3.
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e. Montrons que cette famille est libre. On note a, b, c trois éléments de K tels que

3a+ b(1− 2X) +c(−2 +X −X2) = 0K[X]
⇐⇒ (3a+ b− 2c) + (−2b+ c)X − cX2 = 0K[X]

⇐⇒


3a +b −2c = 0
−2b +c = 0

−c = 0

⇐⇒


a = 0
b = 0
c = 0

Ainsi, il s’agit d’une famille libre, et comme elle contient 3 vecteurs de K2[X] et
que dim(K2[X]) = 3, il s’agit d’une base de K2[X].

f. Il s’agit clairement d’une famille libre puisque elle est constituée de deux vecteurs
non colinéaires. Ainsi, rg(3, X) = dim(Vect(3, X)) = 2.

g. On a très clairement Vect(3, X) = Vect
(1

33, X
)

= Vect(1, X). Ainsi, une base
légèrement plus simple de Vect(G) est (1, X), ainsi Vect(G) = K1[X].

h. Remarquons tout de suite que Vect(3, X) = K1[X]. Ensuite, remarquons que
Vect(2, X2, 1+X2) = Vect(1, X2, 1+X2) = Vect(1, X2). Considérons P ∈ Vect(2, X2, 1+
X2)∩Vect(3, X) = Vect(1, X2)∩K1[X]. Comme P ∈ Vect(1, X2), il existe α, β ∈ K
tels que P = α + βX2. De plus, comme P ∈ K1[X], il existe a, b ∈ K tels que
P = a+ bX.
On a donc P ∈ Vect(2, X2, 1 +X2) ∩Vect(3, X) si et seulement si

α+ βX2 = a+ bX ⇐⇒ (α− a)− bX + βX2 = 0K[X]

⇐⇒


α− a = 0
−b = 0
β = 0

⇐⇒


a = α
b = 0
β = 0

Ainsi, P = a où a ∈ K.
On a donc Vect(2, X2, 1+X2)∩Vect(3, X) = K0[X], (1) (la famille constituée par
le polynôme constant 1) en est une base.

2. a. Remarquons que Kn[X] ⊂ K[X] qui est un sous-espace vectoriel.
De plus 0K[X] ∈ Kn[X].
Enfin, prenons λ, µ ∈ K et P,Q ∈ Kn[X].
On a deg(λP + µQ) ⩽ max(deg(P ), deg(Q)) ⩽ n, donc λP + µQ ∈ Kn[X].
Ainsi, Kn[X] est un sous-espace vectoriel de K[X] donc un K-espace vectoriel.

b. Essayons de faire un peu plus rapide.

Soit P ∈ Kn[X]. Il existe (α0, . . . , αn) ∈ Kn+1 tels que P =
n∑

k=0
αkX

k.

Par ailleurs, grâce à l’unicité de l’écriture développée réduite, ce n + 1-uplet est
unique.
Ainsi, (1, X,X2, . . . , Xn) est une base de Kn[X].

c. Comme (1, X,X2, . . . , Xn) est une base de Kn[X], on a dim(Kn[X]) = n+ 1.
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Exercice 13. 1. a. Tous ces vecteurs sont des vecteurs de M2(K).
Si M ∈M2(K), il existe a, b, c, d ∈ K tels que

M =
(
a b
c d

)
= a

(
1 0
0 0

)
+ b

(
0 1
0 0

)
+ c

(
0 0
1 0

)
+ d

(
0 0
0 1

)
.

Ainsi, Vect
((1 0

0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

))
=M2(K).

b. Soient a, b, c, d ∈ K tels que a
(

1 0
0 0

)
+b
(

0 1
0 0

)
+c
(

0 0
0 1

)
+d

(
0 0
0 1

)
=
(

0 0
0 0

)
.

Par l’unicité de l’écriture matricielle, on a a = b = c = d = 0 donc B est une
famille libre de M2(K).

c. La famille B est une famille libre et génératrice deM2(K), c’est donc une base de
M2(K).
On a alors dim(M2(K)) = 4.

2. a. Essayons de faire un peu plus rapide.
Soit M ∈Mn,p(K). Il existe (ai,j)1⩽i⩽n

1⩽j⩽p
tels que

M =


a1,1 a1,2 . . . a1,p

a2,1 a2,2 . . . a2,p
...

...
an,1 a1,2 . . . an,p

 =
n∑

i=1

p∑
j=1

ai,jEi,j .

Grâce à l’unicité de l’écriture matricielle, ces coefficients sont uniques.
Ainsi, (Ek,ℓ)1⩽k⩽n

1⩽ℓ⩽p
est une base de Mn,p(K)

b. Comme (Ek,ℓ)1⩽k⩽n
1⩽ℓ⩽p

est une base de Mn,p(K), on a dim(Mn,p(K)) = np.

Exercice 14. Soient λ, µ, ν trois réels tels que λ(1, k, 2) + µ(−1, 8, k) + ν(1, 2, 1) =
(0, 0, 0). C’est équivalent à

λ− µ+ ν = 0
kλ+ 8µ+ 2ν = 0
2λ+ kµ+ ν = 0

⇐⇒


λ− µ+ ν = 0

(k − 2)λ+ 10µ = 0 L2 ← L2 − 2L1
λ+ (k + 1)µ = 0 L3 ← L3 − L1

⇐⇒


λ− µ+ ν = 0

(10− (k − 2)(k + 1))µ = 0 L2 ← L2 − (k − 2)L3
λ+ (k + 1)µ = 0

⇐⇒


ν + λ− µ = 0

λ+ (k + 1)µ = 0 L2 ↔ L3
(−k2 + k + 12)µ = 0

Le système est échelonné. Si −k2 +k+ 12 ̸= 0, il implique λ = µ = ν = 0 donc la famille
est libre.
Si −k2 + k + 12 = 0, il a une infinité de solution donc la famille n’est pas libre.
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Résolvons −k2 + k + 12 = 0. Le discriminant est ∆ = 12 − 4× (−1)× 12 = 49.
Ainsi, on a deux racines −1− 7

−2 = 4 et −1 + 7
−2 = −3.

La famille n’est pas libre si et seulement si k est égal à 4 ou à −3.

Exercice 15. On note U ∈ Vect(P,Q) ∩Vect(R,S).
Or U ∈ Vect(P,Q)⇐⇒ ∃(α, β) ∈ K2 tel que U = αP + βQ.
De même U ∈ Vect(R,S)⇐⇒ ∃(γ, δ) ∈ K2 tel que U = γR+ δS.
On a donc U ∈ Vect(P,Q)∩Vect(R,S)⇐⇒ ∃(α, β, γ, δ) ∈ K4 tel que αP+βQ = γR+δS.
Grâce à l’unicité de l’écriture développée réduire des polynômes, cela est équivalent au
système suivant :

α+ 3β = γ + 2δ
2α− β = 3γ − 2δ
−α+ 2β = −γ + 3δ

⇐⇒
L2←L2−2L1
L3←L3+L1


α+ 3β = γ + 2δ
−7β = γ − 6δ

5β = +5δ
⇐⇒


α+ 3β − γ = 2δ
−7β − γ = −6δ

β = δ

⇐⇒
L1←L1−3L3
L2←L2+7L3


α− γ = −δ
−γ = δ
β = δ

⇐⇒
L1←L1−L2


α = −2δ
−γ = δ
β = δ

⇐⇒
L1←L1−L2


α = −2δ
γ = −δ
β = δ

Ainsi, U ∈ Vect(P,Q) ∩ Vect(R,S) ⇐⇒ ∃δ tel que U = −2δP + δQ = δ(−2P + Q) et
U = −δR+ δS = δ(−R+ S).
Remarquons en effet que −2P +Q = −R+ S = 1− 5X + 4X2.
Ainsi, Vect(P,Q) ∩Vect(R,S) = Vect(1− 5X + 4X2).

Exercice 16. 1. E est un sous-espace vectoriel engendré par deux matrices deM2(K),
donc c’est bien un sous-espace vectoriel.

2. E est engendré par une famille de deux vecteurs non colinéaires, c’est-à-dire une
famille libre. Ainsi, elle forme une base de E et dim(E) = 2.

Prenons
(
x y
z t

)
∈ E ⇐⇒ ∃(λ, µ) ∈ K2 tel que

(
x y
z t

)
= λ

(
1 −2
−1 0

)
+µ

(
−1 1
1 1

)
.

Cette égalité est équivalente au système :
x = λ− µ
y = −2λ+ µ
z = −λ+ µ
t = µ

⇐⇒
L1←L1+L4
L2←L2−L1
L3←L3−L4


x+ t = λ
y − t = −2λ
z − t = −λ

t = µ

⇐⇒
L1←L1+L3
L2←L2−2L3


x+ z = 0

y − 2z + t = 0
z − t = −λ

t = µ

Ainsi,
(
x y
z t

)
∈ E ⇐⇒

{
x+ z = 0

y − 2z + t = 0

On a donc E =
{(

x y
z t

)
∈M2(K)/x+ z = 0 et y − 2z + t = 0

}
.

3. On a
(
x y
z t

)
∈ F ⇐⇒ y = −2z + t. Donc F =

{(
x −2z + t
z t

)
/(x, z, t) ∈ K3

}
.

Ou encore F =
{
x

(
1 0
0 0

)
+ z

(
0 −2
1 0

)
+ t

(
0 1
0 1

)
/(x, z, t) ∈ K3

}
.

On a F = Vect
((1 0

0 0

)
,

(
0 −2
1 0

)
,

(
0 1
0 1

))
.

Ainsi, F est bien un sous-espace vectoriel de M2(K).
Cette famille qui engendre F est-elle libre ?
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Soient λ, µ, ν trois réels tels que λ
(

1 0
0 0

)
+ µ

(
0 −2
1 0

)
+ ν

(
0 1
0 1

)
= (0, 0, 0, 0).

L’égalité est équivalente à
(
λ −2µ+ ν
µ ν

)
=
(

0 0
0 0

)
ce qui implique λ = µ = ν = 0.
La famille est libre, elle engendre F , donc c’est une base de F et dim(F ) = 3.

4. Soit
(
x y
z t

)
∈M2(K). D’après ce qui précède, on a

(
x y
z t

)
∈ E∩F ⇐⇒


x+ z = 0

y − 2z + t = 0
y + 2z − t = 0

⇐⇒
L3←L3+L2


x+ z = 0

y − 2z + t = 0
y = 0

⇐⇒


x = −z
t = 2z
y = 0

Ainsi, G =
{(
−z 0
z 2z

)
/z ∈ K

}
= Vect

((
−1 0
1 2

))
.

G est engendré par une famille d’un seul vecteur non nul, donc elle forme une base
de G et dim(G) = 1.

Exercice 17. Remarquons que Vect(u, v) et Vect(s, t) sont deux sous-espaces vectoriels
engendrés par des familles de deux vecteurs non colinéaires (donc des familles de deux
vecteurs libres). Ainsi, on a dim(Vect(u, v)) = dim(Vect(s, t)).
Pour montrer leur égalité, il ne reste plus qu’à montrer que l’un est inclus dans l’autre.
Pour ce faire, nous allons montrer qu’une famille génératrice de l’un est constituée de
vecteurs de l’autre.
Montrons qu’il existe λ, µ deux réels tels que λs+ µt = u.
C’est équivalent au système
−λ− µ = −4
2λ+ 6µ = 4
2λ+ 7µ = 3

⇐⇒


−λ− µ = −4

4µ = −4 L2 ← L2 + 2L1
5µ = −5 L3 ← L3 + 2L1

⇐⇒


−λ− µ = −4

4µ = −4
0 = 0 L3 ← 4L3 − 5L2

Le système est échelonné et admet des solutions, ainsi, u ∈ Vect(s, t). Remarquons qu’on
n’a même pas besoin de récupérer les valeurs de λ et µ pour assurer l’appartenance de
u à Vect(s, t).
De la même façon, montrons qu’il existe λ, µ deux réels tels que λs+ µt = v.
C’est équivalent au système
−λ− µ = −3
2λ+ 6µ = 2
2λ+ 7µ = 1

⇐⇒


−λ− µ = −3

4µ = −4 L2 ← L2 + 2L1
5µ = −5 L3 ← L3 + 2L1
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⇐⇒


−λ− µ = −3

4µ = −4
0 = 0 L3 ← 4L3 − 5L2

Le système est échelonné et admet des solutions, ainsi, v ∈ Vect(s, t).
Comme u et v sont des vecteurs de Vect(s, t), on a Vect(u, v) ⊂ Vect(s, t).
Puisque ces deux espaces vectoriels ont la même dimension, ils sont égaux. On a bien

Vect(u, v) = Vect(s, t).

On aurait pu faire la même chose pour montrer l’inclusion réciproque si on avait pas pensé
à regarder les dimensions. Ou encore, en finissant les calculs on montre que u = 5s − t
et v = 4s − t ce qui peut permettre très rapidement d’exprimer s et t en fonction de u
et v, mais c’est les dimensions le plus rapide.

Exercice 18. Il y a beaucoup de façons de voir les choses. On pourrait commencer
par déterminer des équations qui caractérisent chacun des deux puis résoudre un grand
système. Au lieu de ça, on va y aller directement.
On note e ∈ Vect(u, v) ∩Vect(s, t).
Or e ∈ Vect(u, v)⇐⇒ ∃(α, β) ∈ R2 tel que e = αu+ βv.
De même e ∈ Vect(s, t)⇐⇒ ∃(γ, δ) ∈ R2 tel que e = γs+ δt.
On a donc e ∈ Vect(u, v) ∩Vect(s, t)⇐⇒ ∃(α, β, γ, δ) ∈ R4 tel que

α+ 3β = γ + 2δ
2α− β = 3γ − 2δ
−α+ 2β = −γ + 3δ

⇐⇒


α+ 3β = γ + 2δ
−7β = γ − 6δ L2 ← L2 − 2L1

5β = +5δ L3 ← L3 + L1

⇐⇒


α+ 3β − γ = 2δ
−7β − γ = −6δ

β = δ

⇐⇒


α− γ = −δ L1 ← L1 − 3L3
−γ = δ L2 ← L2 + 7L3
β = δ

⇐⇒


α = −2δ L1 ← L1 − L2
−γ = δ
β = δ

⇐⇒


α = −2δ L1 ← L1 − L2
γ = −δ
β = δ

Ainsi, e ∈ Vect(u, v) ∩ Vect(s, t) ⇐⇒ ∃δ tel que e = −2δu + δv = δ(−2u + v) et
e = −δs+ δt = δ(−s+ t).
Remarquons que −2u+ v = (1,−5, 4) = −s+ t.
Ainsi, Vect(u, v) ∩Vect(s, t) = Vect

(
(1,−5, 4)

)
.

Le vecteur (1,−5, 4) étant non nul, il forme une famille libre à lui tout seul qui engendre
Vect(u, v) ∩Vect(s, t).(
(1,−5, 4)

)
est donc une base de Vect(u, v) ∩Vect(s, t).

Exercice 19. 1. Pour E, c’est évident, il est engendré par deux vecteurs de R4.
Pour F , révisons un peu.

(i) Remarquons que F ⊂ R4 et R4 est un espace vectoriel.
(ii) Comme 0 = −2× 0 + 0 donc on a (0, 0, 0, 0) ∈ F .
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(iii) Prenons (x, y, z, t) et (x′, y′, z′, t′) deux éléments de F et λ, µ deux réels. Mon-
trons que λ(x, y, z, t) + µ(x′, y′, z′, t′) ∈ F .
On a

λ(x, y, z, t) + µ(x′, y′, z′, t′) = (λx+ µx′, λy + µy′, λz + µz′, λt+ µt′).

Puis on a (λy+ µy′) + 2(λz+ µz′)− (λt+ µt′) = λ(y+ 2z− t) + µ(y′+ 2z′− t′).
Or (x, y, z, t) et (x′, y′, z′, t′) deux éléments de F donc y+2z−t = 0 et y′+2z′−t′ =
0.
Donc (λy+ µy′) + 2(λz + µz′)− (λt+ µt′) = 0, ou encore (λy+ µy′) = −2(λz +
µz′) + (λt+ µt′).
On a donc λ(x, y, z, t) + µ(x′, y′, z′, t′) ∈ F .

Ces trois points permettent d’assurer que F est un sous-espace vectoriel de R4.

2. E est engendré par une famille de deux vecteurs non colinéaires, donc une famille
libre. Ainsi, elle forme une base de E et E est de dimension 2.
On a (x, y, z, t) ∈ E ⇐⇒ ∃(λ, µ) ∈ R2 tel que

λ(−1, 2, 1, 0) + µ(−1, 2, 0, 1) = (x, y, z, t).

Cette égalité est équivalente au système
−λ− µ = x
2λ+ 2µ = y

λ = z
µ = t

⇐⇒


−λ− µ = x

0 = 2x+ y L2 ← L2 + 2L1
λ = z
µ = t

⇐⇒


0 = x+ z + t L1 ← L1 + L3 + L4
0 = 2x+ y
λ = z
µ = t

⇐⇒


λ = z
µ = t
0 = x+ z + t
0 = 2x+ y

Ainsi, λ et µ existent si et seulement si x+ z + t = 0 et 2x+ y = 0. Les éléments de

E sont ceux qui vérifient :
{

2x+ y = 0
x+ z + t = 0.

On peut donc écrire E = {(x, y, z, t) ∈ R4/2x+ y = 0 et x+ z + t = 0}

3. On a (x, y, z, t) ∈ F ⇐⇒ y = −2z + t. Donc F = {(x,−2z + t, z, t)/(x, z, t) ∈ R3}.
Ou encore F = {x(1, 0, 0, 0) + z(0,−2, 1, 0) + t(0, 1, 0, 1)/(x, z, t) ∈ R3}.
On a F = Vect

(
(1, 0, 0, 0), (0,−2, 1, 0), (0, 1, 0, 1)

)
.

Cette famille qui engendre F est-elle libre ? Soient λ, µ, ν trois réels tels que

λ(1, 0, 0, 0) + µ(0,−2, 1, 0) + ν(0, 1, 0, 1) = (0, 0, 0, 0).
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⇐⇒ (λ,−2µ+ ν, µ, ν) = (0, 0, 0, 0)
ce qui implique λ = µ = ν = 0.
La famille est libre, elle engendre F , donc c’est une base de F qui est ainsi de dimension
3.

4. On a l’équivalence (x, y, z, t) ∈ E ∩ F ⇐⇒


2x+ y = 0

x+ z + t = 0
y + 2z − t = 0

⇐⇒


2x+ y = 0

x+ z + t = 0
2x− 2z + t = 0 L3 ← L1 − L3

⇐⇒


2x+ y = 0
x− 3z = 0 L2 ← L3 − L2

2x− 2z + t = 0

⇐⇒


y = −2x
z = 1

3x
t = −4

3x

Ainsi, on G =
{
x

(
1,−2, 1

3 ,−
4
3

)
/x ∈ R

}
.

Ainsi, G = Vect
((

1,−2, 1
3 ,−

4
3

))
.

Soit G = Vect
(
(3,−6, 1,−4)

)
.

Ainsi, G est engendré par un unique vecteur non nul, donc
(
(3,−6, 1,−4)

)
est une

base de G et dim(G) = 1.

Exercice 20. 1. On a
E = Vect

(
(1,−1, 3,−3)− (1,−1, 1,−1), (2,−2, 4,−4)− 2(1,−1, 1,−1),

(3,−3, 7,−7)− 3(1,−1, 1,−1), (1,−1, 1,−1)
)

E = Vect
(
(0, 0, 2,−2), (0, 0, 2,−2), (0, 0, 4,−4), (1,−1, 1,−1)

)
E = Vect

(
(0, 0, 1,−1), (0, 0, 1,−1), (0, 0, 1,−1), (1,−1, 1,−1)

)
E = Vect

(
(0, 0, 1,−1), (1,−1, 1,−1)− (0, 0, 1,−1)

)
E = Vect

(
(0, 0, 1,−1), (1,−1, 0, 0)

)
E = Vect

(
(1,−1, 0, 0), (0, 0, 1,−1)

)
On a E = Vect

(
(1,−1, 0, 0), (0, 0, 1,−1)

)
. Comme les vecteurs ne sont pas colinéaires,(

(1,−1, 0, 0), (0, 0, 1,−1)
)

est libre donc est une base de E. On a donc dim(E) = 2.

2. On a (x, y, z, t) ∈ E ⇐⇒ ∃(λ, µ) ∈ R2 tel que

λ(1,−1, 0, 0) + µ(0, 0, 1,−1) = (x, y, z, t).

Cette égalité est équivalente au système
λ = x
−λ = y
µ = z
−µ = t

⇐⇒


λ = x
0 = x+ y L2 ← L2 + L1
µ = z
0 = z + t L4 ← L4 + L3
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Ainsi, λ et µ existent si et seulement si x+ y = 0 et z+ t = 0. Les éléments de E sont

ceux qui vérifient :
{
x+ y = 0
z + t = 0.

On peut écrire E = {(x, y, z, t) ∈ R4/x+ y = 0 et z + t = 0}.

3. Plusieurs façons de faire. On peut chercher à trouver un système d’équation décrivant
F puis vérifier que les vecteurs qui engendrent E sont dans F . On peut aussi di-
rectement essayer d’exprimer les vecteurs qui engendrent E en fonction de ceux qui
engendrent F .
Mais commençons par simplifier l’écriture de F . On a
F = Vect

(
(1, 0, 1,−1)− (1, 0, 0, 0) + (0, 0,−1, 1), (0, 1, 2,−2) + 2(0, 0,−1, 1), (1, 0, 0, 0), (0, 0,−1, 1)

)
= Vect

(
(0, 1, 0, 0), (1, 0, 0, 0), (0, 0,−1, 1)

)
= Vect

(
(0, 1, 0, 0), (1, 0, 0, 0), (0, 0, 1,−1)

)
.

Or E = Vect
(
(1,−1, 0, 0), (0, 0, 1,−1)

)
. On a bien (1,−1, 0, 0) = −(0, 1, 0, 0)+(1, 0, 0, 0)+

0(0, 0, 1,−1) et (0, 0, 1,−1) = 0(0, 1, 0, 0) + 0(1, 0, 0, 0) + (0, 0, 1,−1).
Ainsi, les vecteurs qui engendrent E sont des vecteurs de F , donc E ⊂ F .

Exercice 21. 1. On a N2 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

, N3 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 et N4 = 0M4(K).

2. On a E =
{
aI4 + bN + cN2 + dN3/(a, b, c, d) ∈ K4} .Autrement dit, E = Vect(I4, N,N

2, N3).
De plus, la famille (I4, N,N

2, N3) est libre. En effet, considérons (a, b, c, d) ∈ K4 tels
que aI4 + bN + cN2 + dN3 = 0M4(K) donne directement a = b = c = d = 0.
Ainsi, (I4, N,N

2, N3) est une base de E et on a dim(E) = 4.

3. On a I4 = I4 +0N+0N2 +0N3, M1 = I4 +2N+3N2 +4N3, M2 = 2I4−N+N2 +0N3

et enfin M3 = 0I4 +N + 4N2 + 4N3.

Ainsi, la matrice représentative de la famille (I4,M1,M2,M33) dans la base (I4, N,N
2, N3)

est A =


1 1 2 0
0 2 −1 1
0 3 1 4
0 4 0 4

 .

On a alors rg(A) =
L3←L3+L2

rg


1 1 2 0
0 2 −1 1
0 5 0 5
0 4 0 4

 =
L4←5L4−4L3

rg


1 1 2 0
0 2 −1 1
0 5 0 5
0 0 0 0

 .

Il suffit d’une dernière opération pour obtenir rg(A) =
C2↔C3

rg


1 2 1 0
0 −1 2 1
0 0 5 5
0 0 0 0

 = 3.

4. Prenons A ∈ E, donc il existe (a, b, c, d) ∈ K4 tel que A = aI4 + bN + cN2 + dN3 et
B ∈ E, donc il existe (a, b, c, d) ∈ K4 tel que B = a′I4 + b′N + c′N2 + d′N3.
On a AB = (aI4 + bN + cN2 + dN3)(a′I4 + b′N + c′N2 + d′N3) = aa′I4 + (ab′ +
a′b)N + (ac′+ bb′+ a′c)N2 + (ad′+ bc′+ b′c+ a′d)N3 car les autres produits sont nuls
puisque N4 = 0M4(K).
On a donc bien AB ∈ E.
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5. Avec les mêmes notations que la question précédente, on a déjà vu que AB = abI4 +
(ab′ + a′b)N + (ac′ + bb′ + a′c)N2 + (ad′ + bc′ + b′c+ a′d)N3.
De la même façon, il suffit de calculer BA = (a′I4 + b′N + c′N2 + d′N3)(aI4 + bN +
cN2 +dN3) = a′aI4 +(a′b+ab′)N+(a′c+b′b+ac′)N2 +(a′d+b′c+bc′+ad′)N3 = AB.

On a donc AB = BA. Ainsi, toute matrice B ∈ E est une matrice de F qui est un
sous-ensemble de E, donc E = F .

Exercice 22. 1. Remarquons que Sn(K) ⊂Mn(K), puis que 0Mn(K) ∈ Sn(K). Ensuite,
prenons (λ, µ) ∈ K2 et M,N deux éléments de Sn(K). On a (λM + µN)⊤ = λM⊤ +
µN⊤. Comme M ∈ Sn(K), on a M⊤ = M et pour la même raison N⊤ = N. Ainsi,
(λM + µN)⊤ = λM + µN. On a donc λM + µN ∈ Sn(K).

2. Remarquons que E⊤k,ℓ = Eℓ,k. Ainsi, S⊤k,ℓ = E⊤k,ℓ + E⊤ℓ,k = Sk,ℓ, donc Sk,ℓ ∈ Sn(K).
Enfin, remarquons que M = (mi,j)1⩽i⩽n

1⩽j⩽n
∈ Sn(K), si et seulement si on a, pour tout

(k, ℓ) ∈ [[1, n]]2, mk,ℓ = mℓ,k. Ainsi, on peut remarquer que M =
n∑

k=1

n∑
ℓ=k+1

mk,ℓSk,ℓ +

n∑
k=1

mk,k

2 Sk,k où Sk,k = 2Ek,k.

La famille (Sk,ℓ)1⩽k⩽ℓ⩽n est donc génératrice de Sn(K).

De plus, elle est libre car si on a (λk,ℓ)1⩽k⩽ℓ⩽n tels que
n∑

k=1

n∑
ℓ=k

λk,ℓSk,ℓ, il vient

immédiatement λk,ℓ = 0 pour tout (k, ℓ) ∈ [[1, n, ]] avec k ⩽ ℓ.
Ainsi, la famille (Sk,ℓ)1⩽k⩽ℓ⩽n est une base de Sn(K).

3. Il ne reste qu’à dénombrer les éléments de (Sk,ℓ)1⩽k⩽ℓ⩽n, donc le nombre de couples
(k, ℓ) de [[1, n]]2 tels que k ⩽ ℓ. Il y a n2 couples de [[1, n]]2, il y a n2 − n couples de
[[1, n]]2 tels que k ̸= ℓ.

Il y a donc n2 − n
2 couples de [[1, n]]2 tels que k < ℓ. Il ne reste qu’à ajouter les n

couples de la forme (k, k) où k ∈ [[1, n]] et on en déduit que dim(Sn(K)) = n2 − n
2 +n =

n(n+ 1)
2 .

Exercice 23. 1. La famille (Lj)j∈[[0,n]] est une famille de n + 1 vecteurs de Kn[X] et
dim(Kn[X]) = n+ 1. Ainsi, (Lj)j∈[[0,n]] si et seulement si (Lj)j∈[[0,n]] est libre.

Considérons (λ0, λ1, . . . , λn) ∈ Kn+1 tel que
n∑

j=0
λjLj = 0K[X]. Considérons i ∈ [[0, n]],

on a en particulier,
n∑

j=0
λjLj(ai) = 0.

Notons, pour j ∈ [[1, n]], Λj =
n∏

k=0
k ̸=j

(aj−ak) et ainsi, on a Lj = 1
Λj

n∏
k=0
k ̸=j

(X−ak). Ainsi, on

a Lj Remarquons que,si i ̸= j, Lj(ai) = 1
Λj

n∏
k=0
k ̸=j

(ai − ak) = 0 (puisque dans le produit

du numérateur, k prend une fois la valeur i), et Lj(aj) = 1
Λj

n∏
k=0
k ̸=j

(aj − ak) = Λj

Λj
= 1.
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Grâce à cette considération, on a
n∑

j=0
λjLj(ai) = λi, donc λi = 0.

Ainsi, la famille (Lj)j∈[[0,n]] est libre, par suite c’est une base de Kn[X].

2. Considérons P ∈ Kn[X]. Comme (Lj)j∈[[0,n]] est une base de Kn[X], il existe un unique

(p0, p1, . . . , pn) ∈ Kn+1 tel que P =
n∑

j=0
pjLj .

Considérons i ∈ [[0, n]] et calculons P (ai) =
n∑

j=0
pjLj(ai). En utilisant la même re-

marque que ci-dessus, on a P (ai) = pi.
Ainsi, les coordonnées de P dans la base (Lj)j∈[[0,n]] sont (P (a0), P (a1), . . . , P (an)).

3. Soit k ∈ [[1, p]]. On a Pk qui a pour coordonnées (Pk(a0), Pk(a1), . . . , Pk(an)).
Ainsi, la matrice représentative de la famille (P1, . . . , Pp) est la matrice

P1(a0) P2(a0) . . . Pk(a0)
P1(a1) P2(a1) . . . Pp(a1)

...
... . . .

...
P1(an) P2(an) . . . Pp(an)

 = (Pj(ai−1j))1⩽i⩽n+1
1⩽j⩽p

.

Exercice 24. 1. On a E = {(by + cz, y, z)/(y, z) ∈ R2} = Vect
(
(b, 1, 0), (c, 0, 1)

)
. Ainsi,

E ⊂ R3 est un sous-espace vectoriel de R3 engendré par deux vecteurs non-colinéaires
donc formant une famille libre. Ainsi, dim(E) = 2.

2. De la même façon, F et G sont des sous-espaces vectoriels de R3 de dimension 2.
Ainsi, F ∩G est un sous-espace vectoriel de dimension inférieure ou égale à 2 (il est
inclus dans F de dimension 2).
Si E ⊂ F ∩G, alors, on a dim(E) ⩽ dim(F ∩G). Comme dim(E) = 2, et dim(F ∩G) ⩽
2, on a forcément dim(E) = dim(F ∩G) et donc E = F ∩G.
Par ailleurs, F ∩G ⊂ F et dim(F ∩G) = dimF , donc F ∩G = F . De la même façon
F ∩G = G.

Ainsi, on a bien E = F = G.

3. On a (x, y, z) ∈ E ∩ F ∩G⇐⇒


x− by − cz = 0
ax− y + cz = 0
ax+ by − z = 0

⇐⇒


x− by − cz = 0

(ab− 1)y + (ac+ c)z = 0 L2 ← L2 − aL1
(ab+ b)y + (ac− 1)z = 0 L3 ← L3 − aL1

⇐⇒


x− by − cz = 0

(ab− 1)y + c(a+ 1)z = 0
(b+ 1)y − (c+ 1)z = 0 L3 ← L3 − L2

Si b ̸= −1, le système est équivalent à
x− by − cz = 0

(c(a+ 1)(b+ 1) + (ab− 1)(c+ 1))z = 0 L2 ← (b+ 1)L2 − (ab− 1)L3
(b+ 1)y − (c+ 1)z = 0
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⇐⇒


x− by − cz = 0

(b+ 1)y − (c+ 1)z = 0 L2 ↔ L3
(abc+ ac+ bc+ c+ abc+ ab− c− 1)z = 0

⇐⇒


x− by − cz = 0

(b+ 1)y − (c+ 1)z = 0
(2abc+ ac+ bc+ ab− 1)z = 0

Si 2abc+ab+ bc+ ca ̸= 1, le système a une unique solution (0, 0, 0) donc E ∩F ∩G =
{(0, 0, 0)}.

Si b = −1, alors le système était


x+ y − cz = 0

(−a− 1)y + c(a+ 1)z = 0
−(c+ 1)z = 0 L3 ← L3 − L2

Mais la condition devient

−2ac−a−c+ca ̸= 1⇐⇒ −a(c+1)−c−1 ̸= 0⇐⇒ −a(c+1)−(c+1) ̸= 0⇐⇒ −(a+1)(c+1) ̸= 0.

Ainsi, dans ce cas, la condition se transforme en a ̸= −1 et c ̸= −1. Elle nous donne un
système échelonné et là encore, une solution unique. Et ainsi, E ∩F ∩G = {(0, 0, 0)}.
Dans tous les cas, on a 2abc+ ab+ bc+ ca ̸= 1 =⇒ E ∩ F ∩G = {(0, 0, 0)}.
Il y avait plus élégant (et possibilité d’éviter la discussion) à l’aide d’une remarque
que nous ne verrons que plus tard.

16 Dérivation
Exercice 1. 1. Remarquons que f est la composition de ln qui est C∞(R∗+) et de x 7→
x+ 1 qui est C∞(]− 1,+∞[) et strictement positive. Ainsi, f est C∞(]− 1,+∞[).
Après quelques tentatives, on suppose que, pour n ∈ N∗, ∀x ∈] − 1 +∞[, f (n)(x) =
(−1)n−1(n− 1)!

(1 + x)n
.

Notons donc, pour n ∈ N∗, P(n) : ≪ ∀x ∈]− 1 +∞[, f (n)(x) = (−1)n−1(n− 1)!
(1 + x)n

. ≫.

En dérivant f , on trouve ∀x ∈]− 1,+∞[, f ′(x) = 1
x+ 1, donc P(1) est vraie.

Soit n ∈ N∗ quelconque fixé. Supposons P(n) vraie.

On a ∀x ∈]− 1 +∞[, f (n)(x) = (−1)n−1(n− 1)!
(1 + x)n

, donc en dérivant,

∀x ∈]− 1 +∞[, f (n+1)(x) = (−1)n−1(n− 1)!(−n)
(1 + x)n+1 = (−1)n(n!)

(1 + x)n+1 .

Ainsi, P(n+ 1) est vraie.
On a démontré par récurrence que, ∀n ∈ N∗,

∀x ∈]− 1 +∞[, f (n)(x) = (−1)n−1(n− 1)!
(1 + x)n

.

2. On remarque que f est bien C∞(R) par somme de fonctions C∞(R).
On conjecture que, pour k ∈ N, ∀x ∈ R, f (4k+4)(x) = cos(x).
En dérivant 4 fois, on montre que P(0) est vraie.
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Soit k ∈ N quelconque fixé. Supposons P(k) vraie.
On a ∀x ∈ R, f (4k+4)(x) = cos(x). En dérivant 4 fois, on trouve que f (4k+8)(x) =
f (4(k+1)+4)(x) = cos(x).
Ainsi, P(k + 1) est vraie.
On a donc ∀k ∈ N, ∀x ∈ R, f (4k+4)(x) = cos(x).
En dérivant une, deux ou trois fois, on récupère que, pour tout k ∈ N, on a pour
tout x ∈ R, f (4k+1)(x) = − sin(x), f (4k+2)(x) = − cos(x), f (4k+3)(x) = sin(x) et
f (4k+4)(x) = cos(x) (au passage, les trois premières sont vraies pour k = 0 ce qu’on
montre en partant de la fonction).

Exercice 2. 1. f est un polynôme donc dérivable sur R. On a, pour tout x ∈ R, f ′(x) =
5x4 − 5 = 5(x4 − 1) = 5(x2 + 1)(x2 − 1).
Ainsi, on a ∀x ∈ R, f ′(x) = 5(x2 + 1)(x− 1)(x+ 1). Ainsi, on a

x

x + 1

x − 1

f ′(x)

f

−∞ −1 1 +∞

− 0 + +

− − 0 +

+ 0 − 0 +

−∞−∞

66

−2−2

+∞+∞

Sur ] − ∞,−1[, f est continue, strictement croissante avec lim
x→−∞

f(x) = −∞ et
f(−1) > 0, donc d’après le corollaire du théorème des valeurs intermédiaires, elle
admet une unique racine.
Sur ]−1, 1[, f est continue, strictement décroissante avec f(−1) > 0 et f(1) < 0, donc
d’après le corollaire du théorème des valeurs intermédiaires, elle admet une unique
racine.
Enfin sur ]1,+∞[, f est strictement croissante avec f(1) < 0 et lim

x→+∞
f(x) = +∞

donc f s’annule une unique fois.
Elle ne s’annule ni en −1 ni en 1.
Ainsi f a exactement trois racines.

2. Remarquons que g est un polynôme donc C∞(R) (dérivable suffira).
Ainsi, on a ∀x ∈ R, g′(x) = 48x3 − 42x2 − 6x = 6x(8x2 − 7x− 1). On remarque que
1 est racine évidente de 8x2 − 7x − 1, ainsi, comme le produit des racines vaut −1

8,

l’autre racine est −1
8 .

Ainsi, on a g′(x) = 6x(8x+ 1)(x− 1).
On en déduit le tableau de variation suivant :
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x

8x − 1

x

x − 1

g′(x)

g

−∞ −1
8 0 1 +∞

− 0 − + +

− + 0 + +

− − − 0 +

− + − 0 +

+∞+∞

g

(
−1

8

)
g

(
−1

8

) −4−4

−9−9

+∞+∞

Sur
]
−∞,−1

8

]
, g est continue, strictement décroissante avec lim

x→−∞
g(x) = +∞ et

g

(
−1

8

)
⩽ −4, donc d’après le corollaire du théorème des valeurs intermédiaires, elle

admet une unique racine.

Sur
[
−1

8 , 1
]
, g est strictement négative.

Enfin sur [1,+∞[, g est continue, strictement croissante avec lim
x→+∞

g(x) = +∞ et
g (1) ⩽ −4, donc d’après le corollaire du théorème des valeurs intermédiaires, elle
admet une unique racine.
Ainsi, on a bien g qui s’annule exactement deux fois.

3. h est la combinaison linéaire de fonctions C∞(R) (la première étant un produit de
telles fonctions), donc est C∞(R).
On a, pour tout x ∈ R, h′(x) = ex + (x − 1)ex − e = xex − e. Puis, on a h′′(x) =
ex + xex = (x+ 1)ex. On voit que h′′(x) est du signe de x+ 1.
De plus, on a lim

x→−∞
h′(x) = −e par croissances comparées et lim

x→+∞
h′(x) = +∞ (mais

c’est moins indispensable) :
Enfin, lim

x→+∞
h(x) = +∞ en factorisant par xex alors qu’il faut tout développer pour

avoir lim
x→−∞

h(x) = +∞.

Ainsi, on peut en déduire le tableau de variations suivant
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x

h′′(x)

h′

h′(x)

h

−∞ −1 1 +∞

− 0 + +

−e−e

−e−1 − e−e−1 − e

+∞+∞
0

− − 0 +

+∞+∞

−e+ 1−e+ 1

+∞+∞

Ainsi, sur ] −∞, 1], h est continue, strictement décroissante avec lim
x→−∞

h(x) = +∞
et h(1) < 0, donc d’après le corollaire du théorème des valeurs intermédiaires, elle
admet une unique racine.
Puis sur [1,+∞[, h est continue, strictement croissante avec h(1) < 0 et lim

x→+∞
h(x) =

+∞, donc d’après le corollaire du théorème des valeurs intermédiaires, elle admet une
unique racine.
Ainsi, en conclusion, h s’annule exactement 2 fois.

Exercice 3. 1. On peut remarquer que la fonction sh est continue et dérivable sur R
car elle est combinaison linéaire de x 7→ ex et x 7→ e−x qui le sont.

On a, pour tout x ∈ R, sh′(x) = ex + e−x

2 = ch(x) > 0.

sh est donc strictement croissante sur R. De plus sh(0) = 0, donc sh(x) < 0 pour
x ∈ R− et sh(x) > 0 pour x ∈ R+. En résumé :

x

ch(x)

sh

−∞ +∞

+

−∞−∞

+∞+∞

0

0

2. On peut remarquer que la fonction ch est continue et dérivable sur R car elle est
combinaison linéaire de x 7→ ex et x 7→ e−x qui le sont.

Par ailleurs, on a pour tout x ∈ R, ch′(x) = ex − e−x

2 = sh(x).

La dérivée de ch est sh, donc d’après la question précédente ch est donc strictement
décroissante sur R− et strictement croissante sur R+.
On a
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x

sh(x)

ch

−∞ 0 +∞

− 0 +

+∞+∞

11

+∞+∞

3. Pour tout x ∈ R, ch(x)− sh(x) = e−x > 0 donc la courbe de ch est toujours au-dessus
de celle de sh.
En pointillés, la courbe représentative de sh, en trait plein, celle de ch avec sa tangente
horizontale

x

y

1 2-2 -1

1

2

3

4

-4

-3

-2

-1

0

4. Sur R∗, f est le quotient de deux fonctions continues et dérivables dont le dénominateur
ne s’annule pas.

En 0, on a, pour h ̸= 0, f(h) = sh(h)− sh(0)
h

, donc f est le taux d’accroissement de
sh en 0. Ainsi, comme on sait que sh′(0) = 1, on a lim

h→0
f(h) = 1 = f(0). f est donc

bien continue en 0.
On a, pour tout x ̸= 0,

f ′(x) = x ch(x)− sh(x)
x2 ;

Etudions le signe du numérateur en posant g : R −→ R définie par, pour tout x ∈ R,
g(x) = x ch(x)− sh(x).
On a g est la combinaison linéaire de fonctions dérivables sur R (la première étant un
produit de fonctions dérivables sur R), et on a, pour tout x ∈ R,

g′(x) = ch(x) + x sh(x)− ch(x) = x sh(x).

227 / 359



Or comme x et sh(x) sont de même signe, on a, pour tout x ∈ R, g′(x) ⩾ 0, donc g
est croissante.
De plus, g(0) = 0, donc g est négative sur R− et positive sur R+. Comme, pour tout
x ∈ R, f ′(x) est du signe de g(x).

Par ailleurs, on a pour x ̸= 0, f(x) = ex

2x(1− e−2x), donc lim
x→+∞

f(x) = +∞ et f(x) =
−e−x

2x (1 − e2x), donc lim
x→−∞

f(x) = +∞, ces deux limites obtenues par croissances
comparées.
On peut en déduire le tableau de variation suivant :

x

f ′(x)

f

−∞ 0 +∞

− 0 +

+∞+∞

11

+∞+∞

5. On aurait pu chercher l’éventuelle tangente horizontale en 0, ou la position relative
par rapport aux courbes précédentes.

x

y

1 2-2 -1

1

2

3

4

-4

-3

-2

-1

0

Exercice 4. Prenons x ∈ I et h ∈ R∗ tel que x+ h ∈ I.
On a

|f(x+ h)− f(x)| ⩽ K |h|α .
Autrement dit, comme α > 1, on a∣∣∣∣f(x+ h)− f(x)

h

∣∣∣∣ ⩽ K |h|α−1 .
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Or, comme α− 1 > 0, on a lim
h→0
|h|α−1 = 0. Par encadrement, on a donc

lim
h→0

f(x+ h)− f(x)
h

= 0.

Cela revient à dire que, pour tout x ∈ I, f est dérivable en x et f ′(x) = 0. Autrement
dit, f est constante sur I.

Exercice 5. 1. La fonction x 7−→ e2x − 1 est continue et dérivable sur R, mais positive
seulement sur R+ (strictement sur R∗+).
Ainsi, par composition avec la fonction racine qui est continue sur R+, f est continue
sur R+. Cependant, comme la fonction racine n’est dérivable que sur R∗+, f n’est
dérivable que sur R∗+.
Ainsi, pour tout x ∈ R∗+, on a

f ′(x) = 2e2x

2
√
e2x − 1

= e2x

√
e2x − 1

.

Ainsi, f est strictement croissante sur R+.
Par composition, comme lim

x→+∞
e2x−1 = +∞ et lim

x→+∞

√
x = +∞, donc lim x→ +∞f(x) =

+∞.
Ainsi, on peut établir le tableau de variation suivant :

x

f ′(x)

f

0 +∞

+

00

+∞+∞

Et l’allure est donnée par :

x

y

1 2 3

1

2

3

4

0

2. f est continue sur R+, strictement croissante avec f(0) = 0 et lim
x→+∞

f(x) = +∞,
ainsi f réalise une bijection de R+ dans lui-même.
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3. Sur R∗+ f est bijective et sa dérivée ne s’annule pas, donc on peut utiliser la formule
de dérivation des fonctions réciproques et on a pour tout x ∈ R∗+

(f−1)′(x) = 1
f ′ ◦ f−1(x) =

√
e2f−1(x) − 1
e2f−1(x) .

Or
√
e2f−1(x) − 1 = f(f−1(x)) = x et e2f−1(x) = (f(f−1(x)))2 + 1 = x2 + 1.

Ainsi, ∀x ∈ R∗+, (f−1)′(x) = x

x2 + 1.

4. Soit y ∈ R+. Cherchons x ∈ R+ tel que f(x) = y. C’est équivalent à
√
e2x − 1 = y ⇐⇒ e2x − 1 = y2 car tout est positif

⇐⇒ e2x = y2 + 1
⇐⇒ 2x = ln(y2 + 1) car tout est strictement posifit

⇐⇒ x =
ln(y2 + 1)

2

f−1 est définie que sur R+ par f−1(x) = 1
2 ln(x2 + 1).

On remarque qu’il s’agit d’une fonction dérivable (car composition d’un polynôme
strictement positif avec ln qui est dérivable sur R∗+), et on a

∀x ∈ R+, (f−1)′(x) = x

x2 + 1 .

Exercice 6. 1. Comme x 7−→ x2 + 4 est un polynôme, cette fonction est dérivable sur
R et en plus elle est strictement positive. Donc sa composition avec la fonction racine
(dérivable sur R+) est dérivable sur R. Ainsi, par combinaison linéaire avec un autre
polynôme, f est dérivable sur R.

On a pour tout x ∈ R, f ′(x) = 1 + 2x
2
√
x2 + 4

= 1 + x√
x2 + 4

.

Or 0 ⩽ x2 < x2+4 donc en appliquant la fonction racine qui est strictement croissante
sur R+, on a

|x| <
√
x2 + 4⇐⇒ |x|√

x2 + 4
< 1.

On a donc x√
x2 + 4

> −1 donc f ′(x) > 0.

Ainsi, f ′ est strictement croissante sur R.
Par ailleurs, sans difficulté, on a lim

x→+∞
f(x) = +∞.

Enfin, pour x < 0, on a f(x) = x

(
1 + 2

x
−
√

1 + 4
x2

)
.

Or comme, en 0, on a
√

1 + h = 1 + 1
2h+ o(h), on a pour x→ −∞ (car 1

x
−−−−→
x→−∞

0),

f(x) = x

(
1 + 2

x
− 1− 2

x2 + o

( 1
x2

))
= 2 + o(1).

Ainsi, lim
x→−∞

f(x) = 2.
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On peut enfin dresser le tableau de variations :

x

f ′(x)

f

−∞ +∞

+

22

+∞+∞

Et l’allure est donnée par :

x

y

1 2 3 4-4 -3 -2 -1
1
2
3
4
5
6
7
8
9

10

0

2. On a f continue sur R, strictement croissante, avec lim
x→−∞

f(x) = 2 et lim
x→+∞

f(x) =
+∞, donc f réalise une bijection de R dans ]2,+∞[.

3. Remarquons que f est une bijection dérivable dont la dérivée ne s’annule pas, ainsi
sa réciproque est dérivable sur ]2,+∞[ et on a, ∀x ∈]2,+∞[,

(f−1)′(x) = 1
f ′ ◦ f−1(x) .

Essayons d’exprimer f ′(x) en fonction de f(x). On a vu que ∀x ∈ R,

f ′(x) = 1 + x√
x2 + 4

= x+
√
x2 + 4√

x2 + 4
.

Mais comme x+
√
x2 + 4 = f(x)− 2, on a

f ′(x) = f(x)− 2√
x2 + 4

.

Or, il semblerait que, pour x ∈ R, on ait

x+
√
x2 + 4
2 + 2

x+
√
x2 + 4

= x+
√
x2 + 4
2 + 2(x−

√
x2 + 4)

x2 − x2 − 4

= x+
√
x2 + 4
2 − x−

√
x2 + 4
2

=
√
x2 + 4.

Ainsi,
f ′(x) = f(x)− 2

x+
√

x2+4
2 + 2

x+
√

x2+4

.
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Mais comme x+
√
x2 + 4 = f(x)− 2, on a

f ′(x) = f(x)− 2
f(x)−2

2 + 2
f(x)−2

.

Ou encore
f ′(x) = 2(f(x)− 2)2

(f(x)− 2)2 + 4 .

Ainsi,

(f−1)′(x) = 1
f ′ ◦ f−1(x) = (x− 2)2 + 4

2(x− 2)2 .

Ce qu’on peut agréablement simplifier en

(f−1)′(x) = x2 − 4x+ 8
2(x− 2)2 .

4. Soit y ∈]2,+∞[. Cherchons x ∈ R tel que

f(x) = y ⇐⇒ x+ 2 +
√
x2 + 4 = y

⇐⇒
√
x2 + 4 = (y − x− 2)

=⇒ x2 + 4 = y2 + x2 + 4− 2xy − 4y + 4x
=⇒ 0 = y2 − 2xy − 4y + 4x
=⇒ 2x(y − 2) = y2 − 4y

=⇒ x = y(y − 4)
2(y − 2)

Ainsi, comme nous sommes assurés de l’existence de cet antécédent et qu’il ne peut
avoir qu’une valeur, on a bien f−1 définie sur ]2,+∞[, par ∀x ∈]2,+∞[, f−1(x) =
x(x− 4)
2(x− 2) .

f−1 est bien dérivable sur ]2,+∞[ (quotient de polynômes dont le dénominateur ne
s’annule pas), et on a ∀x ∈]2,+∞[,

(f−1)′(x) = 1
2

(2x− 4)(x− 2)− x(x− 4)
(x− 2)2 = x2 − 4x+ 8

2(x− 2)2 .

Exercice 7. Soit c ∈]a, b[. Formons le taux d’accroissement en c.
Pour h ∈ R tel que c+ h ∈]a, b[, on a

|f(c+ h)| − |f(c)|
h

.

Si f(c) > 0, on peut prendre h assez petit tel que f(c+ h) soit positif. Ainsi,

|f(c+ h)| − |f(c)|
h

= f(c+ h)− f(c)
h

−−−→
h→0

f ′(c).

Si f(c) < 0, on peut prendre h assez petit tel que f(c+ h) soit négatif. Ainsi,

|f(c+ h)| − |c|
h

= −f(c+ h) + f(c)
h

= −f(c+ h)− f(c)
h

−−−→
h→0

−f ′(c).
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Si f(c) = 0, alors si
|f(c+ h)| − |f(c)|

h
= f(c+ h)

h
.

Si en plus f ′(c) = 0, alors lim
h→0

f(c+ h)
h

= 0 donc

lim
h→0

|f(c+ h)| − |f(c)|
h

= 0.

Si f ′(c) > 0, alors puisque f(c+ h)
h

−−−→
h→0

f ′(c) ̸= 0, pour h > 0 assez petit, f(c+h) > 0

est du signe de f ′(c) donc lim
h→0
h>0

|f(c+ h)|
h

= f ′(c) et pour h < 0 assez petit, c’est l’opposé,

donc lim
h→0
h>0

|f(c+ h)|
h

= −f ′(c)

Le taux d’accroissement n’admet pas de limite en 0. C’est la même chose (en changeant
les signes) si f ′(c) < 0.
Ainsi, on peut dire que si f est dérivable, alors |f | sera aussi dérivable lorsque f ne
s’annule pas ou lorsque sa dérivée est nulle.

Exercice 8. Notons a1, a2, . . . , an, avec a1 < a2 < . . . < an les n points où f s’annule.
Pour tout i ∈ [[1, n− 1]], f est continue sur [ai, ai+1], dérivable sur ]ai, ai+1[, et f(ai) =
f(ai+1).
Ainsi, d’après le théorème de Rolle, il existe ci ∈]ai, ai+1[ tel que f ′(ci) = 0.
Ainsi, on a c1 < c2 < . . . < cn−1 et pour tout i ∈ [[1, n− 1]], f ′(ci) = 0. Ainsi f ′ s’annule
bien n− 1 fois.
Ensuite on considère une fonction p fois dérivable qu’il s’annule p fois. Montrons par
récurrence que, pour k ∈ [[0, p− 1]], f (k) s’annule p− k fois.
Notons P(k) : ≪ f (k) s’annule p− k fois ≫.
L’hypothèse nous assure la validité de P(0).
Soit k ∈ [[0, n− 2]] quelconque fixé. Supposons P(k) vrai.
On a f (k) s’annule p − k fois d’après P(k). En utilisant la première partie de l’exercice
appliquée à f (k) on obtient que f (k+1) s’annule p−k−1 = p− (k+ 1) fois, soit P(k+ 1).
Ainsi, pour k ∈ [[0, p− 1]], f (k) s’annule p− k fois.
Enfin pour k = p− 1, on remarque que f (p−1) s’annule une fois.

Exercice 9. Notons (a1, . . . , an) les racines de P avec a1 < a2 < . . . < an. Pour
i ∈ [[1, n]], on note di l’ordre de multiplicité de la racine ai. Ainsi, on a deg(P ) =

n∑
k=1

dk

puisque toutes les racines de P sont réelles comptées avec leurs multiplicités.
Pour tout i ∈ [[1, n− 1]], P est continue sur [ai, ai+1], dérivable sur ]ai, ai+1[, et P (ai) =
0 = P (ai+1).
Ainsi, d’après le théorème de Rolle, il existe ci ∈]ai, ai+1[ tel que P ′(ci) = 0.
Par ailleurs, pour i ∈ [[1, n]] tous les ai sont racines de P ′ d’ordre di − 1.
Ainsi, on a déjà l’existence de (n− 1) +

n∑
k=1

(di − 1) racines comptées avec leur ordre de
multiplicité.
Cela fait en fait

(n− 1) +
n∑

k=1
(di − 1) = n− 1 +

n∑
k=1

di − n = −1 + deg(P ) = deg(P ′).

Ainsi, P ′ n’a pas d’autres racines, elles sont toutes réelles.
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Exercice 10. Remarquons que, si pour tout x ∈]a,+∞[, f(x) = f(a) alors f est
constante donc n’importe quel pour c ∈]a,+∞[ convient.
Sinon, il existe x0 ∈]a,+∞[ tel que f(x0) ̸= f(a). Supposons que f(x0) > f(a) (dans le
cas contraire on appliquera tout ce que nous allons faire à −f pour conclure).
Notons k = f(x0) + f(a)

2 . D’après le théorème des valeurs intermédiaires appliqué à
la fonction continue f sur ]a, x0[, comme k ∈]f(a), f(x0)[, il existe b ∈]a, x0[ tel que
f(b) = k.
De même, d’après le théorème des valeurs intermédiaires appliqué à la fonction continue
f sur ]x0,+∞[, comme k ∈]f(x0), lim

x→+∞
f(x)[, il existe b′ ∈]x0,+∞[ tel que f(b′) = k.

On a f continue sur [b, b′], dérivable sur ]b, b′[, avec f(b) = f(b′), il existe c ∈]b, b′[ tel
que f ′(c) = 0.

Exercice 11 (Théorème de Darboux). On supposera f ′(a) < f ′(b) (sinon, on appliquera
la suite à h = −f).
Comme suggéré, on pose g : [a, b]→ R définie par g(x) = f(x)− kx.
g est continue sur [a, b] donc atteint son minimum en un point c ∈ [a, b].
Si c ∈]a, b[, comme g est dérivable sur ]a, b[, on a g′(c) = 0, soit f ′(c) = k.
Le problème est si c = a ou c = b.
On a, g′(a) = f ′(a)− k < 0 donc lim

h→0
h>0

g(a+ h)− g(a)
h

= g′(a) < 0. Donc, il existe η > 0

tel que, pour tout h < η, g(a + h) − g(a) < 0 (sinon, g′(a) ⩾ 0). Ainsi, g ne peut pas
être minimale en a.
De la même façon, On a, g′(b) = f ′(b) − k > 0 donc lim

h→0
h<0

g(b+ h)− g(b)
h

= g′(b) > 0.

Donc, il existe η > 0 tel que, pour tout |h| < η, g(b + h) − g(b) < 0 (sinon, g′(b) ⩽ 0).
Ainsi, g ne peut pas être minimale en b.
Donc le minimum de g est bien atteint sur ]a, b[, ce qui permet de conclure.

Exercice 12. Soit x ∈ [0, 2] \ {0, 1, 2]] (si x ∈ {0, 1, 2} ; on a f(x) = 0 donc c’est vrai
pour n’importe quel c).
On pose alors φ(t) = f(t)− t(t− 1)(t− 2)

6 λ en prenant λ tel que φ(x) = 0, c’est-à-dire

λ = 6f(x)
x(x− 1)(x− 2) .

φ est C3([0, 2],R) en tant que combinaison linéaire de telles fonctions.
On a φ(0) = φ(1) = φ(2) = φ(x) = 0. Supposons x ∈]0, 1[ (la démonstration est
identique pour x ∈]1, 2[).
Sur chaque intervalle [0, x], [x, 1], [1, 2], la fonction φ est continue, dérivable sur l’ouvert
et φ a la même valeur aux bornes, donc en utilisant le théorème de Rolle, il existe
a1 ∈]0, x[, a2 ∈]x, 1[, et a3 ∈]1, 2[ tels que φ′(a1) = φ′(a2) = φ′(a3) = 0.
On peut là aussi appliquer le théorème de Rolle à φ′ qui est C2([0, 2]) sur les intervalles
[a1, a2] et [a2, a3], donc il existe b1 ∈]a1, a2[ et b2 ∈]a2, a3[ tels que φ′′(b1) = φ′′(b2) = 0.
Et on rapplique une nouvelle fois le théorème de Rolle à φ′′ qui est C1([0, 2]) donc continue
sur [b1, b2] et dérivable sur l’ouvert ]b1, b2[. On a donc l’existence d’un c ∈]b1, b2[⊂ [0, 2]
tel que φ′′′(c) = 0.

Or, φ(t) = f(t)− t3 − 3t2 + 2t
6 λ, donc φ′′′(t) = f ′′′(t)− λ.

Ainsi, on a φ′′′(c) = 0, donc f ′′′(t) = λ, soit f ′′′(c) = 6f(x)
x(x− 1)(x− 2) ou encore

f(x) = x(x− 1)(x− 2)
6 f ′′′(c).
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Exercice 13. 1. NotonsD =]−1; +∞[. Remarquons que x 7→ ln(1+x) est bien dérivable
sur D comme composition de deux fonctions dérivables avec ∀x ∈ D, 1 + x > 0. f est
alors le quotient de deux fonctions dérivables sur D dont le dénominateur ne s’annule
pas.

On a alors ∀x ∈ D, f ′(x) =
1

1+xx− ln(1 + x)
x2 .

Notons h la fonction définie sur D, par ∀x ∈ D, h(x) = x

1 + x
− ln(1 + x). Comme

∀x ∈ D, x2 > 0, f ′(x) est du signe de h(x).
Etudions h. Sur D, h est la combinaison linéaire de deux fonctions dérivables (un
quotient de polynôme dont le dénominateur ne s’annule pas et une autre déjà étudiée).
Ainsi, ∀x ∈ D, on a

h′(x) = 1 + x− x
(1 + x)2 −

1
1 + x

= 1− (1 + x)
(1 + x)2 = −x

(1 + x)2 .

Ainsi, h′(x) est du signe de −x. On peut donc en déduire le tableau suivant.

x

h′(x)

h

f ′(x)

f

−1 0 +∞

+ 0 −

00

− −

+∞+∞

00
1

Les limites sont calculées dans les questions suivantes.

2. En −1 on trouve par quotient de limite que lim
x→−1

f(x) = +∞.

Pour x > 0, on a f(x) =
ln(x(1 + 1

x)
x

= ln(x)
x

+
ln(1 + 1

x)
x

.

On a par croissances comparées lim
x→+∞

ln(x)
x

= 0. Par composition, on a lim
x→+∞

ln(1 +

1
x) = 0 donc lim

x→+∞

ln(1 + 1
x)

x
= 0 par quotient.

Ainsi, lim
x→+∞

f(x) = 0.

3. On remarque que f(x) = ln(1 + x)− ln(1)
x

. Ainsi, f est le taux d’accroissement de la

fonction ln en 1 donc lim
x→0

f(x) = ln′(1) = 1
1 = 1.

Ainsi, on peut prolonger f par continuité en 0 en posant f(0) = 1.
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4. On a

x

y

1 2 3 4-1

1

2

3

4

0

5. Soit x ∈ R∗+. Cette inégalité est équivalente à −1
2 ⩽ f ′(x) ⩽

1
2. La deuxième partie

est déjà démontrée puisqu’on a vu précédemment que f ′(x) ⩽ 0.

Considérons donc f ′(x) + 1
2 = h(x)

x2 + 1
2 = 2h(x) + x2

2x2 .

Posons h1 la fonction définie sur R+ par, ∀x ∈ R+, h1(x) = 2h(x) + x2. Par combi-
naison linéaire de fonctions dérivables, h1 est dérivable et on a, pour tout x ∈ R+,

h′1(x) = 2h′(x) + 2x = − 2x
(1 + x)2 + 2x(1 + x)2

(1 + x)2 = 2x[(1 + x)2 − 1]
(1 + x)2 = 2x2(x+ 2)

(1 + x)2 .

Il s’agit d’un produit de termes positifs, donc h′1 est positive, donc h1 est croissante.
Or h1(0) = 0, donc ∀x ∈ R+, h1(x) ⩾ 0.

Or, sur R∗+, f ′(x) + 1
2 = h1(x)

x2 donc est du signe de h1(x) ⩾ 0.

Ainsi, ∀x ∈ R+, f ′(x) + 1
2 ⩾ 0, donc −1

2 ⩽ f ′(x).

Ainsi, on a montré que ∀x ∈ R∗+, |f ′(x)| ⩽ 1
2.

6. Posons g la fonction définie sur ]− 1,+∞[ par ∀x ∈]− 1,+∞[, g(x) = f(x)− x.
g est la somme de deux fonctions strictement décroissante, donc g est strictement
décroissante. Par somme de limites, on a lim

x→−1
g(x) = +∞ et lim

x→+∞
g(x) = −∞.

Comme en plus g est continue sur ] − 1,+∞[, on peut appliquer le corollaire du
théorème des valeurs intermédiaires et on a l’existence d’un unique α ∈]− 1,+∞[ tel
que g(α) = 0 soit f(α) = α.

Par ailleurs, g(0) = 1 et g(1) = f(1) − 1 < 0 donc, le théorème des valeurs in-
termédiaires appliquée à la fonction g continue sur [0, 1] affirme que g s’annule entre
0 et 1 strictement, donc α ∈]0, 1[.

7. On a u0 ∈ R+ et ∀n ∈ N∗, un = f(un−1) ⩾ 0. Ainsi, pour tout n ∈ N, un ∈ R+.
Soit n ∈ N. Entre un et α, f est donc continue (bornes incluses) et dérivables (bornes
exclues) donc d’après le théorème des accroissements finis, il existe c compris stricte-
ment entre un et α tel que

f(un)− f(α) = f ′(c)(un − α)⇐⇒ un+1 − α = f ′(c)(un − α).
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En prenant la valeur absolue, on obtient,

|un+1 − α| =
∣∣f ′(c)∣∣ |un − α| .

Or c est strictement compris entre un et α, donc c > 0 et d’après la question
précédente, on a |f ′(c)| ⩽ 1

2.

Ainsi, on a pour tout n ∈ N,

|un+1 − α| ⩽
1
2 |un − α| .

8. Notons, pour n ∈ N, P(n) : ≪ |un − α| ⩽
1
2n

≫.

Pour n = 0, on a bien |u0 − α| ⩽
1
20 car u0 = 1 et α ∈ [0, 1].

Soit n ∈ N quelconque fixé. Supposons P(n) vraie.
On a |un+1 − α| ⩽ 1

2 |un − α| .

Or d’après la propriété de récurrence, on a |un − α| ⩽
1
2n

.

Ainsi, on a
|un+1 − α| ⩽

1
2 |un − α| ⩽

1
2

1
2n

= 1
2n+1 .

Ainsi, P(n+ 1) est vraie.

Donc pour tout entier naturel n, |un − α| ⩽
1
2n

.

9. On a lim
n→+∞

1
2n

= 0, donc d’après le théorème des gendarmes, on a lim
n→+∞

|un − α| = 0.

Ainsi, on a
lim

n→+∞
un = α.

10. Näıvement, on fait

import math as m

def f(x):
if x==0:

return 1
else:

return m.log (1+x)/x

def alpha (eps):
n=0
u=1
while 1/2**n >eps:

u=f(u)
n+=1

return u

Attention à bien faire attention au calcul de f(u) : il y a un problème quand u = 0.
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Ou alors après avoir résolu 1
2n

⩽ ε ⇐⇒ n ⩾ − ln(ε)
ln(2) , on peut remplacer la dernière

fonction par

def alpha (eps):
u=0
for k in range(m.ceil(-m.log(eps)/m.log (2))):

u=f(u)
return u

Exercice 14. 1. a. f est définie sur R et ∀x ∈ R, −x ∈ R.
Ensuite, pour x ∈ R, on a

f(−x) = e−x

e−2x + 1 = e−x

e−2x(e2x + 1) = ex

e2x + 1 = f(x).

Donc f est paire.
b. f est le quotient de deux fonctions dérivables sur R dont le dénominateur ne

s’annule pas.

Ainsi, on a, pour tout x ∈ R, f ′(x) = ex(e2x + 1)− 2e2xex

(e2x + 1)2 .

Ainsi,

f ′(x) = ex(e2x + 1− 2e2x

(e2x + 1)2 = ex(1− e2x)
(e2x + 1)2 .

Ainsi, il est clair que f ′(x) est du signe de 1− e2x.
Par ailleurs, lim

x→−∞
f(x) = 0 donc par parité lim

x→+∞
f(x) = 0.

On dresse le tableau de variations :

x

f ′(x)

f

−∞ 0 +∞

+ 0 −

00

1
2
1
2

00

Ainsi, on a

x

y

1 2 3-3 -2 -1

1
2

0

c. Comme ∀x ∈ R, on a 0 ⩽ f(x) ⩽
1
2, il est clair que ce ℓ s’il existe, est tel que

0 ⩽ ℓ ⩽ 1
2 .

Sur
[
0, 1

2

]
, définissons la fonction g par ∀x ∈

[
0, 1

2

]
, g(x) = f(x)− x.
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Cette fonction est continue (somme de fonctions continues), strictement décroissante
(somme de fonctions strictement décroissantes) et g(0) = 1

2 > 0 et g
(1

2

)
=

f

(1
2

)
− 1

2 < 0.

Ainsi, il existe un unique ℓ ∈
[
0, 1

2

]
tel que g(ℓ) = 0 soit

f(ℓ) = ℓ.

d. Remarquons que ∀x ∈ R,

f ′(x) = ex(1− e2x)
(e2x + 1)2 = f(x)1− e2x

e2x + 1 .

Ainsi, ∣∣f ′(x)
∣∣ = |f(x)|

∣∣∣∣∣1− e2x

e2x + 1

∣∣∣∣∣ .
Or, d’après l’inégalité triangulaire,

∣∣1− e2x
∣∣ ⩽ |1| +

∣∣e2x
∣∣ = 1 + e2x et on a∣∣1 + e2x

∣∣ = 1 + e2x.

Ainsi,
∣∣∣∣∣1− e2x

e2x + 1

∣∣∣∣∣ ⩽ 1.

Ce qui donne,
∀x ∈ R,

∣∣f ′(x)
∣∣ ⩽ |f(x)| = f(x).

Or vu l’étude des variations, on a ∀x ∈ R, f(x) ⩽ 1
2 .

2. a. Notons P(n) : ≪ un ∈
[
0, 1

2

]
≫.

D’après l’énoncé, u0 = 0, donc P(0) est vraie.
Soit n ∈ N quelconque fixé. On suppose P(n) vraie.

On a un ∈
[
0, 1

2

]
. Or un+1 = f(un), mais on a vu que, pour tout x ∈ R, f(x) ∈[

0, 1
2

]
. Ainsi, un+1 ∈

[
0, 1

2

]
. Donc P(n+ 1) est vraie.

On a donc montré que, pour tout n ∈ N, un ∈
[
0, 1

2

]
.

b. Soit n ∈ N. Entre un et ℓ, f est donc continue (bornes incluses) et dérivables
(bornes exclues) donc d’après le théorème des accroissements finis, il existe c com-
pris strictement entre un et ℓ tel que

f(un)− f(ℓ) = f ′(c)(un − ℓ⇐⇒ un+1 − ℓ = f ′(c)(un − ℓ).

En prenant la valeur absolue, on obtient,

|un+1 − ℓ| =
∣∣f ′(c)∣∣ |un − ℓ| .

Or on a vu que, peu importe la valeur de c, |f ′(c)| ⩽ 1
2.

Ainsi, on a pour tout n ∈ N,

|un+1 − ℓ| ⩽
1
2 |un − ℓ| .
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c. Notons, pour n ∈ N, P(n) : ≪ |un − ℓ| ⩽
1

2n+1 ≫.

Pour n = 0, on a bien |u0 − ℓ| ⩽
1
21 car u0 = 0 et ℓ ∈

[
0, 1

2

]
.

Soit n ∈ N quelconque fixé. Supposons P(n) vraie.
On a |un+1 − ℓ| ⩽ 1

2 |un − ℓ| .

Or d’après la propriété de récurrence, on a |un − ℓ| ⩽
1

2n+1 .
Ainsi, on a

|un+1 − ℓ| ⩽
1
2 |un − ℓ| ⩽

1
2

1
2n+1 = 1

2n+2 .

Ainsi, P(n+ 1) est vraie.

Donc pour tout entier naturel n, |un − ℓ| ⩽
1

2n+1 .

d. On a lim
n→+∞

1
2n+1 = 0, donc d’après le théorème des gendarmes, on a lim

n→+∞
|un − ℓ| =

0.
Ainsi, on a

lim
n→+∞

un = ℓ.

e. Näıvement, on fait

import math as m

def limite (eps):
n=0
u=0
while 1/2**( n+1) >eps:

u=m.exp(u)/( exp (2*u)+1)
n+=1

return u

Attention à bien faire attention au calcul de f(u) : il y a un problème quand u = 0.

Ou alors après avoir résolu 1
2(n+ 1)

⩽ ε ⇐⇒ n ⩾ − ln(ε)
ln(2) − 1, on peut remplacer

la dernière fonction par

def limite (eps):
u=0
for k in range(m.ceil(-m.log(eps)/m.log (2)) -1):

u=m.exp(u)/(m.exp (2*u)+1)
return u

17 Variables aléatoires
Exercice 1. On a E(X) = 1× 0, 1 + 2× 0, 25 + 3× 0, 25 + 4× 0, 15 + 5× 0, 15 + 6× 0, 1,
ce qui donne E(X) = 3, 3.
Ensuite, on calcule : E(X2) = 12×0, 1+22×0, 25+32×0, 25+42×0, 15+52×0, 15+62×0, 1.
On a donc E(X2) = 13, 1.
Puis on trouve, d’après la formule de Koenig-Huygens, V (X) = E(X2) − (E(X))2 =
13, 1− 10, 89 = 2, 21.
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Exercice 2. 1. On a évidemment X(Ω) = [[1, 4]].
On doit a avoir l’existence d’un coefficient de proportionnalité entre le numéro obtenu
et la probabilité qu’il apparaisse. Ainsi, ∃α ∈ R tel que ∀k ∈ [[1, 4]]], P (X = k) = αk.
Par ailleurs, pour que X soit une variable aléatoire, il faut et il suffit que ∀k ∈ [[1, 4]],

P (X = k) ⩾ 0 donc α ⩾ 0 et
4∑

k=1
P (X = k) = 1.

Or
4∑

k=1
P (X = k) =

4∑
k=1

αk = α
4× 5

2 = 10α.

Autrement dit, X est bien une variable aléatoire si et seulement si 10α = 1.

On a donc, ∀k ∈ [[1, 4]], P (X = k) = k

10.

2. On a

E(X) =
4∑

k=1
kP (X = k) =

4∑
k=1

k2

10 = 1 + 4 + 9 + 16
10

et donc E(X) = 3.

3. On a

E(X2) =
4∑

k=1
k2P (X = k) =

4∑
k=1

k3

10 = 1 + 8 + 27 + 64
10 = 10

et donc d’après la formule de Koenig-Huygens

V (X) = E(X2)− (E(X))2 = 10− 9.

On a donc V (X) = 1.

4. On a, d’après le théorème de transfert, comme X ne s’annule pas,

E

( 1
X

)
=

4∑
k=1

1
k
P (X = k) =

4∑
k=1

1
k

k

10 = 4
10 .

Ainsi, E
( 1
X

)
= 2

5.

5. On va aller un peu plus vite. On a toujours évidemment X(Ω) = [[1, n]].
∃α ∈ R tel que ∀k ∈ [[1, n]]], P (X = k) = αk.
Par ailleurs, pour que X soit une variable aléatoire, il faut et il suffit que ∀k ∈ [[1, n]],

P (X = k) ⩾ 0 donc α ⩾ 0 et
n∑

k=1
P (X = k) = 1.

Or
n∑

k=1
P (X = k) =

n∑
k=1

αk = α
n(n+ 1)

2 .

Autrement dit, X est bien une variable aléatoire si et seulement si α = 2
n(n+ 1).

On a donc, ∀k ∈ [[1, n]], P (X = k) = 2k
n(n+ 1).

Ainsi,

E(X) =
n∑

k=1
kP (X = k) =

n∑
k=1

2k2

n(n+ 1) = 2n(n+ 1)(2n+ 1)
6n(n+ 1) .
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On a donc
E(X) = 2n+ 1

3 .

Puis
E(X2) =

n∑
k=1

k2P (X = k) =
n∑

k=1

2k3

n(n+ 1) = 2n2(n+ 1)2

4n(n+ 1)
ainsi

E(X2) = n(n+ 1)
2 .

Puis, d’après la formule de Koenig-Huygens

V (X) = E(X2)− (E(X))2 = n(n+ 1)
2 − (2n+ 1)2

9 .

On a donc

V (X) = 9n2 + 9n− 8n2 − 8n− 2
18 = n2 + n− 2

18 = (n− 1)(n+ 2)
18 .

Et pour finir, comme X ne s’annule pas, en utilisant le théorème de transfert :

E

( 1
X

)
=

n∑
k=1

1
k
P (X = k) =

n∑
k=1

1
k

2k
n(n+ 1) .

Ainsi, E
( 1
X

)
= 2

(n+ 1).

Exercice 3. 1. X(Ω) = [[1, 4]]. Notons Ni l’événement ≪ obtenir une boule noire au
tirage i ≫.

On a (X = 1) = N1, donc P (X1 = 1) = P (N1) = 7
10.

Puis on a (X = 2) = N1 ∩N2, donc

P (X = 2) = P (N1 ∩N2) = P (N1)P (N2|N1) = 3
10

7
9 = 7

30
d’après la formule des probabilités composées car P (N1) ̸= 0.
Puis on a (X = 3) = N1 ∩N2 ∩N3, donc

P (X = 3) = P (N1 ∩N2 ∩N3) = P (N1)P (N2|N1)P (N3|N1 ∩N2) = 3
10

2
9

7
8 = 7

120
d’après la formule des probabilités composées car P (N1 ∩N2) ̸= 0.
Pour la dernière, on peut soit faire la même chose, soit remarquer que comme (X =
i)i∈[[1,4]] est un système complet d’événements, on a

P (X = 4) = 1− P (X = 1)− P (X = 2)− P (X = 3).

En tout cas, la loi de X est donnée par loi est donnée par :

Valeur k de X 1 2 3 4

P (X = k) 7
10

7
30

7
120

1
120
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2. Il est clair que l’on a FX(x) = 0 pour x < 1 et FX(x) = 1 pour x ⩾ 4.

On a, pour x ∈ [1, 2[, FX(x) = P (X = 1) = 7
10.

Puis pour x ∈ [2, 3[, FX(x) = P (X = 1) + P (X = 2) = 14
15.

Enfin, pour x ∈ [3, 4[, FX(x) = P (X = 1) + P (X = 2) + P (X = 3) = 119
120.

Ainsi, on a

FX(x) =



0 si x < 1
7
10 si 1 ⩽ x < 2
14
15 si 2 ⩽ x < 3
119
120 si 3 ⩽ x < 4
1 si 4 ⩽ x.

3. On a

E(X) =
4∑

k=1
kP (X = k) = 7

10 + 2 7
30 + 3 7

120 + 4 1
120 = 165

120

donc
E(X) = 11

8 .

Puis

E(X2) =
4∑

k=1
k2P (X = k) = 84

120 + 4 28
120 + 9 7

120 + 16 1
120 = 275

120 = 55
24 .

puis d’après la formule de Koenig-Huygens,

V (X) = 55
24 −

121
64 = 440− 363

192 = 77
192 .

Exercice 4. 1. C’est la même technique que l’exercice précédent.
X(Ω) = [[1, 5]]. Notons Bi l’événement ≪ obtenir une boule blanche au tirage i ≫.

On a (X = 1) = B1, donc P (X1 = 1) = P (B1) = 1
2.

Puis on a (X = 2) = B1 ∩B2, donc

P (X = 2) = P (B1 ∩B2) = P (B1)P (B2|B1) = 1
2

4
7 = 2

7
d’après la formule des probabilités composées car P (B1) ̸= 0.
Puis on a (X = 3) = B1 ∩B2 ∩B3, donc

P (X = 3) = P (B1 ∩B2 ∩B3) = P (B1)P (B2|B1)P (B3|B1 ∩B2) = 1
2

3
7

4
6 = 1

7
d’après la formule des probabilités composées car P (B1 ∩B2) ̸= 0.
On continue et on a (X = 4) = B1 ∩B2 ∩B3 ∩B4, donc

P (X = 4) = P (B1∩B2∩B3∩B4) = P (B1)P (B2|B1)P (B3|B1∩B2)P (B4|B1∩B2∩B3),
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donc
P (X = 4) = 1

2
3
7

2
6

4
5 = 2

35
d’après la formule des probabilités composées car P (B1 ∩B2 ∩B3) ̸= 0.
Pour la dernière, on peut soit faire la même chose, soit remarquer que comme (X =
i)i∈[[1,5]] est un système complet d’événements, on a

P (X = 5) = 1− P (X = 1)− P (X = 2)− P (X = 3)− P (X = 4).

Ainsi,
P (X = 5) = 1− 1

2 −
2
7 −

1
7 −

2
35 = 1

70 .

En tout cas, la loi de X est donnée par loi est donnée par :

Valeur k de X 1 2 3 4 5

P (X = k) 35
70

20
70

10
70

4
70

1
70

On a donc

E(X) =
5∑

k=1
kP (X = k) = 35 + 2× 20 + 3× 10 + 4× 4 + 5

70 = 126
70 = 9

5 .

On a

E(X2) =
5∑

k=1
k2P (X = k) = 35 + 4× 20 + 9× 10 + 16× 4 + 25

70 = 294
70 = 21

5 .

On a plus qu’à appliquer la formule de Koenig-Huygens pour obtenir

V (X) = E(X2)− (E(X))2 = 21
5 −

81
25 = 24

25 .

2. Remarquons que Y = X − 1 (le nombre de boules blanches est le nombre de boules
piochées moins la boule noire qu’on a fini par obtenir), on en déduit donc immédiatement
que Y (Ω) = [[0, 4]] et on retrouve la loi dans le tableau suivant :

Valeur k de Y 0 1 2 3 4

P (Y = k) 35
70

20
70

10
70

4
70

1
70

Par linéarité de l’espérance, on récupère E(Y ) = E(X − 1) = E(X) − 1 = 4
5, puis

V (Y ) = V (X − 1) = V (X) = 24
25.

Exercice 5. 1. X suit une loi binomiale de paramètres (5, 1
2), puisque X compte le

nombre de succès à l’épreuve ≪ obtenir une boule blanche en piochant dans l’urne ≫ répétée
5 fois de façon indépendante (il y a remise) et de probabilité de succès 1

2. Son espérance

est donc E(X) = 5
2 et sa variance V (X) = 5

4.
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2. Même chose, il suffit d’échanger noir et blanc.

Exercice 6. 1. On remarque que X(Ω) = [[1, 4]].
On note Bi l’événement ≪ obtenir une boule blanche au tirage i ≫. Ainsi, on a

(X = 1) =
(
(B1 ∩B2 ∩B3 ∩B4 ∩B5) ∪ (B1 ∩B2 ∩B3 ∩B4 ∩B5)
∪(B1 ∩B2 ∩B3 ∩B4 ∩B5) ∪ (B1 ∩B2 ∩B3 ∩B4 ∩B5)
∪(B1 ∩B2 ∩B3 ∩B4 ∩B5)

)
.

Par incompatibilité des événements, on a

P (X = 1) = P (B1 ∩B2 ∩B3 ∩B4 ∩B5) + P (B1 ∩B2 ∩B3 ∩B4 ∩B5)
+P (B1 ∩B2 ∩B3 ∩B4 ∩B5) + P (B1 ∩B2 ∩B3 ∩B4 ∩B5)
+P (B1 ∩B2 ∩B3 ∩B4 ∩B5).

Par la formule des probabilités composées, on a

P (B1∩B2∩B3∩B4∩B5) = P (B1)P (B2|B1)P (B3|B1∩B2)P (B4|B1∩B2∩B3)P (B5|B1∩B2∩B3∩B4).

Ainsi, P (B1 ∩B2 ∩B3 ∩B4 ∩B5) = 4
8

4
7

3
6

2
5

1
4 = 1

70 .

On remarque de la même façon que P (B1 ∩ B2 ∩ B3 ∩ B4 ∩ B5 = 1
70, puis que

P (B1 ∩ B2 ∩ B3 ∩ B4 ∩ B5 = 1
70, P (B1 ∩ B2 ∩ B3 ∩ B4 ∩ B5 = 1

70 et enfin P (B1 ∩

B2 ∩B3 ∩B4 ∩B5 = 1
70

Ainsi, P (X = 1) = 5
70 = 1

14.

Par symétrie en échangeant blanc et noir, on réalise que P (X = 4) = P (X = 1). De
plus, toujours pas symétrie, P (X = 2) = P (X = 3).

Enfin, il suffit de remarquer que
4∑

k=1
P (X = k) = 1 pour récupérer P (X = 2) = 6

14 .

En résumé, on a P (X = 1) = P (X = 4) = 1
14 et P (X = 2) = P (X = 3) = 3

7.

Sinon, en faisant du dénombrement (pour se préparer à l’exercice 16) on numérote
les boules (les blanches de 1 à 4, les noires de 5 à 8), Ω est l’ensemble des 5-listes
sans répétitions de [[1, 8]]. Son cardinal est donc 8!

(8− 5)! = 8!
3! . Munissons-le de la

probabilité uniforme.
L’événement (X = k) consiste à avoir pioché k boules blanches et 5−k boules noires.
Le nombre de façons de fixer les k boules blanches et 5− k boules noires obtenues est(

4
k

)(
4

5− k

)
. Il y a 5! façons de les ordonner, ainsi Card(X = k) = 5!

(4
k

)( 4
5−k

)
.

On a donc

P (X = k) =
5!
(4

k

)( 4
5−k

)
8!
3!

= 5!3!(4!)2

k!(4− k)!(5− k)!(k − 1)!8! .

En remplaçant k par les valeurs qu’il doit prendre, on récupère P (X = 1) = 1
14,

P (X = 2) = 3
7, P (X = 3) = 3

7 et enfin P (X = 4) = 1
14.
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Ensuite, on a

E(X) =
4∑

k=1
kP (X = k)

= 1× 1
14 + 2× 6

14 + 3× 6
14 + 4× 1

14

= 35
14

= 5
2

Et,

E(X2) =
4∑

k=1
kP (X = k)

= 12 × 1
14 + 22 × 6

14 + 32 × 6
14 + 42 × 1

14

= 95
14

Enfin, d’après la formule de Koenig-Huygens, on a

V (X) = E(X2)− (E(X))2 = 95
14 −

25
4 = 190− 175

28 = 15
28 .

2. Même chose, il suffit d’échanger noir et blanc.

Exercice 7. 1. C’est une uniforme sur [[1, 2n]], donc E(X1) = 2n+ 1
2 et V (X1) =

4n2 − 1
12 .

2. On a X2(Ω) = [[1, 2n]]. Il faut utiliser la formule des probabilités totales appliquée au
système complet d’événement (Bk, Bk) où Bk est l’événement : ≪ le premier numéro
est strictement inférieur à k ≫ pour calculer chacune des probabilités ci-dessous en
remarquant que Bk et Bk sont bien non-négligeables.
Pour i ⩾ k,

P (X2 = i) = P (X2 = i|Bk)P (Bk) + P (X2 = i|Bk)P (Bk)

= 1
2n

k − 1
2n + 1

2n− (k − 1)
2n− (k − 1)

2n

= 2n+ k − 1
4n2

Le point subtil est : P (X2 = i|Bk) = 1
2n− (k − 1) parce qu’on cherche la probabilité

d’avoir pioché la boule numéro i sachant qu’on a pioché une boule dont le numéro est
supérieur ou égal à k, alors que P (X2 = i|Bk) = 1

2n puisqu’on pioche une nouvelle
boule.
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Pour i < k,

P (X2 = i) = P (X2 = i|Bk)P (Bk) + P (X2 = i|Bk)P (Bk)

= 1
2n

k − 1
2n + 02n− k + 1

2n

= k − 1
4n2 .

Il suffit ensuite de calculer l’espérance (qui existe bien puisque les valeurs prises par
X2 forment un ensemble fini).
On a

E(X2) =
2n∑
i=1

iP (X2 = i)

=
k−1∑
i=1

iP (X2 = i) +
2n∑

i=k

iP (X2 = i)

=
k−1∑
i=1

i
k − 1
4n2 +

2n∑
i=k

i
2n+ k − 1

4n2

= k − 1
4n2

k−1∑
i=1

i+ 2n+ k − 1
4n2

2n∑
i=k

i.

Or
k−1∑
i=1

i = (k − 1)k
2 et

2n∑
i=k

i =
2n∑
i=1

i−
k−1∑
i=1

i = 2n(2n+ 1)
2 − (k − 1)k

2 .

Ainsi,

E(X2) = k − 1
4n2

(k − 1)k
2 + 2n+ k − 1

4n2

[2n(2n+ 1)
2 − (k − 1)k

2

]
= k(k − 1)2 + (2n+ k − 1) [2n(2n+ 1)− k(k − 1)]

8n2

= 2n(2n+ 1)(2n+ k − 1)− 2nk(k − 1)
8n2

= 2n(4n2 + 2nk − 2n+ 2n+ k − 1− k2 + k)
8n2

= −k2 + (2n+ 2)k + 4n2 − 1
4n

= −(k − n− 1)2 + 5n2 + 2n
4n

en prenant la forme canonique. Elle est maximale pour k = n + 1 et on trouve
E(X2) = 5n+ 2

4 .

Exercice 8. 1. Voilà une question relativement simple : Xn(Ω) = [[0, n]].

2. On note Bi l’événement : ≪ on obtient une boule blanche au tirage i. ≫ On a vu que
X1(Ω) = [[0, 1]].
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On a (X1 = 1) = B1 donc P (X1 = 1) = P (B1) = 1
2 puis, comme ((X1 = 0), (X1 = 1))

forme un système complet d’événements, P (X1 = 0) = 1− P (X1 = 1) = 1
2.

Pour X2, on a vu que X2(Ω) = [[0, 2]]. Ainsi, on a (X2 = 0) = B1 ∩B2, donc

P (X2 = 0) = P (B1)P (B2|B1) = 1
2

2
3

d’après la formule des probabilités composées car P (B1) ̸= 0.
Puis de la même façon, (X2 = 2) = B1 ∩B2, donc

P (X2 = 2) = P (B1)P (B2|B1) = 1
2

2
3

d’après la formule des probabilités composées car P (B1) ̸= 0.
Pour terminer, on sait que (X2 = i)i∈[[0,2]] est un système complet d’événements, donc

P (X2 = 1) = 1− P (X2 = 0)− P (X2 = 2) = 1
3 .

On aurait aussi pu dire que (X2 = 1) = (B1 ∩ B2) ∪ (B1 ∩ B2) puis calculer la
probabilité de cet événement.
Ainsi, X1 et X2 suivent des lois uniformes sur l’ensemble des valeurs qu’elles prennent.

3. La technique que nous venons d’employer ne va pas fonctionner. Ainsi, nous allons
procéder par récurrence en posant P(n) ≪ Xn ↪→ U([[0, n]]). ≫

Remarquons que l’initialisation a été faite pour n = 1 et n = 2 dans la question
précédente.
Soit n ∈ N∗ quelconque fixé. Supposons que P(n) est vraie.
On a déjà vu que Xn+1(Ω) = [[0, n+ 1]].
Soit k ∈ [[0, n+1]], en utilisant la formule des probabilités totales appliquée au système
complet d’événements non négligeables (Xn = i)i∈[[0,n]], on a

P (Xn+1 = k) =
n∑

i=0
P (Xn+1 = k|Xn = i)P (Xn = i).

Or, pour tout i ∈ [[0, n]], on a P (Xn = i) = 1
n+ 1. Ainsi,

P (Xn+1 = k) = 1
n+ 1

n∑
i=0

P (Xn+1 = k|Xn = i).

Si k ∈ [[1, n]], remarquons que P (Xn+1 = k|Xn = i) = 0 sauf si i = k ou i = k − 1
car le nombre de boules blanches obtenues au rang n+ 1 ne peut être égal qu’à celui
qu’on avait au rang n ou éventuellement à celui-ci plus 1.
Et on a

P (Xn+1 = k|Xn = k − 1) = k

n+ 2
car il y a n+ 2 boules dans l’urne après n tirages dont k blanches si on a obtenu k−1
blanches.
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De plus, on a

P (Xn+1 = k|Xn = k) = (n+ 2)− (k + 1)
n+ 2 = n+ 1− k

n+ 2

car il y a n+ 2 boules dans l’urne après n tirages dont k + 1 blanches si on a obtenu
k blanches.
Ainsi,

P (Xn+1 = k) = 1
n+ 1

(
k

n+ 2 + n+ 1− k
n+ 2

)
= 1
n+ 2 .

Pour k = 0, le seul terme non nul est celui en i = 0, donc

P (Xn+1 = 0) = 1
n+ 1

n+ 1− 0
n+ 2 = 1

n+ 2 .

Pour k = n+ 1, le seul terme non nul est celui en i = n, donc

P (Xn+1 = n+ 1) = 1
n+ 1

n+ 1
n+ 2 = 1

n+ 2 .

Ainsi, Xn+1 ↪→ U([[0, n+ 1]]) et donc P (n+ 1) est vraie.
Donc, pour tout n ∈ N∗, Xn suit une loi uniforme sur [[0, n]].

Exercice 9 (Un peu difficile). 1. a. X(Ω) = [[1, 2n− 1]].
Le plus simple est de déterminer P (X > k) pour k ∈ [[0, 2n− 2]].
En effet l’événement (X > k) consiste à n’avoir pioché que des cartes qui ne
sont pas un as noir en k tirages. Si on considère que l’univers est l’ensemble des

combinaisons de k cartes prises dans un jeu de 52 cartes, il a pour cardinal
(

2n
k

)

et Card(X > k) =
(

2n− 2
k

)
.

Autrement dit
P (X > k) = (2n− k)(2n− k − 1)

2n(2n− 1) .

Remarquons que ce résultat est vrai pour k = 2n− 1 ou k = 2n.
De plus, pour k ∈ [[1, 2n− 1]]

P (X = k) = P (X > k − 1)− P (X > k)

= (2n− k + 1)(2n− k)
2n(2n− 1) − (2n− k)(2n− k − 1)

2n(2n− 1)

= (2n− k)(2n− k + 1− 2n+ k + 1)
2n(2n− 1)

= 2(2n− k)
2n(2n− 1) .

Autrement dit, ∀k ∈ [[1, 2n− 1]], P (X = k) = 2n− k
n(2n− 1) .
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b. On a

E(X) =
2n−1∑
k=1

kP (X = k)

=
2n−1∑
k=1

k
2n− k

n(2n− 1)

= 1
n(2n− 1)

(
2n

2n−1∑
k=1

k −
2n−1∑
k=1

k2
)

= 1
n(2n− 1)

(
2n2n(2n− 1)

2 − 2n(2n− 1)(4n− 1)
6

)
= 12n2(2n− 1)− 2n(2n− 1)(4n− 1)

6n(2n− 1)

= 2n(2n− 1)[6n− (4n− 1)]
6n(2n− 1)

= 2n+ 1
3

c. G1 = −X + a donc, par linéarité de l’espérance

E(G1) = 3a− 2n− 1
3 .

d. Ai-je besoin de détailler le résultat ? On doit prendre a = 2n+ 1
3 .

2. a. Il suffit de réaliser qu’on a fait une bonne partie.
On a G2(Ω) = {−n} ∪ [[a− n, a− 1]]. Ensuite,

∀k ∈ [[1, n]], P (G2 = −k + a) = 2n− k
n(2n− 1) , autrement dit ∀ℓ ∈ [[a − n, a − 1]],

P (G2 = ℓ) = 2n− a+ ℓ

n(2n− 1)
On a P (G2 = −n) = 1− P (X ⩽ n) Or

P (X ⩽ n) =
n∑

k=1
P (X = k)

=
n∑

k=1

2n− k
n(2n− 1)

= 2n2

n(2n− 1) −
1

n(2n− 1)

n∑
k=1

k

= 2n2

n(2n− 1) −
1

n(2n− 1)
n(n+ 1)

2

= 4n2 − n(n+ 1)
2n(2n− 1)

= 3n2 − n
2n(2n− 1)

et P (G2 = −n) = 1− 3n2 − n
2n(2n− 1) = n2 − n

2n(2n− 1) = n− 1
2(2n− 1) .
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b. Allons-y, c’est long et assez pénible mais pas très difficile.

E(G2) =
∑

k∈G2(Ω)
kP (G2 = k)

= −n n− 1
2(2n− 1) +

a−1∑
k=a−n

k
2n− a+ k

n(2n− 1)

= −n n− 1
2(2n− 1) +

n−1∑
i=0

(i+ a− n) n+ i

n(2n− 1) avec i = k − a+ n

= −n n− 1
2(2n− 1) + 1

n(2n− 1)

n−1∑
i=0

(i+ a− n)(n+ i)

= −n n− 1
2(2n− 1) + 1

n(2n− 1)

n−1∑
i=0

(i2 + ai+ n(a− n))

= −n n− 1
2(2n− 1) + 1

n(2n− 1)

(
n(n− 1)(2n− 1)

6 + a
n(n− 1)

2 + n2(a− n)
)

= −n n− 1
2(2n− 1) + (n− 1)(2n− 1) + 3a(n− 1) + 6n(a− n)

6(2n− 1)

= − 3n2 − 3n
6(2n− 1) + −4n2 + (−3 + 3a+ 6a)n+ 1− 3a

6(2n− 1)

= −7n2 + 9an+ 1− 3a
6(2n− 1)

= −7n2 + 1 + 3(3n− 1)a
6(2n− 1) .

On a donc E(G2) = −7n2 + 1 + 3(3n− 1)a
6(2n− 1) , donc pour avoir un jeu équilibré, on

doit prendre a = 7n2 − 1
3(3n− 1) .

Exercice 10. On a E(X) =
n∑

k=0
kP (X = k) =

n∑
k=1

kP (X = k).

Or, ∀k ∈ [[1, n]], P (X = k) = P (X > k − 1)− P (X > k) car (X = k) ∪ (X > k) = (X >
k − 1) avec une union disjointe. Ainsi,

E(X) =
n∑

k=1
kP (X > k − 1)− kP (X > k)

=
n∑

k=1
kP (X > k − 1)−

n∑
k=1

kP (X > k)

=
n−1∑
i=0

(i+ 1)P (X > i)−
n∑

k=1
kP (X > k) en posant dans la première somme i = k − 1

=
n−1∑
i=0

iP (X > i) +
n−1∑
i=0

P (X > i)−
n∑

k=1
kP (X > k)

= 0P (X > 0) +
n−1∑
i=0

P (X > i)− nP (X > n)

en simplifiant les termes de la somme qui peuvent l’être.
Remarquons alors que P (X > n) = 0, donc en fait, il ne reste plus que

E(X) =
n−1∑
i=0

P (X > i).
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Exercice 11. 1. Notons Ω l’ensemble des 3-listes d’éléments de [[1, n]] qui modélise notre
expérience et munissons-le de la probabilité uniforme.
On a Ω = [[1, n]]3, donc Card(Ω) = n3.
Par ailleurs (X > k) = [[k + 1, n]]3 puisque tous les numéros doivent être strictement
plus grands que k.
Ainsi, Card(X > k) = (n− k)3.

On a donc P (X > k) =
(
n− k
n

)3
.

2. On trouve E(X) =
n−1∑
k=0

(
n− k
n

)3
. En posant ℓ = n− k, on a

E(X) =
n∑

ℓ=1

(
ℓ

n

)3
= 1
n3

(
n(n+ 1)

2

)2
.

On a donc
E(X) = (n+ 1)2

4n .

Exercice 12. Tout d’abord, remarquons que X(Ω) = [[0, 20]].
Notons Fi l’événement ≪ on a obtenu face au lancer i ≫.

On a alors pour tout k ∈ [[1, 20]], (X = k) =
k−1⋂
i=1

Fi ∩ Fk.

On a bien entendu, P (X = k) = P

(
k−1⋂
i=1

Fi ∩ Fk

)
, puis par indépendance des lancers

P (X = k) =
(

k−1∏
i=1

1
2

)
1
2 = 1

2k
.

Par ailleurs, (X = 0) =
20⋂

i=1
Fi et comme ci-dessus, on applique P puis par indépendance

des lancers, on récupère :

P (X = 0) =
20∏

i=1

1
2 = 1

220 .

On peut passer au calcul de l’espérance.
Première façon : On remarque qu’on nous suggère d’utiliser l’exercice 10, donc déterminons,
pour k ∈ [[1, 20]],

P (X > k) =
20∑

i=k+1
P (X = i) =

20∑
i=k+1

1
2i

= 1
2k+1

20∑
i=k+1

1
2i−k−1 .

En posant ℓ = i− k − 1, on a P (X > k) = 1
2k+1

20−k−1∑
ℓ=0

1
2ℓ

.

Autrement dit
P (X > k) = 1

2k+1
1− 1

220−k

1− 1
2

= 1
2k
− 1

220 .
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Il ne reste plus qu’à calculer E(X) =
19∑

k=0
P (X > k) =

19∑
k=0

( 1
2k
− 1

220

)
.

On a donc :

E(X) =
19∑

k=0

1
2k
− 20

220

=
1− 1

220

1− 1
2
− 20

220

= 2− 2
220 −

20
220 .

Donc
E(X) = 2− 11

219 .

Deuxième façon :

On a E(X) =
20∑

k=0
kP (X = k) =

20∑
k=1

kP (X = k) car le premier terme est nul.

On a donc E(X) =
20∑

k=1
k

1
2k

= 1
2

20∑
k=1

k
1

2k−1 .

En utilisant l’astuce et en développant, on récupère :

E(X) =
(

1− 1
2

) 20∑
k=1

k
1

2k−1

=
20∑

k=1
k

1
2k−1 −

1
2

20∑
k=1

k
1

2k−1

=
20∑

k=1
k

1
2k−1 −

20∑
k=1

k
1
2k

=
19∑

ℓ=0
(ℓ+ 1) 1

2ℓ
−

20∑
k=1

k
1
2k

en posant ℓ = k − 1

=
19∑

ℓ=0
ℓ

1
2ℓ

+
19∑

ℓ=0

1
2ℓ
−

20∑
k=1

k
1
2k

= 0 +
19∑

ℓ=1
ℓ

1
2ℓ

+
1− 1

220

1− 1
2
−

19∑
k=1

k
1
2k
− 20

220

= 2− 2
220 −

20
220 .

Soit
E(X) = 2− 11

219 .

La dernière solution était de considérer, pour x ∈] − 1, 1[,
20∑

k=0
xk = 1− x21

1− x , de dériver

cette égalité en le justifiant (on trouve
20∑

k=1
kxk−1 = −21x20(1− x) + x(1− x21)

(1− x)2 )et de

l’appliquer en x = 1
2 pour obtenir

20∑
k=1

k
1

2k−1 qui est exactement le double de la valeur

recherchée (c’est la technique la plus facile).

Exercice 13. 1. Notons, pour tout l’exercice, Bi : ≪ obtenir une boule blanche au ième
tirage ≫.
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Il est clair que Y1(Ω) = {1, 2} (soit on n’a pas changé la composition, soit on a enlevé
une blanche).

On a (Y1 = 1) = B1, donc P (Y1 = 1) = P (B1) = 2
3.

Et (Y1 = 2) = B1, donc P (Y1 = 2) = 1
3.

2. On a Yn(Ω) = {0, 1, 2}.

On a (Yn = 2) =
n⋂

i=1
Bi, donc P (Yn = 2) = P

(
n⋂

i=1
Bi

)
.

En utilisant la formule des probabilités composées, on a

P (Yn = 2) = P (B1)P (B2|B1) . . . P (Bn|
n−1⋂
i=1

Bi).

Or, tant qu’on pioche des boules noires la composition de l’urne ne change pas, ainsi :

P (Yn = 2) =
(1

3

)n

= 1
3n

(et au passage, l’hypothèse de la formule est bien vérifiée).
(Yn = 1) correspond à l’événement ≪ on a pioché une seule boule blanche ≫, ainsi

(Yn = 1) =
n⋃

k=1
Bk

 n⋂
i=1
i̸=k

Bi

 ce qu’on peut écrire

(Yn = 1) =
n⋃

k=1
B1 ∩ . . . ∩Bk−1 ∩Bk ∩Bk+1 ∩ . . . ∩Bn.

On a donc :

P (Yn = 1) = P

(
n⋃

k=1
B1 ∩ . . . ∩Bk−1 ∩Bk ∩Bk+1 ∩ . . . ∩Bn

)
.

Comme l’union est disjointe :

P (Yn = 1) =
n∑

k=1
P
(
B1 ∩ . . . ∩Bk−1 ∩Bk ∩Bk+1 ∩ . . . ∩Bn

)
.

On applique encore une fois la formule des probabilités composées et on a :

P
(
B1 ∩ . . . ∩Bk−1 ∩Bk ∩Bk+1 ∩ . . . ∩Bn

)
= P (B1) . . . P (Bk−1|B1 ∩ . . . ∩Bk−1)

P (Bk|
k−1⋂
i=1

Bi) . . . P (Bn|B1 ∩ . . . ∩Bk−1 ∩Bk ∩Bk+1 ∩ . . . ∩Bn−1).

Or les probabilités valent 1
3 jusqu’à ce qu’on pioche la boule blanche avec probabilité

2
3 , puis chacune vaut encore 2

3.
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Ainsi

P
(
B1 ∩ . . . ∩Bk−1 ∩Bk ∩Bk+1 ∩ . . . ∩Bn

)
=
(1

3

)k−1 2
3

(2
3

)n−k

= 2n−k+1

3n
.

Au passage, on remarque bien que l’hypothèse de la formule des probabilités com-
posées étaient bien vérifiée.

Ainsi, P (Yn = 1) =
n∑

k=1

2n−k+1

3n
= 2

3n

n−1∑
ℓ=0

2ℓ en posant ℓ = n− k.

On a donc P (Yn = 1) = 2n+1 − 2
3n

.

Pour récupérer la dernière probabilité, le plus simple est de remarquer que (Yn =
i)0⩽i⩽2 est un système complet d’événement, donc

P (Yn = 0) = 1− P (Yn = 1)− P (Yn = 2)

et donc
P (Yn = 0) = 3n − 2n+1 + 1

3n
.

3. On a

E(Yn) =
2∑

k=0
kP (Yn = k) = P (Yn = 1) + 2P (Yn = 2) = 2n+1 − 2

3n
+ 2 1

3n
.

On trouve E(Yn) = 2n+1

3n
.

Exercice 14. 1. On a X(Ω) = [[n,N ]] et ∀k ∈ [[n,N ]], il est facile de déterminer P (X ⩽
k). En effet, Ω est l’ensemble des combinaisons à n éléments pris entre 1 et N et
(X ⩽ k) est l’ensemble des combinaisons à n éléments pris entre 1 et k.

Ainsi, P (X ⩽ k) =
(k

n

)(N
n

) .
On a donc P (X = k) = P (X ⩽ k)− P (X ⩽ k − 1) (en prenant P (X ⩽ k − 1) = 0 si
k−1 < n ce qui est cohérent avec l’écriture avec les coefficients binomiaux en prenant
la convention habituelle).
On a donc, ∀k ∈ [[n,N ]], en utilisant la formule de Pascal,

P (X = k) =
(k

n

)
−
(k−1

n

)(N
n

) =
(k−1

n−1
)(N

n

) .

2. Là encore, nous allons utiliser la formule de Pascal puisque
(
k

n

)
=
(
k + 1
n+ 1

)
−(

k

n+ 1

)
, ainsi

N∑
k=n

(
k

n

)
=

N∑
k=n

(
k + 1
n+ 1

)
−
(

k

n+ 1

)
=

N∑
k=n

(
k + 1
n+ 1

)
−

N∑
k=n

(
k

n+ 1

)
.
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En posant ℓ = k + 1 dans la première somme, on a
N∑

k=n

(
k

n

)
=

N+1∑
ℓ=n+1

(
ℓ

n+ 1

)
−

N∑
k=n

(
k

n+ 1

)
.

Or en simplifiant les termes qui apparaissent dans les deux sommes, il ne reste que
N∑

k=n

(
k

n

)
=
(
N + 1
n+ 1

)
−
(

n

n+ 1

)
.

Mais comme
(

n

n+ 1

)
= 0, on a bien démontré le résultat souhaité.

A noter que ce résultat porte le nom de formule de Pascal itérée.

3. On a E(X) =
N∑

k=n

kP (X = k) =
N∑

k=n

k

(k−1
n−1

)(N
n

) .

On a donc

E(X) = 1(N
n

) N∑
k=n

k
(k − 1)!

(n− 1)!(k − n)!

= n!(N − n)!
N !

N∑
k=n

n
k!

n!(k − n)!

= n
n!(N − n)!

N !

N∑
k=n

(
k

n

)

= n
n!(N − n)!

N !

(
N + 1
n+ 1

)
d’après la question précédente

= n
n!(N − n)!

N !
(N + 1)!

(N − n)!(n+ 1)!

= n(N + 1)
n+ 1

On a donc E(X) = n(N + 1)
n+ 1 .

Exercice 15. 1. Pour des raisons de généralités (la formule est connue dans ce cas un
peu plus général), on va faire la preuve de la formule de Pascal itérée, à savoir

N∑
k=n

(
k

n

)
=
(
N + 1
n+ 1

)
.

Il suffit ensuite de prendre N = 2n pour démontrer la formule demandée. On aurait
bien entendu pu faire directement le travail avec 2n.

Nous allons utiliser la formule de Pascal puisque
(
k

n

)
=
(
k + 1
n+ 1

)
−
(

k

n+ 1

)
, ainsi

N∑
k=n

(
k

n

)
=

N∑
k=n

(
k + 1
n+ 1

)
−
(

k

n+ 1

)
=

N∑
k=n

(
k + 1
n+ 1

)
−

N∑
k=n

(
k

n+ 1

)
.

En posant ℓ = k + 1 dans la première somme, on a
N∑

k=n

(
k

n

)
=

N+1∑
ℓ=n+1

(
ℓ

n+ 1

)
−

N∑
k=n

(
k

n+ 1

)
.
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Or en simplifiant les termes qui apparaissent dans les deux sommes, il ne reste que
N∑

k=n

(
k

n

)
=
(
N + 1
n+ 1

)
−
(

n

n+ 1

)
.

Mais comme
(

n

n+ 1

)
= 0, on a bien démontré le résultat souhaité.

A noter que ce résultat porte le nom de formule de Pascal itérée.
Il suffit de remplacer N par 2n pour obtenir le résultat désiré. En utilisant la formule
de Pascal pour remplacer chaque terme, on tombe sur une somme télescopique.

2. On a clairement X(Ω) = [[n, 2n]]. Soit k ∈ [[n, 2n]], déterminons P (X = k).
Prenons Ω l’ensemble des tirages possibles, c’est-à-dire l’ensemble des combinaisons à
n éléments de 1 à 2n qui contiennent les rangs d’apparition des boules noires. Il y en

a
(

2n
n

)
. Munissons Ω de la probabilité uniforme.

Considérons (X = k). C’est l’ensemble des sous-ensembles à n− 1 éléments pris entre
1 et k − 1 qui représentent le numéro du tirage où on a pioché les k − 1 premières
boules noires que l’on réunit avec le singleton {k} où l’on pioche la dernière boule
noire. (X = k) contient donc

(k−1
n−1

)
.

Ainsi, on a ∀k ∈ [[n, 2n]], P (X = k) =
(k−1

n−1
)(2n

n

) .

Ensuite, cherchons son espérance.
On a

E(X) =
2n∑

k=n

kP (X = k)

=
2n∑

k=n

k

(k−1
n−1

)(2n
n

)
= (n!)2

(2n)!

2n∑
k=n

k
(k − 1)!

(n− 1)!(k − n)!

= (n!)2

(2n)!

2n∑
k=n

n
k!

n!(k − n)!

= n
(n!)2

(2n)!

2n∑
k=n

(
k

n

)

= n
(n!)2

(2n)!

(
2n+ 1
n+ 1

)

= n
(n!)2

(2n)!
(2n+ 1)!
(n+ 1)!n!

= n
2n+ 1
n+ 1 .

On a donc E(X) = n(2n+ 1)
n+ 1 .

Exercice 16 (La loi hypergéométrique, exercice difficile). 1. a. Numérotons les boules
rouges de 1 à m et les vertes de m+ 1 à m+ n.
Il s’agit de combinaisons à k éléments pris dans [[1,m + n]] qui contient m + n

éléments. Il y a
(
n+m

k

)
tirages à k boules.
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b. Il y a
(
m

i

)
ensembles à i boules rouges (combinaisons à i éléments de [[1,m]])

et
(

n

k − i

)
ensembles à k − i boules vertes (combinaisons à k − i éléments de

[[m+ 1,m+n]]). Ainsi, il y a
(
m

i

)(
n

k − i

)
ensembles à k boules dont exactement

i sont rouges.
La convention prise permet d’éviter de distinguer certains cas.

c. L’ensemble des tirages possibles peut s’écrire comme l’union disjointes des tirages
à exactement i boules rouges pour i entre 0 et k. Ainsi, comme l’union est disjointe,

il y a
k∑

i=0

(
m

i

)(
n

k − i

)
ensembles à k boules.

Comme nous en avions
(
n+m

k

)
d’après la première question, l’égalité est démontrée.

2. a. On doit vérifier que
n∑

k=0
P (X = k) = 1.

On a
n∑

k=0
P (X = k) =

n∑
k=0

(Np
k

)( Nq
n−k

)(N
n

) .

En mettant tout sur le même dénominateur, on a

n∑
k=0

P (X = k) =

n∑
k=0

(Np
k

)( Nq
n−k

)
(N

n

) .

Or d’après l’identité de Vandermonde, on a

n∑
k=0

P (X = k) =
(N(p+q)

n

)(N
n

) = 1.

On a bien défini une variable aléatoire.
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b. On a

E(X) =
n∑

k=0
kP (X = k)

=
n∑

k=1
k

(Np
k

)( Nq
n−k

)(N
n

) le premier terme est nul

= 1(N
n

) n∑
k=1

k
(Np)!

k!(Np− k)!

(
Nq

n− k

)

= 1(N
n

) n∑
k=1

(Np− 1)!Np
(k − 1)!(Np− k)!

(
Nq

n− k

)

= Np(N
n

) n∑
k=1

(
Np− 1
k − 1

)(
Nq

n− k

)

= Np(N
n

) n−1∑
ℓ=0

(
Np− 1

ℓ

)(
Nq

n− 1− ℓ

)
avec ℓ = k − 1

= Np(N
n

)(Np+Nq − 1
n− 1

)
d’après la formule de Vandermonde

= Np
n!(N − n)!

N !
(N − 1)!

(n− 1)!(N − n)!

= np.

c. Cela modélise un tirage sans remise (ou simultané) de n boules parmi N dont pN
ont une certaine propriété et où X compte le nombre de telles boules obtenues. On
parle de boules, mais il peut s’agir d’autre chose (individus dans une population
qui ont un certain caractère).

3. a. Considérons, pour k ∈ [[0, n]],

P (XN = k) =
(Np

k

)( Nq
n−k

)(N
n

) .

On a

P (XN = k) =
(Np

k

)( Nq
n−k

)(N
n

)
= (Np)!(Nq)!n!(N − n)!

k!(Np− k)!(n− k)!(Nq − n+ k)!N !

=
(
n

k

)
(Np)!

(Np− k)!
(Nq)!

(Nq − n+ k)!
(N − n)!
N !

Or pour N → +∞,
(N − n)!
N ! = 1

n−1∏
i=0

(N − i)
∼ 1
Nn

.

Et de même,
(Np)!

(Np− k)! =
k−1∏
i=0

(Np− i) ∼ (Np)k

et
(Nq)!

(Nq − n+ k)! =
n−k−1∏

i=0
(Nq − i) ∼ (Nq)n−k.
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En regroupant tous ces équivalents, on a(
n

k

)
(Np)!

(Np− k)!
(Nq)!

(Nq − n+ k)!
(N − n)!
N ! ∼

(
n

k

)
(Np)k(Nq)n−k

Nn

Or, on a (
n

k

)
(Np)k(Nq)n−k

Nn
=
(
n

k

)
pkqn−k.

Ainsi,

lim
N→+∞

P (XN = k) =
(
n

k

)
pkqn−k.

b. Autrement dit, lorsque N est grand, une loi hypergéométrique n’est pas très loin
d’être une loi binomiale. C’est relativement prévisible puisque l’absence de remise
ne change pas énormément les probabilités lorsqu’on tire un nombre n négligeable
de boules comparé au nombre total de boules dans l’urne. En pratique, on peut
utiliser cette approximation d’une loi hypergéométrique par une binomiale lorsque
10n < N .

Exercice 17. Notons Xn le nombre de 6 obtenus en n lancers. Comme les lancers sont
indépendants et ont la même probabilité de faire 6, il est clair que Xn ↪→ B(n, 1

6).
Or, d’après l’inégalité de Bienaymé-Tchebychev, on a, pour tout ε > 0,

P (|Xn − E(Xn)| ⩾ ε) ⩽ V (Xn)
ε2 .

Or, on connait E(Xn) = n

6 et V (Xn) = 5n
36 . L’inégalité devient

P

(∣∣∣∣Xn −
n

6

∣∣∣∣ ⩾ ε

)
⩽

5n
36ε2 .

Faisons apparaitre la fréquence d’apparition de 6 soit Xn

n
, on a

P

(∣∣∣∣Xn

n
− 1

6

∣∣∣∣ ⩾ ε

n

)
⩽

5n
36ε2 .

On veut la probabilité que la fréquence de 6 soit autour de 1
6 au centième près, donc

1− P
(∣∣∣∣Xn

n
− 1

6

∣∣∣∣ < ε

n

)
⩽

5n
36ε2

ce qui revient à
P

(∣∣∣∣Xn

n
− 1

6

∣∣∣∣ < ε

n

)
⩾ 1− 5n

36ε2 .

On veut que ε

n
= 1

100 donc ε = n

100 ce qui nous donne,

P

(∣∣∣∣Xn

n
− 1

6

∣∣∣∣ < 1
100

)
⩾ 1− 50000

36n .

On veut cette probabilité supérieure à 95
100, ce qu’on pourra affirmer si

1− 50000
36n ⩾

95
100 .
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On résout cette bien brave inéquation, pour obtenir

50000
36n ⩽

1
20

donc
36n

50000 ⩾ 20

et pour finir n ⩾
1000000

36 ≃ 27777, 78.
On trouve qu’il faut 27778 lancers.
En fait, l’inégalité de Bienaymé-Tchebychev est vraiment grossière pour ce genre de
travail et d’autres que vous verrez l’an prochain permettent de conclure avec nombre
bien moins important de lancers.

Exercice 18. On remarque que si on note X le nombre de vaches qui vont vers la
première étable, X compte le nombre de succès à l’épreuve ≪ la vache va vers la première
étable ≫ répétée 100 fois de façon indépendante, donc X ↪→ B(100, 1

2).
En utilisant l’inégalité de Bienaymé-Tchebychev, on a, pour ε > 0

P (|X − E(X)| ⩾ ε) ⩽ V (X)
ε2

soit
P (|X − 50| ⩾ ε) ⩽ 25

ε2

autrement écrit
1− P (|X − 50| < ε) ⩽ 25

ε2

ou encore
P (50− ε < X < 50 + ε) ⩾ 1− 25

ε2

On veut choisir ε tel que cette probabilité soit supérieure ou égale à 95
100, ce qu’on peut

assurer lorsque
1− 25

ε2 ⩾
95
100

autrement dit
20 ⩽

ε2

25
soit

ε >
√

500 ≃ 22, 4.

Il faut donc 23 places au-dessus de 50, soit faire des étables de 73 places.

18 Intégration sur un segment
Pour les trois premiers exercices, seules les méthodes, astuces et résultats sont indiqués.
Pour la rédaction, reportez-vous aux exemples du cours.

Exercice 1. 1. Soit on fait apparaitre un 2 au numérateur et on multiplie par 1
2 pour

se corriger, soit on pose u = 2x+ 1. On trouve
∫ 1

0

dx
2x+ 1 = ln(3)

2 .

2. Soit on pose u = x + 2 et on coupe en deux, soit on remarque que −x+ 3
x+ 2 =

−(x+ 2) + 5
x+ 2 et on coupe la fraction en deux.

∫ 2

0

−x+ 3
x+ 2 dx = 5 ln(2)− 2.
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3. Soit on la reconnait tout de suite, soit on pose u = 3x+5.
∫ 2

1

dx√
3x+ 5

= 2
√

11− 4
√

2
3 .

4. On peut poser u = x+ 2 pour se simplifier la vie, ou u = 2x+ 4.

Ensuite, il faut remarquer que x 7→ 1
x

ln(x) est la dérivée de x 7→ 1
2 ln(x)2.∫ 1

0

ln(2x+ 4)
x+ 2 dx = (ln(6))2 − (ln(4))2

2 .

5. Il faut faire une IPP (dériver le polynôme, intégrer l’exponentielle).
∫ x

0
(2t+1)e2t dt =

xe2x.

6. Il faut faire une IPP : dériver le ln intégrer le polynôme et simplifier la nouvelle

intégrale qui se trouve être celle d’un autre polynôme.
∫ x

1
(t2 + t−1) ln(t) dt = −x

3

9 −
x2

4 − x ln(x) + x2 ln(x)
2 + x3 ln(x)

3 + x− 23
36.

7. Deux IPP, à chaque fois dériver le polynôme.
∫ x

1
(−t2 +t−1)e−t dt = (x2 +x+2)e−x−

4e−1.

8. Commencer par remarquer que ln(x3) = 3 ln(x), puis IPP, on dérive le ln.
∫ e

1

ln(x3)
x2 dx =

3− 6e−1.

9. On peut poser t = x3 + 2.
∫ 5

2

3x2

x3 + 2 dx = ln(127)− ln(10).

10. On peut poser t = x2 + 1.∫ 2

1

3x√
x2 + 1

dx = 3
√

5− 3
√

2.

11. Attention à vérifier que le dénominateur est bien de signe constant ! On a x4 − x2 +
x− 1 = (x− 1)(x3 + x2 + 1) < 0 pour x ∈ [0, 1/2].
On a donc∫ 1

2

0

4x3 − 2x+ 1
x4 − x2 + x− 1 dx =

[
ln(−x4 + x2 − x+ 1)

]1/2

0
= ln

(11
16

)
.

12. Si on ne voit rien, on peut poser t = x2 + 2.
∫ 1

0
x ln(x2 + 2) dx = 3ln(3)

2 − ln(2)− 1
2.

13. Si on ne voit rien, on peut poser t = 3x2+2x−1.
∫ 2

0
(3x+1)e3x2+2x−1 dx = 1

2e
15−1

2e
−1.

14. 0 par encadrement car pour tout x ∈ [0, 1], 0 ⩽
x5n+2

e+ x3 ⩽
1
e
x5n+2.

15. 0 par encadrement car pour tout x ∈ [0, 1], 0 ⩽ xnex ⩽ exn.
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16. C’était un semi-piège, on peut la calculer et c’est même plus facile.∫ e

1

ln2n(x)
x

dx =
[ 1

2n+ 1 (ln(x))2n+1
]e

1
= 1

2n+ 1 .

Ou on pose t = ln(x).

17. On remarque que cos(x) + 1 = 2 cos2
(
x

2

)
et sur cet intervalle, cos

(
x

2

)
⩾ 0.

Ainsi,
∫ π

0

√
1 + cos(x) dx =

∫ π

0

√
2 cos

(
x

2

)
dx = 2

√
2.

18. On trouve
∫ 1

0

√
1− x2 dx =

∫ 0

π/2

√
1− cos2(t)(− sin(t)) dt. Or comme sur cet inter-

valle sin(t) ⩾ 0, on a
√

1− cos2(t) = sin(t).

Ainsi, on a
∫ 1

0

√
1− x2 dx =

∫ π/2

0
sin2(t) dt =

∫ π/2

0

1− cos(2x)
2 = π

4 .

19. En la notant I, avec le changement de variables indiqué, on tombe sur I =
∫ 0

π/4
ln
(

1 + 1− tan(u)
1 + tan(u)

)
(−du),

(à vérifier en explicitant tan
(
π

4 − x
)
.)

Puis on a I =
∫ π/4

0
ln(2)− ln(1 + tan(u))du = π ln(2)

4 − I, ainsi I = π ln(2)
8 .

Exercice 2. 1. C’est une intégrale de fonction continue donc ça existe. Une IPP pour
obtenir

∫ 1

−1
xex dx = 2e−1.

2. On peut se placer sur R puisque la fonction t 7−→ sin3(t) est continue sur R par
composition. Ensuite on commence par remarquer que sin3(t) = sin(t)(1− cos2(t)) =
sin(t)− sin(t) cos2(t).
On peut désormais intégrer terme à terme.

On a
∫ x

0
sin3(t) dt =

∫ x

0
sin(t)− sin(t) cos2(t) dt = [− cos(t) + 1

3 cos3(t)]x0 .

On a donc ∫ x

0
sin3(t) dx = − cos(t) + 1

3 cos3(t) + 2
3 .

Remarquons que l’ensemble des primitives x 7−→ sin3(x) est constitué des fonctions

x 7→ − cos(x) + 1
3 cos3(x) + k; k ∈ R.

3. Il s’agit d’une IPP, mais les fonctions qu’on a envie de poser ne sont pas C1 sur [0, x].
Il faut donc le faire sur [A, x] puis faire tendre A vers 0 pour avoir le résultat que l’on

souhaite.
∫ x

0
t ln(t) dt = x2 ln(x)

2 − x2

4 .

Exercice 3. 1. On a
n∑

k=1

1
k + n

= 1
n

n∑
k=1

1
1 + k

n

. Il s’agit d’une somme de Riemann as-

sociée à la fonction continue sur [0, 1] x 7→ 1
1 + x

. lim
n→+∞

n∑
k=1

1
k + n

=
∫ 1

0

1
1 + x

dx =

ln(2).
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2. On a
n∑

k=1

k2

n(k + n)2 = 1
n

n∑
k=1

(
k
n

)2

(
1 + k

n

)2 . Ainsi, il d’une somme de Riemann associée à

la fonction continue sur [0, 1] x 7→ x2

(1 + x)2 .

On a donc lim
n→+∞

n∑
k=1

k2

n(k + n)2 =
∫ 1

0

x2

(1 + x)2 dx.

Ensuite,
∫ 1

0

x2

(1 + x)2 dx =
∫ 1

0

(1 + x)2 − (2x+ 1)
(1 + x)2 dx, donc

∫ 1

0

x2

(1 + x)2 dx =
∫ 1

0
1− 2(x+ 1)

(1 + x)2 + 1
(1 + x)2 dx.

Ainsi, ∫ 1

0

x2

(1 + x)2 dx =
[
x− 2 ln((1 + x))− 1

1 + x

]1

0
= 3

2 − 2 ln(2).

3. L’idée est de remarquer que
n∏

k=1

(
1 + k

n

) 1
n

= exp
(

ln
(

n∏
k=1

(
1 + k

n

) 1
n

))
.

Or

ln
(

n∏
k=1

(
1 + k

n

) 1
n

)
= 1
n

n∑
k=1

ln
(

1 + k

n

)
.

Il suffit ensuite de remarquer qu’on tombe sur la somme de Riemann associée à la
fonction continue sur [0, 1] x 7→ ln(1 + x), et par conséquent

1
n

n∑
k=1

ln
(

1 + k

n

)
−−−−−→
n→+∞

∫ 1

0
ln(1+x) dx = [(x+ 1) ln(x+ 1)− (x+ 1)]10 = 2 ln(2)−1.

Ensuite, par continuité de la fonction exponentielle, on a

lim
n→+∞

n∏
k=1

(
1 + k

n

) 1
n

= exp(2 ln(2)− 1) = 4e−1.

4. C’est clairement une somme de Riemann associée à la fonction continue sur [0, 1]
x 7→ cos(x) sin(x). Ainsi

lim
n→+∞

1
n

n∑
k=1

cos
(
k

n

)
sin
(
k

n

)
=
∫ 1

0
cos(x) sin(x) dx =

[1
2 sin2(x)

]1

0
= 1

2 sin2(1).

Exercice 4. Nous l’avons déjà faite de nombreuses fois, mais au cas où... on va d’ailleurs
en faire un peu trop.
Notons h la fonction définie et dérivable sur ] − 1; +∞[ par h(x) = x − ln(1 + x), bien
définie et dérivable car sur cet intervalle 1 + x > 0, donc on compose des fonctions
dérivables puis on fait une combinaison de fonctions dérivables.
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On a h′(x) = 1− 1
1 + x

= x

1 + x
. Ainsi, h′(x) est du signe de x puisque 1 + x > 0. Donc

h est décroissante sur ] − 1; 0] et croissante sur [0,+∞[. Ainsi h est minimale en 0. Or
h(0) = 0, donc ∀x ∈]− 1 +∞, h(x) ⩾ 0, ce qui est équivalent à

∀x ∈]− 1; +∞[; ln(1 + x) ⩽ x.

Ensuite, on remarque que ∀x ⩾ 0, xn ⩾ 0 donc , on a 0 ⩽ ln(1 + xn) ⩽ xn.
En intégrant tout ça de 0 à 1 avec les bornes dans l’ordre croissant, on obtient

0 ⩽
∫ 1

0
ln(1 + xn) dx ⩽

∫ 1

0
xn dx =

[ 1
n+ 1x

n+1
]1

0
= 1
n+ 1 .

Puis, comme lim
n→+∞

1
n+ 1 = 0, d’après le théorème des gendarmes, on a

∫ 1

0
ln(1 + xn) dx −−−−−→

n→+∞
0.

Exercice 5. 1. Remarquons tout simplement que I0 =
∫ π/4

0
dx = π

4 .

Ensuite, on a I1 =
∫ π/4

0

sin(x)
cos(x) dx. Or sur [0;π/4], cos(x) > 0, ainsi

I1 = [− ln(cos(x))]π/4
0 = − ln

(√
2

2

)
= ln(2)

2 .

2. Remarquons que ∀x ∈
[
0, π4

]
, 0 ⩽ tan(x) ⩽ 1, ainsi,

tann+1(x) ⩽ tann(x).

En intégrant dans l’ordre croissant des bornes entre 0 et π4 , on obtient,

∫ π/4

0
tann+1(x) dx ⩽

∫ π/4

0
tann(x) dx

autrement dit In+1 ⩽ In. La suite (In)n∈N est donc bien décroissante.

3. Considérons
In+2 + In =

∫ π/4

0
tann+2(x) dx+

∫ π/4

0
tann(x) dx.

On a
In+2 + In =

∫ π/4

0
(1 + tan2(x)) tann(x) dx.

Pour ceux qui ne voient pas qu’il s’agit d’une dérivée classique, on pose u = tan(x)
le changement de variables C1([0, π/4]) tel que du = (1 + tan2(x)) dx.
Ainsi,

In+2 + In =
∫ 1

0
undu = 1

n+ 1 .

(Pour les étourdis, on se souvient que cette dernière intégrale a été calculée dans une
question précédente.)
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4. On a (In)n∈N décroissante et minorée par 0 (c’est l’intégrale d’une fonction positive
avec les bornes dans l’ordre croissant, donc positive).
Ainsi, (In)n∈N est une suite convergente. Notons ℓ sa limite.

On a lim
n→+∞

In+2 + In = 2ℓ mais 1
n+ 1 −−−−−→n→+∞

0, or d’après la question précédente,
ces quantités sont égales, donc 2ℓ = 0.
Ainsi,

lim
n→+∞

In = 0.

Exercice 6. 1. Notons, pour n ∈ N∗, Sn =
n∑

k=1
ln
(
n+ k + 1
n+ k

)
.

On a

Sn =
n∑

k=1
ln
(
n+ k + 1
n+ k

)

=
n∑

k=1
ln(n+ k + 1)− ln(n+ k)

=
n∑

k=1
ln(n+ k + 1)−

n∑
k=1

ln(n+ k)

=
n+1∑
ℓ=2

ln(n+ ℓ)−
n∑

k=1
ln(n+ k) avec ℓ = k + 1

= ln(2n+ 1) +
n∑

ℓ=2
ln(n+ ℓ)− ln(n+ 1)−

n∑
k=2

ln(n+ k)

= ln
(2n+ 1
n+ 1

)
.

Or 2n+ 1
n+ 1 −−−→n→∞

2, donc, comme ln est continue en 2, par composition on a

lim
n→+∞

n∑
k=1

ln
(
n+ k + 1
n+ k

)
= ln(2).

2. On a
n∑

k=1

1
k + n

= 1
n

n∑
k=1

1
1 + k

n

. Il s’agit d’une somme de Riemann associée à la fonction

continue sur [0, 1] x 7→ 1
1 + x

. Et on trouve donc :

lim
n→+∞

n∑
k=1

1
k + n

=
∫ 1

0

1
1 + x

dx = ln(2).

3. On a pour tout k ∈ [[1, n]], 1
4n2 ⩽

1
(n+ k)2 ⩽

1
n2 .

En ajoutant toutes les inégalités entre 1 et n, on a

1
4n ⩽

n∑
k=1

1
(n+ k)2 ⩽

1
n
.
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Or lim
n→+∞

1
4n = lim

n→+∞

1
n

= 0, donc d’après le théorème des gendarmes,

lim
n→+∞

n∑
k=1

1
(n+ k)2 = 0.

4. Notons h la fonction définie et dérivable sur ]− 1; +∞[ par h(x) = x− ln(1 + x), bien
définie et dérivable car sur cet intervalle 1 + x > 0, donc on compose des fonctions
dérivables puis on fait une combinaison linéaire de fonctions dérivables.

On a h′(x) = 1 − 1
1 + x

= x

1 + x
. Ainsi, h′(x) est du signe de x puisque 1 + x > 0.

Donc h est décroissante sur ]− 1; 0] et croissante sur [0,+∞[. Ainsi h est minimale en
0. Or h(0) = 0, donc ∀x ∈]− 1 +∞, h(x) ⩾ 0, ce qui est équivalent à

∀x ∈]− 1; +∞[; ln(1 + x) ⩽ x.

Notons g la fonction définie et dérivable sur ]− 1; +∞[ par

g(x) = ln(1 + x)− x+ x2

2 .

On a g′(x) = 1
1+x − 1 + x = x2

1+x ⩾ 0. Ainsi, g est croissante. Par ailleurs g(0) = 0,
donc ∀x ∈ R+, g(x) ⩾ 0⇐⇒ x− x2

2 ⩽ ln(1 + x).

5. Notons, pour n ∈ N∗, Sn =
n∑

k=1
ln
(
n+ k + 1
n+ k

)
=

n∑
k=1

ln
(

1 + 1
n+ k

)
.

D’après l’inégalité précédente, on a

1
n+ k

− 1
2(n+ k)2 ⩽ ln

(
1 + 1

n+ k

)
⩽

1
n+ k

.

En ajoutant toutes les inégalités pour k allant de 1 à n, on obtient
n∑

k=1

1
n+ k

−
n∑

k=1

1
2(n+ k)2 ⩽ Sn ⩽

n∑
k=1

1
n+ k

.

Or, d’après les premières questions,

lim
n→+∞

n∑
k=1

1
n+ k

= ln(2)

et
lim

n→+∞

n∑
k=1

1
2(n+ k)2 = 0,

ainsi, par le théorème des gendarmes,

lim
n→+∞

n∑
k=1

ln
(
n+ k + 1
n+ k

)
= ln(2).
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Exercice 7. 1. La fonction sin est continue, strictement croissante de
[
−π2 ,

π

2

]
dans

[−1, 1] donc établit une bijection de
[
−π2 ,

π

2

]
dans [−1, 1]. Elle admet donc une

réciproque que nous noterons g.

2. On sait que sin est dérivable de sur
[
−π2 ,

π

2

]
et sa dérivée s’annule uniquement en

−π2 et π2 . Ainsi, g est dérivable sur ] − 1, 1[ et on a ∀x ∈] − 1, 1[, g′(x) = 1
cos(g(x)) .

Or, ∀x ∈
[
−π2 ,

π

2

]
, cos2(x) = 1− sin2(x) et cos(x) ⩾ 0, ainsi cos(x) =

√
1− sin2(x).

On a donc, pour tout x ∈]− 1, 1[, g′(x) = 1√
1− sin2(g(x))

puisque g(x) ∈
]
− π

2 ,
π

2

[
.

Ainsi, ∀x ∈]− 1, 1[, g′(x) = 1√
1− x2

.

3. Notons, pour n ∈ N∗,

Sn =
n∑

k=1

1√
4n2 − k2

= 1
n

n∑
k=1

1√
4− k2

n2

.

On reconnait une somme de Riemann, ainsi lim
n+∞

Sn =
∫ 1

0

1√
4− x2

dx.

En factorisant par 1
2 , on a lim

n+∞
Sn = 1

2

∫ 1

0

1√
1−

(
x
2
)2 dx.

On pose le changement de variable t = x

2 donc dt = 1
2 dx pour avoir :

lim
n+∞

Sn =
∫ 1

2

0

1√
1− t2

dt =
∫ 1

2

0
g′(t) dt = g

(1
2

)
− g(0) = π

6 − 0.

Ainsi,

lim
n→+∞

n∑
k=1

1√
4n2 − k2

= π

6 .

Remarquons que nous aurions pu éviter le changement de variables en factorisant
directement par 2n et en reconnaissant l’intégrale de 0 à 1

2.

Exercice 8 (Comparaisons Séries-Intégrales). 1. Soit k ∈ N. Sur l’intervalle [k, k + 1[,
comme f est croissante, on a

√
k ⩽
√
x ⩽
√
k + 1.

En intégrant cette inégalité de k à k+ 1 (les bornes étants dans l’ordre croissant), on
récupère

∫ k+1

k

√
k dx ⩽

∫ k+1

k

√
x dx ⩽

∫ k+1

k

√
k + 1 dx.

Soit
√
k ⩽

∫ k+1

k

√
x dx ⩽

√
k + 1.

En ajoutant toutes ces inégalités de 0 à n − 1, on récupère grâce à la relation de
Chasles,

n−1∑
k=0

√
k ⩽

∫ n

0

√
x dx ⩽

n−1∑
k=0

√
k + 1.
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On trouve alors, en posant ℓ = k + 1, et en calculant l’intégrale,

n−1∑
k=0

√
k ⩽

[2
3x

3/2
]n

0
⩽

n∑
ℓ=1

√
ℓ.

Soit,
Sn −

√
n ⩽

2
3n

3/2 ⩽ Sn.

En remaniant un peu, on obtient

2
3n

3/2 ⩽ Sn ⩽
2
3n

3/2 +
√
n.

Il suffit de diviser le tout par 2
3n
√
n pour avoir

1 ⩽
Sn

2
3n
√
n
⩽ 1 + 3

2n.

En faisant tendre n → +∞, le théorème des gendarmes assure lim
n→+∞

Sn
2
3n
√
n

, soit

Sn ∼
n→+∞

2
3n
√
n.

2. On pose g la fonction définie sur R∗ par g(x) = 1√
x

. Soit k ∈ N∗. Sur l’intervalle

[k, k + 1[, comme g est décroissante, on a 1√
k + 1

⩽
1√
x
⩽

1√
k
.

En intégrant cette inégalité de k à k+ 1 (les bornes étants dans l’ordre croissant), on
récupère

∫ k+1

k

1√
k + 1

dx ⩽
∫ k+1

k

1√
x

dx ⩽
∫ k+1

k

1√
k

dx.

Soit 1√
k + 1

⩽
∫ k+1

k

1√
x

dx ⩽
1√
k
.

En ajoutant toutes ces inégalités de 1 à n − 1, on récupère grâce à la relation de
Chasles,

n−1∑
k=1

1√
k + 1

⩽
∫ n

1

1√
x

dx ⩽
n−1∑
k=1

1√
k
.

On trouve alors, en posant ℓ = k + 1, et en calculant l’intégrale,

n∑
ℓ=2

1√
ℓ
⩽
[
2
√
x
]n
1 ⩽

n−1∑
k=1

1√
k
.

Soit,
Tn − 1 ⩽ 2

√
n− 2 ⩽ Tn −

1√
n
.

En remaniant un peu, on obtient

2
√
n− 2 + 1√

n
⩽ Tn ⩽ 2

√
n− 1.
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Il suffit de diviser le tout par 2
√
n pour avoir

1− 1√
n

+ 1
2n ⩽ Tn ⩽ 1− 1

2
√
n
.

En faisant tendre n → +∞, le théorème des gendarmes assure lim
n→+∞

Tn

2
√
n

= 1, soit

Tn ∼
n→+∞

2
√
n.

3. On pose h la fonction définie sur R∗ par h(x) = 1√
x

. Soit k ∈ N∗. Sur l’intervalle

[k, k + 1[, comme h est décroissante, on a 1
k + 1 ⩽

1
x
⩽

1
k
.

En intégrant cette inégalité de k à k+ 1 (les bornes étants dans l’ordre croissant), on
récupère

∫ k+1

k

1
k + 1 dx ⩽

∫ k+1

k

1
x

dx ⩽
∫ k+1

k

1
k

dx.

Soit 1
k + 1 ⩽

∫ k+1

k

1
x

dx ⩽
1
k
.

En ajoutant toutes ces inégalités de 1 à n − 1, on récupère grâce à la relation de
Chasles,

n−1∑
k=1

1
k + 1 ⩽

∫ n

1

1
x

dx ⩽
n−1∑
k=1

1
k
.

On trouve alors, en posant ℓ = k + 1, et en calculant l’intégrale,

n∑
ℓ=2

1
ℓ
⩽ [ln(x)]n1 ⩽

n−1∑
k=1

1
k
.

Soit,
Un − 1 ⩽ ln(n) ⩽ Un −

1
n
.

En remaniant un peu, on obtient

ln(n) + 1
n
⩽ Un ⩽ ln(n) + 1.

Il suffit de diviser le tout par ln(n) pour avoir

1 + 1
n ln(n) ⩽ Un ⩽ 1 + 1

ln(n) .

En faisant tendre n → +∞, le théorème des gendarmes assure lim
n→+∞

Un

ln(n) = 1, soit

Un ∼
n→+∞

ln(n).

Exercice 9. 1. a. Comme ∀x ∈ [0, 1], 1 + x2 > 0, on a

J1 =
∫ 1

0

x

1 + x2 dx =
[1

2 ln(1 + x2)
]1

0
= ln(2)

2 .
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b. On a, ∀x ∈ [0, 1], 0 ⩽
1

1 + x2 ⩽ 1 puis en multipliant par xn ⩾ 0,

0 ⩽
xn

1 + x2 ⩽ xn.

En intégrant de 0 à 1 avec les bornes dans l’ordre croissant, on obtient :

0 ⩽ Jn =
∫ 1

0

xn

1 + x2 dx ⩽
∫ 1

0
xn dx =

[ 1
n+ 1x

n+1
]1

0
= 1
n+ 1 .

c. Il suffit d’appliquer le théorème des gendarmes puisque lim
n→∞

1
n+ 1 = 0. Ainsi,

Jn −−−−−→
n→+∞

0.

2. a. On a
In =

∫ 1

0
xn ln(1 + x2) dx.

En posant u et v deux fonctions C1([0, 1]) définies par

u′(x) = xn; u(x) = 1
n+ 1x

n+1;

v(x) = ln(1 + x2); v′(x) = 2x
1 + x2

on a
In =

[ 1
n+ 1x

n+1 ln(1 + x2)
]1

0
−
∫ 1

0

2xn+2

(n+ 1)(1 + x2) dx.

En calculant ce qu’il est possible et en procédant par linéarité de l’intégrale, on
obtient,

In = ln(2)
n+ 1 −

2
n+ 1Jn+2.

b. Il s’agit tout simplement de faire une somme de limites pour voir que lim
n→+∞

In = 0.

c. On remarque que In est égal à une somme de termes dont le premier à l’air ≪ plus
gros ≫ que l’autre (le deuxième est le produit de deux termes qui tendent vers 0,
dont un est du même ordre que le premier).
On factorise donc,

In = ln(2)
n

 1
1 + 1

n

+ 2
ln(2)

(
1 + 1

n

)Jn+2

 .
Or il est clair que 1

1 + 1
n

−−−−−→
n→+∞

1 et 2
ln(2)

(
1 + 1

n

)Jn+2 −−−−−→
n→+∞

0 (ce dernier par

produit ).
Ainsi

1
1 + 1

n

+ 2
ln(2)

(
1 + 1

n

)Jn+2 −−−−−→
n→+∞

1

et donc
In ∼

ln(2)
n

.
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Exercice 10. 1. Remarquons que pour tout x ∈ [0, 1], on a

0 ⩽
xk(n+1)

1 + xk
⩽ xk(n+1)

puisque 1 + xk ⩾ 1 (mais c’est même vrai pour x ⩾ 0). Si on intègre le tout entre 0
et 1 (bornes dans l’ordre croissant), on obtient

0 ⩽
∫ 1

0

xk(n+1)

1 + xk
dx ⩽

∫ 1

0
xk(n+1) dx = 1

k(n+ 1) + 1 .

Or 1
k(n+ 1) + 1 −−−−−→n→+∞

0.

Ainsi, par encadrement
∫ 1

0

xk(n+1)

1 + xk
dx −−−−−→

n→+∞
0.

Et donc lim
n→+∞

In = 0.

2. On a J − In =
∫ 1

0

dx
1 + xk

− (−1)n+1
∫ 1

0

xk(n+1)

1 + xk
dx.

Par linéarité, on a

J − In =
∫ 1

0

1− (−xk)n+1

1− (−xk) dx.

On reconnait 1− (−xk)n+1

1− (−xk) =
n∑

j=0
(−xk)j ainsi,

J − In =
∫ 1

0

n∑
j=0

(−xk)j dx.

Ou encore, par linéarité,

J − In =
n∑

j=0
(−1)j

∫ 1

0
xkj dx.

Or
∫ 1

0
xkj dx =

[ 1
kj + 1x

kj+1
]1

0
= 1
kj + 1.

Ainsi,

J − In =
n∑

j=0

(−1)j

kj + 1 .

3. Remarquons que

J − IN =
N∑

n=0

(−1)n

kn+ 1 .

Or lim
N→+∞

IN = 0, donc
N∑

n=0

(−1)n

kn+ 1 = J − IN −−−−−→
N→+∞

J.

Ainsi, lim
N→+∞

N∑
n=0

(−1)n

kn+ 1 = J.

Elle converge vers J .
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4. On a donc, en prenant k = 1, lim
N→+∞

N∑
n=0

(−1)n

n+ 1 =
∫ 1

0

dx
1 + x

= [ln(1 + x)]10 = ln(2).

Et en prenant k = 2, lim
N→+∞

N∑
n=0

(−1)n

2n+ 1 =
∫ 1

0

dx
1 + x2 = [arctan(x)]10 = π

4 .

Exercice 11. 1. On a, pour x ∈ [0, 1[,

x2n − x4n

1− x2 = x2n 1− (x2)n

1− x2 = x2n
n−1∑
k=0

(x2)k.

Ainsi, In est l’intégrale d’une fonction continue sur [0, 1[, prolongeable par continuité
en 1 (polynôme), donc In est en réalité l’intégrale d’une fonction continue sur [0, 1],
donc existe bien.
Et on a par linéarité,

In =
∫ 1

0
x2n

n−1∑
k=0

x2k dx =
n−1∑
k=0

∫ 1

0
x2n+2k dx.

Or
∫ 1

0
x2n+2k dx =

[ 1
2n+ 2k + 1x

2n+2k+1
]1

0
= 1

2n+ 2k + 1 .

On a donc bien

In =
n−1∑
k=0

1
2n+ 2k + 1 .

2. On a, pour k ∈ [[0, n− 1]], 1
2n+ 2k + 2 ⩽

1
2n+ 2k + 1 ⩽

1
2n+ 2k . En ajoutant toutes

ces inégalités, on récupère

n−1∑
k=0

1
2n+ 2k + 2 ⩽

n−1∑
k=0

1
2n+ 2k + 1 ⩽

n−1∑
k=0

1
2n+ 2k .

On reconnait In et en posant ℓ = k + 1 dans la première somme, on obtient

n∑
ℓ=1

1
2n+ 2ℓ ⩽ In ⩽

n−1∑
k=0

1
2n+ 2k

ce qui est exactement ce qui était demandé.

3. On a
∫ 1

0

1
1 + x

dx = [ln(1 + x)]10 = ln(2) puisque 1 + x > 0 sur [0, 1].

Par ailleurs,
n∑

k=1

1
n+ k

= 1
n

n∑
k=1

1
1 + k

n

. On reconnait la somme de Riemann associée à

l’intégrale précédente, ainsi

lim
n→+∞

n∑
k=1

1
n+ k

= ln(2).
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4. On a
n−1∑
k=0

1
2n+ 2k = 1

2

n−1∑
k=0

1
n+ k

.

On reconnait presque la somme précédente. On peut soit justifier que les sommes de
Riemann ne changent pas si on commence à 0 ou à 1 et si on termine à n− 1 ou n ou
tout simplement remarquer que

n−1∑
k=0

1
2n+ 2k = 1

2

n∑
k=1

1
n+ k

+ 1
2n −

1
4n −−−→n→∞

ln(2)
2 .

De la même façon
n∑

k=1

1
2n+ 2k = 1

2

n∑
k=1

1
n+ k

−−−→
n→∞

ln(2)
2 .

Ainsi, puisque ∀n ∈ N avec n ⩾ 2,
n∑

k=1

1
2n+ 2k ⩽ In ⩽

n∑
k=0

1
2n+ 2k , on a par enca-

drement
lim

n→+∞
In = ln(2)

2 .

Exercice 12. 1. Pour tout x ∈ R+, la fonction gx est une fonction continue (quotient
de fonctions continues dont le dénominateur ne s’annule pas). Ainsi, f est bien définie
sur R.

2. Prenons x, y deux réels positifs avec x ⩽ y.

Pour tout t ∈ [0, 1], on a tx ⩾ ty (car ty − tx = tx(ty−x − 1) ⩽ 0 car y − x ⩾ 0). En
multipliant par 1

1 + t
> 0, on obtient

tx

1 + t
⩾

ty

1 + t
.

En intégrant ces fonctions continues avec les bornes dans l’ordre croissant, on obtient∫ 1

0

tx

1 + t
dt ⩾

∫ 1

0

ty

1 + t
dt.

Autrement dit, f(x) ⩾ f(y). La fonction f est donc décroissante.

3. On a pour tout t ∈ [0, 1], 1
1 + t

⩽ 1 donc 0 ⩽
tx

1 + t
⩽ tx. En intégrant ces fonctions

continues avec les bornes dans l’ordre croissant, on obtient

0 ⩽
∫ 1

0

tx

1 + t
dt ⩽

∫ 1

0
tx dt =

[ 1
x+ 1 t

x+1
]1

0
= 1
x+ 1 .

Comme lim
x→+∞

1
1 + x

= 0, d’après le théorème des gendarmes, on a lim
x→+∞

f(x) = 0.

4. a. On a 0 ⩽ t ⩽ 1 donc en appliquant la fonction t 7−→ tx qui est croissante car
x ⩾ 0, on a tx ⩽ 1, ce qui nous donne 0 ⩽ 1 − tx. En multipliant le tout par

1
1 + t

> 0, on obtient

0 ⩽
1− tx
1 + t

.
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Par ailleurs, comme 1
1 + t

⩽ 1, en multipliant par 1− tx ⩾ 0, on a

1− tx
1 + t

⩽ 1− tx.

On a donc, pour t ∈ [0, 1],

0 ⩽
1− tx
1 + t

⩽ 1− tx.

En intégrant ces fonctions continues avec les bornes dans l’ordre croissant, on
obtient

0 ⩽
∫ 1

0

1− tx
1 + t

dt ⩽
∫ 1

0
1− tx dt =

[
t− 1

x+ 1 t
x+1

]1

0
= 1− 1

x+ 1 = x

x+ 1 .

b. On a, par linéarité de l’intégrale,∫ 1

0

1− tx
1 + t

dt =
∫ 1

0

1
1 + t

dt−
∫ 1

0

tx

1 + t
dt = [ln(1 + t)]10 − f(x) = ln(2)− f(x).

Et d’après la question précédente, on a 0 ⩽ ln(2)− f(x) ⩽ x

x+ 1 .

Comme lim
x→0

x

x+ 1, d’après le théorème des gendarmes, on a lim
x→0

ln(2)− f(x) = 0,
soit lim

x→0
f(x) = ln(2).

Exercice 13. 1. Sur R∗, t 7→ 1 + t2 est une fonction continue avec 1 + t2 > 1, donc
t 7→ ln(1 + t2) est continue par composition et strictement positive donc non nulle.
Ainsi, la fonction que nous appellerons g définie sur R∗ par g(t) = 1

ln(1 + t2) est bien

continue sur R∗, donc en particulier sur [min(x, 2x),max(x, 2x)].
Ainsi, ∀x ∈ R∗, f(x) est bien définie.

2. Notons G une primitive de g sur R∗+. On a f(x) = G(2x)−G(x).
Donc, comme G est dérivable sur R∗+ et que x 7→ 2x est dérivable de R∗+ dans R∗+, f
est bien dérivable sur R∗+ par composition de fonctions dérivables puis combinaison
linéaire. On a de plus, ∀x ∈ R∗+,

f ′(x) = 2G′(2x)−G′(x) = 2g(2x)− g(x).

On a donc
f ′(x) = 2

ln(1 + 4x2) −
1

ln(1 + x2) .

En réduisant au même dénominateur, on a

f ′(x) = ln((1 + x2)2)− ln(1 + 4x2)
ln(1 + 4x2) ln(1 + x2) .

Ainsi, f ′(x) est du signe de son numérateur (le dénominateur est toujours strictement
positif).

f ′(x) > 0⇐⇒ ln((1 + x2)2) > ln(1 + 4x2).
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Mais comme la fonction exp est strictement croissante sur R, cela revient à

f ′(x) > 0⇐⇒ (1 + x2)2 > 1 + 4x2.

Ce qui est équivalent à 1 + 2x2 + x4 > 1 + 4x2, soit x2(x2 − 2) > 0 ou encore
x2(x−

√
2)(x+

√
2) > 0.

Donc, sur R∗+ f ′(x) > 0 si et seulement si x−
√

2 > 0 (le reste est strictement positif).
f est décroissante sur ]0,

√
2] puis croissante sur [

√
2,+∞[.

3. a. Notons h la fonction définie et dérivable sur ]− 1; +∞[ par h(u) = u− ln(1 + u),
bien définie et dérivable car sur cet intervalle 1 + u > 0, donc on compose des
fonctions dérivables puis on fait une combinaison linéaire de fonctions dérivables.
On a h′(u) = 1− 1

1 + u
= u

1 + u
. Ainsi, h′(u) est du signe de u puisque 1 + u > 0.

Donc h est décroissante sur ]−1; 0] et croissante sur [0,+∞[. Ainsi h est minimale
en 0. Or h(0) = 0, donc ∀u ∈]− 1 +∞[, h(u) ⩾ 0, ce qui est équivalent à

∀u ∈]− 1; +∞[; ln(1 + u) ⩽ u.

On aurait pu se contenter de regarder sur [0,+∞[, mais... une fois n’est pas cou-
tume, il vaut mieux en faire trop : cette inégalité étant classique, cela ne fait pas
de mal de la revoir.

b. En utilisant la question précédente, on a, pour tout t ∈ R∗, 0 ⩽ ln(1 + t2) ⩽ t2,
donc en prenant l’inverse (tout est bien du même signe), on a

∀t ∈ R∗,
1

ln(1 + t2) ⩾
1
t2
.

En intégrant de x à 2x dans l’ordre croissant puisque x > 0, on a∫ 2x

x

1
ln(1 + t2) dt ⩾

∫ 2x

x

1
t2

dt.

Or
∫ 2x

x

1
t2

dt =
[
−1
t

]2x

x
= − 1

2x + 1
x

= 1
2x.

Ainsi, on a, pour tout x ∈ R∗+, f(x) ⩾ 1
2x .

Or, on a lim
x→0
x>0

1
2x = +∞, ainsi, par minoration,

lim
x→0
x>0

f(x) = +∞.

4. Soit x ∈ R∗+.

a. Pour x > 0, lorsque t ∈ [x, 2x], on a

0 < x2 ⩽ t2 ⩽ 4x2

puisque la fonction carrée est strictement croissante sur R+. En ajoutant 1, puis
en prenant le ln qui est strictement croissant sur R∗+,

0 = ln(1) < ln(1 + x2) ⩽ ln(1 + t2) ⩽ ln(1 + 4x2),

puis en prenant l’inverse (décroissante sur R∗+), on a

1
ln(1 + x2) ⩾

1
ln(1 + t2) ⩾

1
ln(1 + 4x2) .
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On intègre ensuite de x à 2x (encore une fois, les bornes sont dans le bon sens car
x > 0), on a∫ 2x

x

1
ln(1 + x2) dt ⩾

∫ 2x

x

1
ln(1 + t2) dt ⩾

∫ 2x

x

1
ln(1 + 4x2) dt.

On termine en réalisant que le terme de gauche est celui de droite sont évidents
et donc

2x− x
ln(1 + x2) ⩾ f(x) ⩾ 2x− x

ln(1 + 4x2) ,

ce qui nous donne le résultat attendu.
b. Puis, on cherche l’équivalent,

x

ln(x2) + ln
(
1 + 1

x2

) ⩾ f(x) ⩾ x

ln(x2) + ln(4) + ln
(
1 + 1

4x2

) .
En arrangeant un peu les termes, on trouve :

x

2 ln(x)
1

1 + ln
(

1+ 1
x2
)

2 ln(x)

⩾ f(x) ⩾ x

2 ln(x)
1

1 + ln(4)
2 ln(x) + ln

(
1+ 1

4x2
)

2 ln(x)

.

Autrement dit, avec x > 1 pour que x

2 ln(x) > 0, on a

1

1 + ln
(

1+ 1
x2
)

2 ln(x)

⩾
f(x)

x
2 ln(x)

⩾
1

1 + ln(4)
2 ln(x) + ln

(
1+ 1

4x2
)

2 ln(x)

.

Or lim
x→+∞

1

1 + ln
(

1+ 1
x2
)

2 ln(x)

= lim
x→∞

1

1 + ln(4)
2 ln(x) + ln

(
1+ 1

4x2
)

2 ln(x)

= 1, donc par encadrement

f(x)
x

2 ln(x)
−−−−→
x→+∞

1.

Ainsi, en +∞, f(x) ∼ x

2 ln(x) .

5. On a, ∀x ∈ R∗, −x ∈ R∗, donc f(−x) =
∫−2x
−x

1
ln(1+t2) dt. On pose u = −t donc

du = − dt le changement de variable C1 qui nous donne

f(−x) =
∫ 2x

x

1
ln(1 + (−u)2)(−du) = −f(x).

Ainsi, f est impaire.

6. On peut écrire, en utilisant ce qui a été démontré précédemment et l’imparité de f :

x

f(x)

−∞ −
√

2 0
√

2 +∞

−∞−∞

f(−
√

2)f(−
√

2)

−∞

+∞

f(
√

2)f(
√

2)

+∞+∞
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7. Vous n’oublierez pas de respecter les signes : f
(√

2
2

)
> 0, la tangente horizontale à

cet endroit là, le fait que f tende vers +∞ pas trop vite et la symétrie par rapport à
0 due à l’imparité.

Exercice 14 (Intégrales de Wallis, un classique indémodable). 1. Une question qui ne
servira pas dans la suite, mais qui permet de vérifier que le candidat sait faire un
changement de variable. En posant le changement de variable C1 ([0, π

2
])

, u = π

2 − x
donc du = −dx, on a

In =
∫ 0

π
2

sinn
(
π

2 − u
)

(−du) = −
∫ 0

π
2

cosn(u)du =
∫ π

2

0
cosn(x) dx.

2. On a, pour tout x ∈
[
0, π2

]
, 0 ⩽ sin(x) ⩽ 1, donc 0 ⩽ sinn+1(x) ⩽ sinn(x). Ainsi, en

intégrant dans l’ordre croissant des bornes de 0 à π

2 , on obtient

0 ⩽ In+1 ⩽ In.

Donc (In)n∈N est décroissante.

3. On a In+2 =
∫ π/2

0
sinn+2(x) dx. Faisons une intégration par parties en posant u et v

deux fonctions C1 ([0, π
2
])

définies par

u′(x) = sin(x); u(x) = − cos(x)

v(x) = sinn+1(x); v′(x) = (n+ 1) cos(x) sinn(x)

Ainsi, on a

In+2 =
[
− cos(x) sinn+1(x)

]π/2

0
−
∫ π/2

0
−(n+ 1) cos2(x) sinn(x) dx.

Or
[
− cos(x) sinn+1(x)

]π/2

0
= 0 et cos2(x) = 1− sin2(x), donc

In+2 = (n+ 1)
∫ π/2

0
(1− sin2(x)) sinn(x) dx.

En utilisant la linéarité de l’intégrale, on trouve

In+2 = (n+ 1)
∫ π/2

0
sinn(x) dx− (n+ 1)

∫ π/2

0
sinn+2(x) dx.

Soit In+2 = (n+ 1)In − (n+ 1)In+2 ce que nous arrangeons en

In+2 = n+ 1
n+ 2In.

Note culturelle : on peut alors montrer que I2p = (2p)!
22p(p!)2π et I2p+1 = 22p(p!)2

(2p+ 1)! .

278 / 359



4. Multiplions l’égalité précédente par (n+ 2)In+1 pour obtenir

(n+ 2)In+1In+2 = (n+ 1)In+1In.

Ainsi la suite
(
(n+ 1)In+1In

)
n∈N est stationnaire.

On a donc, ∀n ∈ N, (n+ 1)In+1In = I1I0.

Or, I0 =
∫ π/2

0
1 dx = π

2 et I1 =
∫ π/2

0
sin(x) dx = [− cos(x)]π/2

0 = 1.

Ainsi, ∀n ∈ N, (n+ 1)In+1In = π

2 .

5. Là, ça se complique un peu. Remarquons que comme (In) est décroissante, on a
In+2
In

⩽
In+1
In

⩽ 1 puisque In+2 ⩽ In+1 ⩽ In puis en multipliant tout par 1
In

> 0
(In > 0 car c’est l’intégrale d’une fonction continue positive non nulle).

Par ailleurs, In+2 = n+ 1
n+ 2In, donc In+2

In
= n+ 1
n+ 2 −−−→n→∞

1.

Ainsi, par le théorème des gendarmes, on a In+1
In
−−−→
n→∞

1, ou encore In+1 ∼ In.

Ensuite, reprenons l’égalité précédente. On a (n+ 1)In+1In ∼ nI2
n puisque n+ 1 ∼ n

et In+1 ∼ In.

On a donc nI2
n −−−→n→∞

π

2 , autrement dit I2
n ∼

π

2n .

En prenant la racine carrée, on obtient, In ∼
√
π

2n .

19 Géométrie
Exercice 1 (A propos des droites et des plans.). 1. C’est l’ensemble des pointsM(x, y)

tels que −−→OM est orthogonal à −→n . En posant
〈−−→
OM,−→n

〉
= 0, on trouve immédiatement

qu’il s’agit de la droite d’équation x+ 2y = 0.
C’est l’ensemble des points {(x, y) ∈ R2/x+ 2y = 0} = {(−2y, y)/y ∈ R} ce qui nous
donne une représentation paramétrique.
De la même façon, on montre que le plan est l’ensemble des points tels que

〈−−→
OM,−→n

〉
=

0 donc a pour équation x + 2y + 3z = 0 donc a pour représentation paramétrique
{(−2y − 3z, y, z)/(y, z) ∈ R2}.

2. Notons le point A(3, 2). Cette fois, on cherche les points M(x, y) tels que −−→AM est
orthogonal à −→n . On trouve alors que la droite a pour équation x + 2y = 7 et donc
c’est l’ensemble des points

{(x, y)/x+ 2y = 7} = {(7− 2y, y)/y ∈ R}.

Dans R3, on note A(3, 2, 1) et les points M(x, y, z) tels que −−→AM est orthogonal à
−→n . On trouve que le plan a pour équation x + 2y + 3z = 10 et pour représentation
paramétrique {(10− 2y − 3z, y, z)/(y, z) ∈ R2}.

3. La droite peut être représentée par

{(1, 1) + λ(1, 2)/λ ∈ R} = {(1 + λ, 1 + 2λ)/λ ∈ R}.

Pour déterminer une équation, on réalise qu’on cherche les pointsM tels que, en notant
A(1, 1), −−→AM et −→u sont colinéaires. En faisant le déterminant de ces deux vecteurs,
on récupère une équation cartésienne de cette droite, par exemple −2x+ y = −1.
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Le plan peut être représenté par

{(1, 1, 1)+λ(1, 2, 3)+µ(2, 1, 0)/(λ, µ) ∈ R2} = {(1+λ+2µ, 1+2λ+µ, 1+3λ)/(λ, µ) ∈ R2}

Pour déterminer une équation de ce plan, on prend M(x, y, z) un point de ce plan.
Ainsi, il doit exister λ et µ tels que (1 + λ + 2µ, 1 + 2λ + µ, 1 + 3λ) = (x, y, z). Cela
revient au système

1 + λ+ 2µ = x
1 + 2λ+ µ = y

1 + 3λ = z

⇐⇒


1 + λ+ 2µ = x

1 + 3λ = −x+ 2y L2 ← 2L2 − L1
1 + 3λ = z

⇐⇒


λ+ 2µ = x− 1

3λ = −x+ 2y − 1
0 = x− 2y + z L3 ← L3 − L2

Ainsi, λ et µ existent si et seulement si x− 2y + z = 0.
Une équation cartésienne de ce plan est x− 2y + z = 0.

Exercice 2. 1. On remarque que cet ensemble se décrit E1 = {(x, 2x)/x ∈ R} =
{(0, 0)+x(1, 2)/x ∈ R}. On reconnait alors la droite de vecteur directeur (1, 2) passant
par (0, 0).

2. On reconnait le plan de vecteur normal (−2, 1, 0) passant par (0, 0, 0) (attention, nous
sommes bien dans R3).
Remarquons que O ∈ E2, ainsi que A(1, 2, 0) ∈ E2 ou B(0, 0, 1) ∈ E2 Les vecteurs
−→
OA = (1, 2, 0) et −−→OB = (0, 0, 1) sont directeurs du plan (ils ne sont pas colinéaires),
donc une de ses représentations est

E2 = {(0, 0, 0) + λ(1, 2, 0) + µ(0, 0, 1)/(λ, µ) ∈ R2} = {(λ, 2λ, µ)/(λ, µ) ∈ R2}.

3. Immédiatement, on reconnait le plan de vecteur normal (−2, 1, 1) passant par (0, 0, 0).
Remarquons que O ∈ E3, ainsi que A(1, 2, 0) ∈ E3 ou B(0,−1, 1) ∈ E3 Les vecteurs
−→
OA = (1, 2, 0) et −−→OB = (0,−1, 1) sont directeurs du plan (ils ne sont pas colinéaires),
donc une de ses représentations est

E3{(0, 0, 0) + λ(1, 2, 0) + µ(0,−1, 1)/(λ, µ) ∈ R2} = {(λ, 2λ− µ, µ)/(λ, µ) ∈ R2}.

4. Comme à la question précédente, il s’agit du plan de vecteur normal (−2, 1, 1) mais
passant par (0, 0, 3) (par exemple). Comme il a le même vecteur normal, il est dirigé
par le même système que le précédent (sinon, on aurait là encore pris 3 points du plan
formants deux vecteurs non colinéaires). Ainsi, une représentation est

E4 = {(0, 0, 3)+λ(1, 2, 0)+µ(0,−1, 1)/(λ, µ) ∈ R2} = {(λ, 2λ−µ, 3+µ)/(λ, µ) ∈ R2}.
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5. On a E5 = {(0, 0, 0) +λ(2, 3,−1)/λ ∈ R}. On reconnait la droite de vecteur directeur
(2, 3,−1) passant par (0, 0, 0).
Pour lui trouver un système d’équations, on prend (x, y, z) ∈ E5. Cela signifie qu’il
existe λ ∈ R tel que

2λ = x
3λ = y
−λ = z

⇐⇒


0 = x+ 2z L1 ← L1 + 2L3
0 = y + 3z L2 ← L2 + 3L3
−λ = z

Ainsi, (x, y, z) ∈ E5 ⇔
{

0 = x+ 2z
0 = y + 3z

Ainsi un système d’équations est, par exemple,
{
x+ 2z = 0
y + 3z = 0

Attention, ce n’est pas le seul ! Celui qui apparaitra dépendra de la façon dont vous
avez échelonné le système.

6. On a E6 = {(−1, 2, 0)+λ(2, 3,−1)/λ ∈ R}. On reconnait la droite de vecteur directeur
(2, 3,−1) passant par (−1, 2, 0).
Pour lui trouver un système d’équations, on prend (x, y, z) ∈ E6. Cela signifie qu’il
existe λ ∈ R tel que

2λ− 1 = x
3λ+ 2 = y
−λ = z

⇐⇒


−1 = x+ 2z L1 ← L1 + 2L3

2 = y + 3z L2 ← L2 + 3L3
−λ = z

Ainsi, (x, y, z) ∈ E6 ⇔
{
−1 = x+ 2z

2 = y + 3z

Ainsi un système d’équations est, par exemple,
{
x+ 2z = −1
y + 3z = 2

Encore une fois, ce n’est pas le seul ! Celui qui apparaitra dépendra de la façon dont
vous avez échelonné le système.

7. On a E7 = {(0, 0, 0) + a(2, 1, 1) + b(−1, 2, 0)/(a, b) ∈ R2}, ains il s’agit d’un plan de
base

(
(2, 1, 1), (−1, 2, 0)

)
passant par l’origine.

Pour en déterminer une équation, on prend (x, y, z) ∈ E7 si et seulement si il existe a
et b deux réels tels que

2a− b = x
a+ 2b = y

a = z

⇐⇒


−b = x− 2z L1 ← L1 − 2L3
2b = y − z L2 ← L2 − L3
a = z
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⇐⇒


−b = x− 2z

0 = 2x+ y − 5z L2 ← L2 + 2L1
a = z

Le système est bien échelonné, il admet un unique couple solution si et seulement si
2x+ y − 5z = 0.
Ainsi, le plan a pour équation 2x+ y − 5z = 0.

8. On a E8 = {(−2, 1, 6) + a(2, 1, 1) + b(−1, 2, 0)/(a, b) ∈ R2}, ains il s’agit d’un plan de
base

(
(2, 1, 1), (−1, 2, 0)

)
passant par (−2, 1, 6).

Pour en déterminer une équation, on prend (x, y, z) ∈ E8 si et seulement si il existe a
et b deux réels tels que

2a− b− 2 = x
a+ 2b+ 1 = y

a+ 6 = z

⇐⇒


−b− 14 = x− 2z L1 ← L1 − 2L3

2b− 5 = y − z L2 ← L2 − L3
a+ 6 = z

⇐⇒


−b− 14 = x− 2z
−33 = 2x+ y − 5z L2 ← L2 + 2L1
a+ 6 = z

Le système est bien échelonné, il admet un unique couple solution si et seulement si
2x+ y − 5 = −33.
Ainsi, le plan a pour équation 2x+ y − 5z = −33.

9. On pourrait croire qu’il s’agit d’une droite, mais pour identifier proprement les choses,
essayons de paramétrer proprement l’ensemble.

On a (x, y, z) ∈ E9 ⇐⇒
{
−2x+ y + z = 0
4x− 2y − 2z = 0 .

⇐⇒
{
−2x+ y + z = 0

0 = 0 L2 ← L2 + 2L1

⇐⇒ y = 2x− z.
Ainsi, E9 = {(x, 2x−z, z)/(x, z) ∈ R2} = {(0, 0, 0)+x(1, 2, 0)+z(0,−1, 1)/(x, z) ∈ R2}
donc E3 est un plan de base

(
(1, 2, 0), (0,−1, 1)

)
et passant par l’origine.

10. On a (x, y, z) ∈ E10 ⇐⇒
{
x+ y + z = 0
x− y + z = 2 .

⇐⇒
{
x+ y + z = 0

−2y = 2 L2 ← L2 − L1

⇐⇒
{
x+ z = 1

y = −1

⇐⇒
{
z = −x+ 1
y = −1

Ainsi, E10 = {(x,−1,−x+ 1)/x ∈ R} = {(0,−1, 1) + x(1, 0,−1)/x ∈ R} donc E10 est
la droite donc de vecteur directeur (1, 0,−1) et passant par (0,−1, 1).
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11. C’est faussement difficile : en effet, x2 + y2 = 0⇐⇒ x = y = 0. On a donc

E11 = {(0, 0, z)/z ∈ R} = {(0, 0, 0) + z(0, 0, 1)/z ∈ R}.

Il s’agit de la droite de vecteur directeur (0, 0, 1) passant par (0, 0, 0).

Exercice 3. 1. On a, au vu du cours, −→n = (2, 3).

2. Notons D′ cette droite. Considérons un point M de coordonnées (x, y).

On a M ∈ D′ ⇐⇒ det(−−→AM,−→n ) = 0⇐⇒
∣∣∣∣∣x− 3 2
y + 6 3

∣∣∣∣∣ = 0.

Autrement dit M ∈ D′ ⇐⇒ 3(x− 3)− 2(y + 6) = 0⇐⇒ 3x− 2y = 21.

3. Notons (x, y) les coordonnées du point H. Le projeté orthogonal de A sur D est le
point H tel que −−→AH est orthogonal à D, autrement dit que H ∈ D′, et tel que H ∈ D.
Autrement dit, H est le point d’intersection de D et D′.

Ainsi, H ∈ D ∩D′ ⇐⇒
{

2x +3y = 1
3x −2y = 21 ⇐⇒

L2←2L2−3L1

{
2x +3y = 1
−13y = 39.

Autrement dit H ∈ D ∩D′ ⇐⇒
{

2x +3y = 1
y = −3 ⇐⇒

{
x = 5

y = −3.
Ainsi, H a pour coordonnées (5,−3) .

4. On a D =
{
(x, y) ∈ R2/2x+ 3y = 1

}
, donc D =

{(1
2 −

3
2y, y

)
/y ∈ R

}
.

Ainsi, la droite D est la droite passant par le point M de coordonnées (−1, 1) (en
faisant y = 1 pour s’éviter des fractions) et dirigée par le vecteur

(
−3

2 , 1
)

ou encore
par −→u = (−3, 2).

5. On peut ainsi dire que D est dirigée par le vecteur
−→
u′ = 1√

13
(−3, 2) car ∥−→u ∥ =

√
13.

Ainsi, on a −−→MH =
〈−−→
MA,

−→
u′
〉−→
u′ . Notons (x, y) les coordonnées de H. On a alors

〈−−→
MA,

−→
u′
〉

= 1√
13
⟨(3 + 1,−6− 1), (−3, 2)⟩ = −26√

13
.

Ainsi, −−→MH = −26
13 (−3, 2) = (6,−4).

En notant (x, y) les coordonnée de H, on a −−→MH = (x + 1, y − 1), donc H a pour
coordonnées (5,−3) .

Exercice 4. 1. Notons
−→
u′ = 1

∥−→u ∥
−→u un tel vecteur. On ∥−→u ∥ =

√
5, donc prenons

−→
u′ = 1√

5
(1, 2).

Notons (x, y) les coordonnées de H. On a −−→AH =
〈−−→
AB,

−→
u′
〉−→
u′ .

Or −−→AB = (−5, 5), donc
〈−−→
AB,

−→
u′
〉

= 1√
5
⟨(−5, 5), (1, 2)⟩ = 5√

5
.

De plus, −−→AH = (x− 2, y + 1) et −−→AH = 5
5(1, 2) = (1, 2)., donc (x, y) = (3, 1) .

Ainsi, H a pour coordonnées (3, 1) .
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2. Notons M un point et (x, y) ses coordonnées. On a M ∈ D ⇐⇒ det(−−→AM,−→u ) = 0⇐⇒∣∣∣∣∣x− 2 1
y + 1 2

∣∣∣∣∣ = 0.

Ainsi, M ∈ D ⇐⇒ 2(x − 2) − (y + 1) = 0 ⇐⇒ 2x − y = 5. La droite D admet donc
pour équation 2x− y = 5.

3. Notons M un point et (x, y) ses coordonnées. On a M ∈ D′ ⇐⇒
〈−−→
BM,−→u

〉
= 0⇐⇒

⟨(x+ 3, y − 4), (1, 2)⟩ = 0.
Ainsi, M ∈ D′ ⇐⇒ (x+ 3) + 2(y − 4) = 0⇐⇒ x+ 2y = 5. La droite D′ admet donc
pour équation x+ 2y = 5.

4. Le point H est le point tel que −−→BH est orthogonal à D, donc H ∈ D′ et H ∈ D.
Notons (x, y) les coordonnées de H.

On a ainsi, H ∈ D ∩D′ ⇐⇒
{

2x −y = 5
x +2y = 5 ⇐⇒

L2←L2+2L1

{
2x −y = 5
5x = 15.

Autrement dit H ∈ D ∩D′ ⇐⇒
{

2x −y = 5
x = 3. ⇐⇒

{
−y = 1

x = 3.
Ainsi, H a pour coordonnées (3, 1) .

Exercice 5. 1. Notons
−→
u′ = 1

∥−→u ∥
−→u un tel vecteur. On ∥−→u ∥ =

√
6, donc prenons

−→
u′ = 1√

6
(1, 1, 2).

Notons (x, y, z) les coordonnées de H. On a −−→AH =
〈−−→
AB,

−→
u′
〉−→
u′ .

Or
〈−−→
AB,

−→
u′
〉

= 1√
6
⟨(1, 4,−1), (1, 1, 2)⟩ = 3√

6
.

De plus, −−→AH = (x − 2, y + 1, z − 1), et −−→AH = 3
6(1, 1, 2) = 1

2(1, 1, 2), donc (x, y, z) =(5
2 ,−

1
2 , 2

)
.

Ainsi, H a pour coordonnées
(5

2 ,−
1
2 , 2

)
.

2. Notons M un point de coordonnées (x, y, z). On a M ∈ D si et seulement si il existe
λ ∈ R tel que −−→AM = λ−→u .

Ainsi,M ∈ D ⇐⇒ ∃λ ∈ R,


x −2 = λ

y +1 = λ
z −1 = 2λ

⇐⇒
L2←L2−L1
L3←L3−2L1


x −2 = λ
−x +y +3 = 0
−2x +z +3 = 0

Ainsi, un système d’équation caractérisant D est
{
−x +y = −3
−2x +z = −3 ou encore

pour éviter l’abus de signe moins,
{
x −y = 3
2x −z = 3

3. Notons (x, y, z) les coordonnées de H. Le point H est tel que −−→BH est orthogonal
à D, donc à −→u . Ainsi

〈−−→
BH,−→u

〉
= 0 ⇐⇒ ⟨(x− 3, y − 3, z), (1, 1, 2)⟩ = 0. Ainsi les

coordonnées de H vérifient (x− 3) + (y − 3) + 2z = 0⇐⇒ x+ y + 2z = 6.
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Ainsi, comme H ∈ D, les coordonnées de H vérifient
x −y = 3
2x −z = 3
x +y +2z = 6

⇐⇒
L3←L3+L1


x −y = 3
2x −z = 3
2x +2z = 9

⇐⇒
L3←L3−L2


x −y = 3
2x −z = 3
0 3z = 6

Ce système est équivalent à


x −y = 3
2x = 5
0 z = 2

⇐⇒


−y = 1

2

x = 5
2

0 z = 2

Ainsi, H a pour coordonnées
(5

2 ,−
1
2 , 2

)
.

Exercice 6. 1. On sait au vu du cours que l’on peut prendre −→n = (1,−2, 1).

2. Une telle droite D est constituée par l’ensemble des points M tels que −−→BM est co-
linéaire à −→n , c’est-à-dire tels qu’il existe λ ∈ R tel que −−→BM = λ−→n .
Ainsi, D = {(−1 + λ, 2− 2λ, 1 + λ)/λ ∈ R}.

3. Le point H est le point d’intersection de D (puisque −−→BM et P sont orthogonaux) et
de P.
Ainsi, comme H ∈ D, il existe λ ∈ R tel que H ait pour coordonnées (−1 + λ, 2 −
2λ, 1 + λ). Mais de plus, les coordonnées de H vérifient l’équation x − 2y + z = 2,
donc

(−1 + λ)− 2(2− 2λ) + (1 + λ) = 2⇐⇒ 6λ = 6⇐⇒ λ = 1.

Ainsi, H a pour coordonnées (0, 0, 2).

4. Considérons un point M de coordonnées (x, y, z). On a M ∈ P ⇐⇒ x − 2y + z =
2⇐⇒ x = 2y − z + 2.
Ainsi, P = {(2y − z + 2, y, z)/(y, z) ∈ R2} = {(2, 0, 0) + λ(2, 1, 0) + µ(−1, 0, 1)/
(λ, µ) ∈ R2}.
Le plan P passe par le point (2, 0, 0) et admet pour système directeur le couple (−→u ,−→v )
avec −→u = (2, 1, 0) et −→v = (−1, 0, 1).

5. Si
−→
v′ est coplanaire à (−→u ,−→v ), il existe (λ, µ) ∈ R2 tel que

−→
v′ = λ−→u + µ−→v .

On souhaite avoir
〈−→
v′ ,−→u

〉
= 0, soit ⟨λ−→u + µ−→v , u⟩ = 0, soit encore

λ ⟨−→u ,−→u ⟩+ µ ⟨−→v ,−→u ⟩ = 0⇐⇒ λ5λ− 2µ = 0.

Prenons par exemple λ = 2 et µ = 5, donc
−→
v′ = 2(2, 1, 0) + 5(−1, 0, 1) = (−1, 2, 5).

6. Posons −→u1 = 1
∥−→u ∥

−→u et −→v1 = 1∥∥∥−→v′ ∥∥∥
−→
v′ qui forment deux vecteurs orthonormaux (or-

thogonaux d’après la question précédente, orthonormaux puisque normalisés).

Ainsi, −→u1 = 1√
5

(2, 1, 0) et −→v1 = 1√
30

(−1, 2, 5).
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On a alors, comme −−→AB = (−3, 2, 1),
−−→
AH =

〈−−→
AB,−→u1

〉−→u1 +
〈−−→
AB,−→v1

〉−→v1

= −4
5 (2, 1, 0) + 12

30(−1, 2, 5)

= −24
30 (2, 1, 0) + 12

30(−1, 2, 5)

= 1
30(−60, 0, 60).

Ainsi, −−→AH = (−2, 0, 2). Comme A(2, 0, 0), H a pour coordonnées (0, 0, 2).

Exercice 7. 1. On cherche donc (λ, µ) ∈ R2 tel que
−→
v′ = λ−→u + µ−→v et

〈−→
v′ ,−→u

〉
= 0.

On a 〈−→
v′ ,−→u

〉
= ⟨λ−→u + µ−→v ,−→u ⟩ = λ ⟨−→u ,−→u ⟩+ µ ⟨−→v ,−→u ⟩ = 6λ+ 2µ = 0.

On peut par exemple prendre λ = 1 et µ = −3, donc
−→
v′ = −→u − 3−→v = (4,−2,−1).

2. Il suffit de prendre u1 = 1
∥−→u ∥

−→u = 1√
6

(1, 1, 2) et v1 = 1∥∥∥−→v′ ∥∥∥
−→
v′ = 1√

21
(4,−2,−1).

En effet, ils sont orthogonaux et une fois renormalisés, ils sont de norme 1.

3. Notons (x, y, z) les coordonnées de H. On a

−−→
AH =

〈−−→
AB,−→u1

〉−→u1 +
〈−−→
AB,−→v1

〉−→v1 .

Or −−→AB = (1,−7, 4), puis
〈−−→
AB,−→u1

〉−→u1 = 2
6(1, 1, 2) = 1

3(1, 1, 2) et
〈−−→
AB,−→v1

〉−→v1 =
14
21(4,−2,−1)śdfrac23(4,−2,−1).

Ainsi, −−→AH = 1
3(1, 1, 2) + 2

3(4,−2,−1) = 1
3(9,−3, 0) = (3,−1, 0).

Or −−→AH = (x− 1, y − 1, z − 1), donc (x, y, z) = (1, 1, 1) + (3,−1, 0) = (4, 0, 1).
H a pour coordonnées (4, 0, 1).

4. Notons M un point de coordonnées (x, y, z). On a

M ∈ P ⇐⇒ ∃(λ, µ) ∈ R2;−−→AM = λ−→u + µ−→v

⇐⇒ ∃(λ, µ) ∈ R2;


x− 1 = λ −µ
y − 1 = λ +µ
z − 1 = 2λ +µ

⇐⇒
L2←L2+L1
L3←L3+L1

∃(λ, µ) ∈ R2;


x− 1 = λ −µ
x+ y − 2 = 2λ
x+ z − 2 = 3λ

⇐⇒
L3←2L3−3L2

∃(λ, µ) ∈ R2;


x− 1 = λ −µ
x+ y − 2 = 2λ
−x− 3y + 2z + 2 = 0

Ainsi, une équation caractérisant P est x+ 3y − 2z = 2.
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5. NotonsM un point de coordonnées (x, y, z). On aM ∈ D si et seulement si
〈−−→
BM,u

〉
=

0 et
〈−−→
BM,−→v

〉
= 0.

Ainsi, comme −−→BM = (x− 2, y + 6, z − 5), on a〈−−→
BM,u

〉
= 0⇐⇒ (x− 2) + (y + 6) + 2(z − 5) = 0

et on a 〈−−→
BM, v

〉
= 0⇐⇒ −(x− 2) + (y + 6) + (z − 5) = 0.

Ainsi, un système décrivant D est{
x +y +2z = 6
−x +y +z = −3

6. Le point H est sur la droite D et dans le plan P ainsi, ses coordonnées notées (x, y, z)
vérifient le système d’équations
x +y +2z = 6
−x +y +z = −3
x +3y −2z = 2

⇐⇒
L2←L2+L1
L3←L3−L1


x +y +2z = 6

2y +3z = 3
2y −4z = −4

⇐⇒
L3←L3−L2


x +y +2z = 6

2y +3z = 3
−7z = −7

C’est équivalent à


x = 4

y = 0
z = 1.

Ainsi, la seule solution du système est (4, 0, 1) ce qui donne les coordonnées de H.

Exercice 8. 1. NotonsM ce point. CommeM ∈ D1, il existe t ∈ R tel queM(1+t, 2−t).
Comme M ∈ D2, il existe s ∈ R tel que M(s, 2s).
Ainsi, on doit avoir l’existence d’un couple (s, t) tel que{

1 + t = s
2− t = 2s

⇐⇒
{

s− t = 1
2s+ t = 2

⇐⇒
{
s− t = 1

3s = 3 L2 ← L2 + L1

Donc le couple (s, t) existe, est unique et vaut (1, 0).
Ainsi, M est le point de coordonnées (1, 2).

2. Il est clair que le point (2, 0) ∈ D. Par ailleurs, un vecteur normal est (1, 1), donc un
vecteur directeur est (−1, 1). Par ailleurs,

D = {(x, y) ∈ R2/x = 2− y} = {(2− y, y)/y ∈ R} = {(2, 0) + y(−1, 1)/y ∈ R}.

On retrouve ce qu’on a affirmé au-dessus.
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3. Notons H(xH , yH) cette projection.

On a −−→MH = (xH − 2, yH − 1) normal à ∆, donc ∃λ ∈ R tel que −−→MH = λ(2,−1).
Ainsi, H(2 + 2λ, 1− λ). Par ailleurs, comme H ∈ ∆, on a

2(2 + 2λ)− (1− λ) + 2 = 0⇐⇒ 5λ = −5.

Ainsi, λ = −1, donc H(0, 2), et on a −−→MH = (−2, 1) donc la distance est
∥∥∥−−→MH

∥∥∥ =
√

5.

Exercice 9. 1. Notons H le projeté orthogonal de U sur la droite. On sait que −−→UH est
colinéaire au vecteur normal à la droite, donc il existe λ ∈ R tel que −−→UH = λ(2,−3).
Ainsi, H(1 + 2λ, 1− 3λ).
On a aussi, comme H est sur la droite,

2(1 + 2λ)− 3(1− 3λ) = 0⇐⇒ 13λ = 1.

Soit λ = 1
13. Ainsi, H a pour coordonnées 5

13(3, 2).

2. Notons H le projeté orthogonal de U sur la droite. On sait que −−→UH est colinéaire au
vecteur normal à la droite, donc il existe λ ∈ R tel que −−→UH = λ(−1, 2).
Ainsi, H(1− λ, 2 + 2λ).
On a aussi, comme H est sur la droite,

−(1− λ) + 2(2 + 2λ) = 1⇐⇒ 5λ = −2.

Soit λ = −2
5. Ainsi, H a pour coordonnées 1

5(7, 6).

3. Notons H(x, y, z) le projeté orthogonal de U sur la droite. On a alors{
y = −3x+ 3
z = 2x− 3 en faisant L1 ← L1 + L2.

Ainsi, on sait qu’il existe x ∈ R tel que H(x,−3x+ 3, 2x− 3).

Au passage, on récupère que (1,−3, 2) dirige la droite. Ainsi, on a −−→UH = (x−1,−3x+
2, 2x− 2) orthogonal avec (1,−3, 2).
On a alors

(x− 1)− 3(−3x+ 2) + 2(2x− 2) = 0⇐⇒ 14x = 11.

En réinjectant la valeur de x dans les coordonnées de H, on récupère ses coordonnées :
1
14(11, 9,−20).

4. Notons H le projeté orthogonal de U sur le plan. On sait que −−→UH est colinéaire au
vecteur normal au plan, donc il existe λ ∈ R tel que −−→UH = λ(2, 2,−1).
Ainsi, H(1 + 2λ, 2 + 2λ,−λ).
Comme H est dans le plan, on a aussi

2(1 + 2λ) + 2(2 + 2λ)− (−λ) = 0⇐⇒ 9λ = −6.

Soit λ = −2
3. Ainsi, H a pour coordonnées 1

3(−1, 2, 2).
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Exercice 10. 1. Il s’agit tout simplement d’utiliser la forme canonique du trinôme du
second degré. En effet,

x2 + y2 − 4x+ y +m = 0⇐⇒ (x− 2)2 − 4 +
(
y + 1

2

)2
− 1

4 +m = 0.

Ainsi, on trouve que l’équation qui régit cet ensemble est en fait

(x− 2)2 +
(
y + 1

2

)2
= 17

4 −m.

On peut donc conclure :

• Si m >
17
4 , l’ensemble est vide.

• Si m = 17
4 , il s’agit du point de coordonnées (2,−1

2).

• Si m <
17
4 , il s’agit du cercle de centre (2,−1

2) et de rayon
√

17
4 −m.

Dans ce cas, on a
{(

2 +
√

17
4 −m cos(t),−1

2 +
√

17
4 −m sin(t)

)
/t ∈ R

}
.

2. On cherche les points qui vérifient deux équations simultanément, celle du cercle et
celle de la droite. Notons M(x, y) un tel point. On a alors{

(x− 3)2 + y2 = 1
px− y + 1 = 0 ⇐⇒

{
(x− 3)2 + (px+ 1)2 = 1

y = px+ 1
Intéressons nous à la première équation. En développant, elle est équivalente à

x2 − 6x+ 9 + p2x2 + 2px+ 1 = 1⇐⇒ (p2 + 1)x2 + 2(p− 3)x+ 9 = 0.

Son discriminant est ∆ = 4(p− 3)2 − 4(p2 + 1)9 = −32p2 − 24p = −8p(4p+ 3).

Ainsi, il n’y a d’intersection que lorsque p ∈
[
−3

4 , 0
]

(une seule lorsque p = 0 ou

p = −3
4).

Dans ce cas, on a(
2(3− p)−

√
−8p(4p+ 3)

2(1 + p2) , p
2(3− p)−

√
−8p(4p+ 3)

2(1 + p2) + 1
)

et (
2(3− p) +

√
−8p(4p+ 3)

2(1 + p2) , p
2(3− p) +

√
−8p(4p+ 3)

2(1 + p2) + 1
)
.

Ces deux solutions sont confondues lorsque p = 0 ou p = −3
4.

3. Les éventuelles intersections vérifient les deux équations de cercle. Ainsi, un tel point
de coordonnées (x, y) vérifiera :
(
x− 3

2

)2
+ y2 = 9

4
x2 + (y − 2)2 = m

⇐⇒
{
x2 − 3x+ y2 = 0
x2 + y2 − 4y = m− 4 On va commencer à es-

sayer de simplifier le système.
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Il est équivalent à{
x2 − 3x+ y2 = 0

3x− 4y = m− 4 L2 ← L2 − L1

On a donc 4y = −3x+m− 4, donc la première équation devient

x2 − 3x+ 1
16(−3x+m− 4)2 = 0⇐⇒ 16x2 − 48x+ 9x2 − 6(m− 4)x+ (m− 4)2.

Soit
25x2 − 6(m+ 4)x+ (m− 4)2 = 0.

Cherchons le discriminant de cette équation. On a

∆ = 36(m+ 4)2 − 4× 25(m− 4)2 = [6(m+ 4)− 10(m− 4)] [6(m+ 4) + 10(m− 4)] .

Soit
∆ = (−4m+ 64)(16m− 16) = −64(m− 16)(m− 1).

Ainsi, on a un seul point d’intersection lorsque m = 1 ou m = 16. On en a 2 si
m ∈]1, 16[ et aucun dans le cas où m < 1 ou m > 16.
Je vous laisse exprimer les coordonnées des points d’intersection en fonction de m :
les expressions sont vraiment encombrantes (c’est pour ça que je n’ai pas posé la
question).

Exercice 11. 1. Comme il est parallèle à P1, il a le même vecteur normal, donc il existe
d ∈ R tel que son équation soit

x+ y + z = d.

Comme A ∈ P1, ses coordonnées vérifient l’équation. Ainsi, on doit avoir 1+2+3 = d.
Ainsi, P ′1 est le plan d’équation x+ y + z = 6.

2. Notons (x, y, z) ∈ P1 ∩ P2. C’est équivalent à{
x+ y + z = 3

2x− y + z = 2 ⇐⇒
{
x+ y + z = 3
x− 2y = −1 L2 − L1

⇐⇒
{
z = −3y + 4
x = 2y − 1

On a donc ∆ = {(2y − 1, y,−3y + 4)/y ∈ R} = {(−1, 0, 4) + y(2, 1,−3)/y ∈ R}.
Ainsi, ∆ est la droite passant par (−1, 0, 4) dirigée par (2, 1,−3).

3. Notons que ∆′ = {(a + 2µ, b + µ, c − 3µ)/µ ∈ R} puisqu’elle est parallèle à ∆ où
(a, b, c) représente un point par lequel elle passe.
Comme ∆′ ∈ P1, on a (a + 2µ) + (b + µ) + (c − 3µ) = 3 ce qui est équivalent à
a+ b+ c = 3.
De plus, on doit avoir ∆′ et D qui sont sécantes, donc il existe un point dans l’une et
dans l’autre simultanément. Ainsi, il existe λ et µ deux réels tels que

(1 + 2λ, 3λ,−1 + λ) = (a+ 2µ, b+ µ, c− 3µ).

C’est équivalent au système


2λ− 2µ = a− 1
3λ− µ = b
λ+ 3µ = c+ 1
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⇐⇒


−4λ = a− 2b− 1 L1 ← L1 − 2L2

3λ− µ = b
10λ = 3b+ c+ 1 L3 ← L3 + 3L2

⇐⇒


−4λ = a− 2b− 1

3λ− µ = b
0 = 5a− 4b+ 2c− 3 L3 ← 2L3 + 5L1

Ainsi, un point par lequel doit passer ∆′ doit vérifier
{

a+ b+ c = 3
5a− 4b+ 2c = 3 ⇐⇒{

a+ b+ c = 3
3a− 6b = −3 L2 ← L2 − 2L1

⇐⇒
{
c = 2b+ 4
a = 2b− 1

Ainsi, on peut remarquer qu’elle peut passer par, entre autres, (−1, 0, 4)... et là on
remarque qu’en fait ∆′ = ∆.

Exercice 12. 1. On peut chercher un paramétrage du plan en disant qu’il s’agit du plan
passant par A dirigé par (−−→AB,−→AC). Mais soyons plus originaux et direct. On cherche
4 réels tels que, pour les coordonnées de A,B, et C on ait ax+ by + cz = d.
Ainsi, on a le système suivant
a+ b+ c = d

2b+ 2c = d
−a+ 2b = d

⇐⇒


3b+ c = 2d L1 ← L1 + L3

2b+ 2c = d
−a+ 2b = d

⇐⇒


4b = 3d L1 ← 2L1 − L2

2b+ 2c = d
−a+ 2b = d

En prenant d = 4 (pour éviter une fraction dans la valeur de b), on récupère b = 3,
c = −1 et a = 2. Ainsi, une équation du plan est 2x+ 3y − z = 4.

2. C’est une droite passant par (0,−3, 1) et dirigé par (2, 3,−1), donc elle peut se pa-
ramétrer par :
{(2λ,−3 + 3λ, 1− λ/λ ∈ R}.

3. Il s’agit d’un point D′ de la droite évoquée ci-dessus (puisqu’elle est orthogonale au
plan P) tel que le milieu de [DD′] soit le point d’intersection entre la droite et P.
Commençons par déterminer ce milieu que l’on notera I.
Comme I est sur la droite, il existe λ ∈ R tel que I(2λ,−3 + 3λ, 1 − λ) et comme il
est dans P, on a

2(2λ) + 3(−3 + 3λ)− (1− λ) = 4⇐⇒ 14λ = 14⇐⇒ λ = 1.

Ainsi, I(2, 0, 0).

Or comme I est le milieu de [DD′], on a −→DI =
−−→
ID′.

Or −→DI = (2, 3,−1). Si on note D′(x, y, z), on a (x − 2, y, z) = (2, 3,−1) donc D′ a
pour coordonnées (4, 3,−1).
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Exercice 13. 1. Comme il s’agit de quantités positives, on a

∥−→u +−→v ∥ = ∥−→u −−→v ∥ ⇐⇒ ∥−→u +−→v ∥2 = ∥−→u −−→v ∥2
⇐⇒ ⟨−→u +−→v ,−→u +−→v ⟩ = ⟨−→u −−→v ,−→u −−→v ⟩
⇐⇒ ⟨−→u ,−→u +−→v ⟩+ ⟨−→v ,−→u +−→v ⟩

= ⟨−→u ,−→u −−→v ⟩+ ⟨−→v ,−→u −−→v ⟩ par linéarité à gauche
⇐⇒ ⟨−→u ,−→u ⟩+ ⟨−→u ,−→v ⟩+ ⟨−→v ,−→u ⟩+ ⟨−→v ,−→v ⟩

= ⟨−→u ,−→u ⟩ − ⟨−→u ,−→v ⟩+ ⟨−→v ,−→u ⟩ − ⟨−→u ,−→v ⟩ par linéarité à droite
⇐⇒ 2 ⟨−→u ,−→v ⟩ = 0 en simplifiant et par symétrie

Ainsi, ∥−→u +−→v ∥ = ∥−→u −−→v ∥ si et seulement si −→u et −→v sont orthogonaux.

2. Un parallélogramme est ABCD est un rectangle si et seulement il admet un angle
droit en n’importe lequel de ses sommets. Donc ABCD est un rectangle si et seulement
si −−→AB et −−→AD sont orthogonaux.
Cela arrive si et seulement si

∥∥∥−−→AB +−−→AD
∥∥∥ =

∥∥∥−−→AB −−−→AD∥∥∥ .
Or on a −−→AD = −−→BC, ainsi, la condition devient

∥∥∥−−→AB +−−→BC
∥∥∥ =

∥∥∥−−→AB +−−→DA
∥∥∥ . Ce qu’on

réécrit en
∥∥∥−→AC∥∥∥ =

∥∥∥−−→DB∥∥∥.
Autrement dit, un parallélogramme est un rectangle si et seulement si ses diagonales
ont la même longueur !

Exercice 14. 1. On aD1 = {(3,−2, 1)+t(1,−1, 1)/t ∈ R} doncD1 passe parA1(3,−2, 1)
et est de vecteur directeur −→v1 = (1,−1, 1).
On pourrait paramétrer D2, mais on peut remarquer que D2 passe par A2(0, 0, 0) et
aussi par B(−1, 0, 1) donc est dirigée par −−→A2B = −→v2 = (−1, 0, 1).

2. On cherche −→u = (x, y, z) tel que ⟨−→u ,−→v1⟩ = 0 et ⟨−→u ,−→v2⟩ = 0.
Cela revient au système{
x− y + z = 0
−x+ z = 0 ⇐⇒

{
−y + 2z = 0 L1 ← L1 + L2
−x+ z = 0

Ainsi, on peut prendre n’importe quel vecteur de la forme (z, 2z, z) donc −→u = (1, 2, 1)
par exemple.

3. Il suffit de calculer ⟨−→u ,−→v1⟩, ⟨−→u ,−→v2⟩, et ⟨−→v1 ,
−→v2⟩, on trouve que chacun fait 0.

4. Remarquons que −→v2 est orthogonal à P1 puisqu’il est orthogonal à −→u et −→v1 .
Ainsi, une équation de P1 sera de la forme x−z = d. Comme A1 ∈ P1, on a 3−1 = d,
donc une équation de P1 est x− z = 2.
De même, −→v1 est orthogonal à P2 puisqu’il est orthogonal à −→u et −→v2 .
Ainsi, une équation de P2 sera de la forme x−y+z = d. Comme A2 ∈ P2, on a 0 = d,
donc une équation de P1 est x− y + z = 0.
L’intersection de ces deux plans est bien une droite, ils ne sont pas parallèles (ils
admettent des vecteurs normaux ne sont pas colinéaires).
On remarque alors que P1 ∩ P2 = {(x, y, z) ∈ R3/x− z = 2 et x− y + z = 0}.
Cherchons les points d’intersection des droites.
Notons M ∈ D∩D1. Alors, comme M ∈ D1, il existe t ∈ R tel que M(3+t,−2−t, 1+t).
Comme M ∈ D, on a

(3 + t)− (1 + t) = 2 et (3 + t)− (−2− t) + (1 + t) = 0⇐⇒ t = −2
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Donc on a M(1, 0,−1). Ainsi, on a D ∩D1 = {(1, 0,−1)}
Notons un nouveau M(x, y, z) ∈ D ∩ D2. C’est le cas si et seulement si le système
suivant est vérifié :

x− y + z = 0
x− z = 2

x+ 2y + z = 0
−x+ 2y − z = 0

⇐⇒


x− y + z = 0
y − 2z = 2 L2 ← L2 − L1

3y = 0 L3 ← L3 − L1
y = 0 L4 ← L4 + L1

⇐⇒


x+ z = 0
−2z = 2
y = 0

Ainsi z = −1, donc x = 1. On a donc M(1, 0,−1).
On a D ∩D1 = {(1, 0,−1)} et D ∩D2 = {(1, 0,−1)} aussi.
Les droites D et D1 sont sécantes ainsi que les droites D et D2. Et vu le A2 que nous
avons choisi, elles sont même concourantes.
Pour finir D passe par M(1, 0,−1) mais aussi par N(2, 2, 0). Ainsi elle est dirigée par
−−→
MN = −→u (on aurait pu s’en douter en faisant un dessin). Comme −→u est orthogonal
aux vecteurs directeurs de D1 et D2 et que les droites sont sécantes, elles sont bien
perpendiculaires.

Exercice 15. 1. Notons H le projeté recherché. Comme ∥−→u ∥ = 1 et que O ∈ D, on a
−−→
OH =

〈−−→
OM,−→u

〉−→u .
Ainsi, le projeté H a pour coordonnées (0, 1).

2. Notons H le projeté recherché. Comme ∥−→u ∥ = 1 et que O ∈ D, on a −−→OH =〈−−→
OM,−→u

〉−→u .
Ainsi, le projeté H a pour coordonnées (2, 0).

3. Notons H le projeté recherché.
Notons −→v = 1

∥−→u ∥
−→u . Ainsi, −→v dirige D et ∥−→v ∥ = 1. Comme O ∈ D, on a −−→OH =〈−−→

OM,−→v
〉−→v .

Une fois les calculs posés, on trouve que le projeté a pour coordonnées 3
2(1, 1).

4. Notons H le projeté recherché.
On a −→u dirige D et ∥−→u ∥ = 1. Comme A(−1, 1) ∈ D, on a −−→AH =

〈−−→
AM,−→v

〉−→v .
Une fois les calculs posés, on trouve que le projeté a pour coordonnées (1,−1).

5. Le projeté a pour coordonnées (3, 1) : il est déjà sur D (humour de prof de maths).

6. Notons H le projeté recherché.
Notons −→v = 1

∥−→u ∥
−→u . Ainsi, −→v dirige D et ∥−→v ∥ = 1. Comme A(3, 1) ∈ D, on a

−−→
AH =

〈−−→
AM,−→v

〉−→v .
Une fois les calculs posés, on trouve que le projeté a pour coordonnées (5,−3).
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7. Utilisons l’autre méthode. Notons H le projeté recherché et A(−2,−3).
Comme A,H ∈ D et −→u dirige D, on sait qu’il existe λ ∈ R tel que −−→AH = λ−→u .
Ainsi, H(−2 + λ,−3).
De plus, on doit avoir

〈−−→
MH,−→u

〉
= 0. Or −−→MH = (−1 + λ,−1). Ainsi, on a

(−1 + λ)× 1 + (−1)× 0 = 0⇐⇒ λ = 1.

Comme
Ainsi, H a pour coordonnées (−1,−3).

8. Notons H le projeté recherché. Notons −→u = (1, 0, 0) et −→v = (0, 0, 1). On a la chance
que la base soit une famille orthonormale. Ainsi, comme O ∈ P , on a

−−→
OH =

〈−−→
OM,−→u

〉−→u +
〈−−→
OM,−→v

〉−→v .
Ainsi, on récupère immédiatement en posant les calculs que le projeté a pour coor-
données (2, 0, 1).

9. Notons H le projeté recherché. Notons A(0, 1, 1), −→u = (1, 0,−1) et −→v = (1,−1, 1).
Comme la base n’est pas une famille orthonormée, nous allons devoir utiliser la
définition.
On a A ∈ P , H ∈ P , donc il existe λ, µ deux réels tels que −−→AH = λu+ µv.
Ainsi, H(0 + λ+ µ, 1 + 0λ− µ, 1− λ+ µ) = (λ+ µ, 1− µ, 1− λ+ µ).
Par ailleurs, on doit avoir

〈−−→
MH,−→u

〉
= 0 et

〈−−→
MH,−→v

〉
= 0.

Comme −−→MH = (1 + λ+ µ,−µ,−1− λ+ µ)
Ainsi, la première équation donne

1 + λ+ µ− (−1− λ+ µ) = 0⇐⇒ 2λ = −2.

Et la seconde

(1 + λ+ µ)− (−µ) + (−1− λ+ µ) = 0⇐⇒ 3µ = 0.

Ainsi, on obtient (le système est facile), λ = −1 et µ = 0 et en réinjectant ces
informations, on a les coordonnées du projeté H : (−1, 1, 2).

10. Notons H le projeté recherché. Notons A(1, 1, 1), −→u = (1, 0, 0) et −→v = (0,−1, 1).
Comme la base n’est pas une famille orthonormée, nous allons devoir utiliser la
définition.
On a A ∈ P , H ∈ P , donc il existe λ, µ deux réels tels que −−→AH = λu+ µv.
Ainsi, H(1 + λ, 1− µ, 1 + µ).
Par ailleurs, on doit avoir

〈−−→
MH,−→u

〉
= 0 et

〈−−→
MH,−→v

〉
= 0.

Comme −−→MH = (−2 + λ,−1− µ,−1 + µ)
Ainsi, la première équation donne

−2 + λ = 0⇐⇒ λ = 2.

Et la seconde
−(−1− µ) + (−1 + µ) = 0⇐⇒ 2µ = 0.

Ainsi, on obtient (le système est facile), λ = 2 et µ = 0 puis en réinjectant ces
informations, on a les coordonnées du projeté H : (3, 1, 1).
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11. Je vous laisse détailler... mais la même technique que la question précédente donne
(seuls les calculs changent)... que le projeté a pour coordonnées (3, 1, 1). Etonnant ?
Pas vraiment. Remarquons que (1, 0, 0) = −→u et (1,−1, 1) = −→u + −→v (en prenant
les notations de la question précédente). Ainsi, le plan a la même direction que le
précédent, passe par le même point, donc c’est le même ! On projète orthogonalement
le même point sur le même plan... trouver un autre résultat aurait été inquiétant.

20 Applications linéaires
Exercice 1. Pour montrer qu’une application est linéaire, je vous renvoie aux exemples
traités dans le cours. Pour déterminer les matrices associées, il suffit de calculer les images
des vecteurs de la base canonique est de les mettre en colonne puisque nous sommes dans
la base canonique.
Là encore, je vous renvoie aux exemples.

1. Elle est linéaire et sa matrice représentative dans les bases canoniques (arrivée et

départ) est
(

0 0 0
2 0 −1

)
.

2. Elle est linéaire et sa matrice représentative dans les bases canoniques (arrivée et

départ) est
(

1 0 −1
1 0 2

)
.

3. f3(0, 0, 0) ̸= (0, 0) donc elle n’est pas linéaire.

4. On a f4(1, 0, 0) = (0, 0), f4(0, 1, 0) = (0, 0) et f4(1, 1, 0) = (0, 1).
Ainsi, f4(1, 0, 0) + f4(0, 1, 0) = (0, 0) ̸= f4(1, 1, 0) = (0, 1), donc f4 n’est pas linéaire.

5. On a f5(0, 0, 1) = (0, 1) et f5(0, 0,−1) = (0, 1), donc f5(0, 0,−1) ̸= −f5(0, 0, 1).
f5 n’est pas linéaire.

6. f6 est bien linéaire et sa matrice représentative dans les bases canoniques (arrivée et

départ) est
(

1 −1 1
0 0 1

)
.

Exercice 2. 1. f va de R2 dans le même espace.
Voir les exemples du cours pour la rédaction de la preuve de sa linéarité.

2. On a Im(f) = Vect
(
(1, 1), (2, 3)

)
. Or

(
(1, 1), (2, 3)

)
forme une famille libre, donc une

base de Im(f).
On a donc dim(Im(f)) = 2 et Im(f) ⊂ R2, donc Im(f) = R2. L’application est
surjective.

3. Puisque f ∈ L(R2), et que f est surjective, f est en réalité un isomorphisme donc elle
est injective et Ker(f) = {0}.

4. On a f(1, 0) = (1, 1) et f(0, 1) = (2, 3) donc il s’agit de
(

1 2
1 3

)
.
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Exercice 3. 1. Voir les exemples du cours pour la rédaction de la preuve de sa linéarité.

2. D’après le théorème du rang, dim(Ker(f))+rg(f) = dim(R2), donc dim(Im(f)) ⩽ 2.
Ainsi, Im(f) ̸= R3 puisque dim(R3) = 3.

3. On cherche à déterminer le noyau. On a donc (x, y) ∈ Ker(f) ⇐⇒ f(x, y) = (0, 0, 0)
ce qui est équivalent au système suivant

x− y = 0
x+ y = 0

−x+ 2y = 0

En faisant L2 ← L2 − L1 on récupère y = 0, puis donc x = 0 dans les deux autres.
Ainsi Ker(f) = {(0, 0)} donc f est injective.

4. On a f(1, 0) = (1, 1,−1), f(0, 1) = (−1, 1, 2) donc M =

 1 −1
1 1
−1 2

.

Exercice 4. 1. Voir les exemples du cours pour la rédaction de la preuve de sa linéarité.

2. On a (x, y, z) ∈ Ker(f) si et seulement si f(x, y, z) = (0, 0) ce qui est équivalent au
système suivant {

2x− z = 0
y + 2z = 0

Ainsi, Ker(f) =
{

(1
2z,−2z, z)/z ∈ R

}
, autrement dit

Ker(f) = Vect((1,−4, 2)) donc non.

3. On a dim(Ker(f)) = 1 puisqu’il est engendré par un seul vecteur non nul. D’après le
théorème du rang, dim(Ker(f)) + rg(f) = dim(R3), ainsi rg(f) = dim(Im(f)) = 2.
Or Im(f) ⊂ R2 de dimension 2.
On a donc Im(f) = R2 donc f surjective.

4. On a f(1, 0, 0) = (2, 0), f(0, 1, 0) = (0, 1) et f(0, 0, 1) = (−1, 2) doncM =
(

2 0 −1
0 1 2

)
.

Exercice 5. 1. Voir les exemples du cours pour la rédaction de la preuve de sa linéarité.

2. On a

Im(f) = Vect
(
f(1, 0, 0), f(0, 1, 0), f(0, 0, 1)

)
= Vect

(
(1, 1), (−1, 2), (1,−1)

)
.

Or Im(f) ⊂ R2 et
(
(1, 1), (1,−1)

)
est une famille libre de R2 (deux vecteurs non

colinéaires) donc une base de R2 donc engendre R2 donc Im(f) = R2.
f est surjective.
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3. On nous demande Ker(f) donc on est obligé de le déterminer.
(x, y, z) ∈ Ker(f) si et seulement si f(x, y, z) = (0, 0) ce qui est équivalent au système
suivant {

x− y + z = 0
x+ 2y − z = 0

En faisant L2 ← L2 − L1, on a {
x− y + z = 0

3y − 2z = 0

{
x = −1

3z
y = 2

3z

Ainsi, Ker(f) =
{

(−1
3z,

2
3z, z)/z ∈ R

}
soit Ker(f) = Vect((−1, 2, 3)).

Ker(f) ̸= {(0, 0, 0)} donc f , n’est pas injective.
On peut remarquer que même sans avoir fait le moindre calcul, le théorème du rang
aurait pu permettre de déterminer que f n’était pas injective. En effet dim(Ker(f))+
rg(f) = dim(R3) mais rg(f) = dim(Im(f)) ⩽ dim(R2) = 2, donc dim(Ker(f)) ⩾ 1.

Exercice 6. 1. Voir les exemples du cours pour la rédaction de la preuve de sa linéarité.

2. On a f(1, 0, 0) = (1, 0, 1), f(0, 1, 0) = (−i, 1,−1) et f(0, 0, 1) = (1, 2 + i, 0). Ainsi,

M =

1 −i 1
0 1 2 + i
1 −1 0

.

3. On prend (x, y, z) ∈ Ker(f) ce qui est équivalent à f(x, y, z) = (0, 0, 0) qui est
équivalent au système : 

x− iy + z = 0
y + (2 + i)z = 0

x− y = 0

En faisant L1 ← L1 − L3, on a 
(1− i)y + z = 0
y + (2 + i)z = 0

x− y = 0

Puis en faisant L1 ← L1 − (1− i)L2, on a
(−2 + i)z = 0

y + (2 + i)z = 0
x− y = 0

Soit x = y = z = 0. Ainsi, Ker(f) = {(0, 0, 0)} donc f est injective.

4. Puisque f est un endomorphisme et que f est injective, d’après le théorème du rang
(son corollaire), on a f est un isomorphisme donc surjective.
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Exercice 7. 1. Voir les exemples du cours pour la rédaction de la preuve de sa linéarité.

2. On a f(1, 0, 0) = (i, 0), f(0, 1, 0) = (0, 1 + i), et f(0, 0, 1) = (1, 2). Donc M =(
i 0 1
0 1 + i 2

)
.

3. On a (x, y, z) ∈ Ker(f) si et seulement si f(x, y, z) = (0, 0) ce qui est équivalent au
système suivant : {

ix+ z = 0
(1 + i)y + 2z = 0

Ce qui est équivalent à {
x = iz
y = −(1− i)z

En multipliant la première ligne par −i et la seconde par 1−i
2 . Ainsi, Ker(f) =

Vect((i,−1 + i, 1)). Ker(f) ̸= {(0, 0, 0)} donc f n’est pas injective.

4. On peut soit déterminer Im(f) et voir s’il est égal ou non à C2.
Mais sinon, le plus simple est de remarquer que dim(Ker(f)) = 1 (engendré par un
seul vecteur non nul).
Ainsi, d’après le théorème du rang, on a dim(Ker(f)) + rg(f) = dim(C3), soit
dim(Im(f)) = rg(f) = 2. Or Im(f) ⊂ C2 qui est de dimension 2. Ainsi, Im(f) = C2,
donc f est surjective.

Exercice 8. 1. Voir les exemples du cours pour la rédaction de la preuve de sa linéarité.

2. On commence à avoir l’habitude, non ? On a f(1, 0) = (1, 1) et f(0, 1) = (i, 1) donc

M =
(

1 i
1 1

)
3. On a (x, y) ∈ Ker(f) si et seulement si f(x, y) = (0, 0) ce qui est équivalent au système

suivant : {
x+ iy = 0
x+ y = 0

Ce qui est équivalent à, en faisant L2 ← L2 − L1,{
x+ iy = 0

(1− i)y = 0

Ainsi, c’est équivalent à y = x = 0 donc Ker(f) = {(0, 0)} et elle est injective.

4. f est un endomorphisme injectif de C2, donc un isomorphisme donc elle est bien
surjective.

Exercice 9. 1. Remarquons que p va de R2 dans le même ensemble.
Voir les exemples du cours pour la rédaction de la preuve de sa linéarité.

2. On a (x, y) ∈ Ker(p) si et seulement si p(x, y) = (0, 0) ce qui est équivalent au système
suivant : {

2x+ y = 0
4x+ 2y = 0 ⇐⇒

L2←L2−2L1

{
2x+ y = 0

0 = 0

Ainsi, Ker(p) = {(x,−2x)/x ∈ R} = Vect
(
(1,−2)

)
.

L’endomorphisme p n’est pas injectif.
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3. On a Im(p) = Vect
(
p(1, 0), p(0, 1)

)
= Vect

(1
4(2, 4), 1

4(1, 2)) = Vect
(
(1, 2)

)
et ce puisque

2(1, 2) = (2, 4).
On a donc

(
(1, 2)

)
qui est une famille constituée d’un unique vecteur non nul, elle est

donc libre, et donc une base de Im(p).
Ainsi, dim(Im(p)) ̸= 2 = dim(R2), donc p n’est pas surjectif.

4. On prend (x, y) ∈ R2. On a

p ◦ p(x, y) = p

(1
4(2x+ y, 4x+ 2y)

)
= 1

4p(2x+ y, 4x+ 2y).

Et donc
p ◦ p(x, y) = 1

16(8x+ 4y, 16x+ 8y) = 1
4(2x+ y, 4x+ 2y).

Ainsi, p◦p et p sont des endomorphismes de R2 tels que ∀(x, y) ∈ R2, on a p◦p(x, y) =
p(x, y).
On a donc p ◦ p = p.

5. On a déjà calculé les images des vecteurs de la base pour déterminer Im(p), donc on

peut affirmer tout de suite que A = 1
4

(
2 1
4 2

)
.

6. On trouve A2 = A. Et oui puisque A2 est la matrice représentative de p ◦ p = p...

7. C’est ce qu’on appelle une projection !

8. Il s’agit de deux vecteurs non colinéaires, donc ils forment une famille libre, et il y a
deux vecteurs soit autant que la dimension de R2. Ainsi, on a une base de R2.
Par ailleurs, on a p(1,−2) = (0, 0) = 0(1,−2) + 0(1, 2) et p(1, 2) = (1, 2) = 0(1− 2) +
1(1, 2).

Ainsi, la matrice de p dans cette nouvelle base est
(

0 0
0 1

)
.

Vu la matrice, il est clair qu’elle est de rang 2, que son carré est égal à elle-même,
que le noyau est engendré par le premier vecteur de la base et l’ensemble image par
le deuxième.

Exercice 10. 1. Remarquons que f va de C3 dans le même ensemble.
Voir les exemples du cours pour la rédaction de la preuve de sa linéarité.

2. Montrons que cette famille est libre. Soient λ, µ, ν trois éléments de C tels que

λ(1, 0, 0) + µ(1, 0, 1) + ν(−1, 1, 0) = (0, 0, 0).

C’est équivalent au système 
λ+ µ− ν = 0

ν = 0
µ = 0

Autrement on a forcément µ = ν = 0 donc λ = 0. Il s’agit donc bien d’une famille
libre de trois vecteurs, dans un espace vectoriel de dimension 3. Ainsi, cette famille
forme bien une base de C3.
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3. Calculons
f(1, 0, 0) = (2, 0, 0) = 2(1, 0, 0) + 0(1, 0, 1) + 0(−1, 1, 0).

On a aussi
f(1, 0, 1) = (i, 0, i) = 0(1, 0, 0) + i(1, 0, 1) + 0(−1, 1, 0).

Pour finir

f(−1, 1, 0) = (0, 0, 0) = 0(1, 0, 0) + 0(1, 0, 1) + 0(−1, 1, 0).

Ainsi, la matrice M représentative de f dans la base évoquée est M =

2 0 0
0 i 0
0 0 0

 .

4. Il est tellement simple de remarquer que, dans cette nouvelle base, Ker(f) est l’espace
engendré par le troisième vecteur et on voit tout de suite que Ker(f) = Vect((−1, 1, 0)).
Ainsi, f n’est pas injective.

5. Non plus, sinon, elle serait un isomorphisme à cause des dimensions, donc injective.

Exercice 11. 1. On considère
(
a b
c d

)
et
(
a′ b′

c′ d′

)
deux éléments de M2(K) et λ, µ

deux éléments de K. On a

f

(
λ

(
a b
c d

)
+ µ

(
a′ b′

c′ d′

))
= f

((
λa+ µa′ λb+ µb′

λc+ µc′ λd+ µd′

))

=
(

(λa+ µa′)− (λb+ µb′) (λa+ µa′)− (λd+ µd′)
λc+ µc′ λc+ µc′

)

= λ

(
a− b a− d
c c

)
+ µ

(
a′ − b′ a′ − d′
c′ c′

)

= λf

((
a b
c d

))
+ µf

((
a′ b′

c′ d′

))
.

Ainsi, on a bien f ∈ L(M2(K)).

2. Comme
((1 0

0 0

)
,

(
0 1
0 0

)
,

(
0 0
0 1

)
,

(
0 0
0 1

))
est une base deM2(K), on a Vect(f) =

Vect
(
f

((
1 0
0 0

))
, f

((
0 1
0 0

))
, f

((
1 0
0 1

))
, f

((
0 0
0 1

)))
.

Ainsi, on a Im(f) = Vect
((1 1

0 0

)
,

(
−1 0
0 0

)
,

(
0 0
1 1

)
,

(
0 −1
0 0

))
.

Or
(

1 1
0 0

)
= −

(
−1 0
0 0

)
−
(

0 −1
0 0

)
, ainsi,

Im(f) = Vect
((
−1 0
0 0

)
,

(
0 0
1 1

)
,

(
0 −1
0 0

))
= Vect

((1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 1

))
.

Considérons λ, µ et ν trois éléments de K tels que

λ

(
1 0
0 0

)
+ µ

(
0 1
0 0

)
+ ν

(
0 0
1 1

)
= 0M2(K).

Il est clair que ça implique λ = µ = ν = 0.
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La famille
((1 0

0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 1

))
est donc libre. Il s’agit donc d’une base de

Im(f) et f est de rang 3.

3. Prenons
(
a b
c d

)
∈M2(K). On a

(
a b
c d

)
∈ Ker(f)⇐⇒ f

((
a b
c d

))
=
(

0 0
0 0

)

⇐⇒
(
a− b a− d
c c

)
=
(

0 0
0 0

)

⇐⇒


a− b = 0
a− d = 0

c = 0
c = 0

⇐⇒


b = a
d = a
c = 0

Ainsi, Ker(f) =
{(

a a
0 a

)
/a ∈ K

}
=
{
a

(
1 1
0 1

)
/a ∈ K

}
= Vect

((
1 1
0 1

))
.

Exercice 12. 1. Notons que, si P ∈ R2[X], deg(P ′) ⩽ 1, donc deg(f(P )) ⩽ 2. L’appli-
cation f est donc bien définie à valeurs dans R2[X].
Prenons λ et µ deux éléments de K et P , Q deux éléments de R2[X]. On a

f(λP + µQ) = (λP + µQ)′ + (λP + µQ)(0)
= λP ′ + µQ′ + λP (0) + µQ(0) par linéarité de la dérivation
= λ(P ′ + P (0)) + µ(Q′ +Q(0))
= λf(P ) + µf(Q).

Ainsi, f ∈ L(R2[X]).

2. Comme (1, X,X2) est une base de R2[X], on a Im(f) = Vect(f(1), f(X), f(X2)) =
Vect(1, 1, 2X) = Vect(1, X) = R1[X].
Ainsi, il est clair que rg(f) = 2 et que f n’est pas surjective.

3. Si f était injective, comme il s’agit d’un endomorphisme, elle serait un isomorphisme,
ce qui est exclu (elle n’est pas surjective).
L’application linéaire f n’est injective.

Exercice 13. 1. Montrons que, si P ∈ Kn+1[X], alors f(P ) ∈ Kn[X].

Si P ∈ Kn+1[X], il existe (α0, . . . , αn+1) ∈ Kn+2 tel que P =
n+1∑
k=0

αkX
k.

On a f(P ) = P (X + 1) − P (X) =
n+1∑
k=0

αk(X + 1)k −
n+1∑
k=0

αkX
k. On peut réorganiser

les termes en f(P ) =
n∑

k=0
αk((X + 1)k −Xk) + αn+1((X + 1)n+1 −Xn+1).
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On a clairement deg
(

n∑
k=0

αk((X + 1)k −Xk)
)

⩽ n. Par ailleurs, (X+1)n+1−Xn+1 =

n∑
ℓ=0

(
n+ 1
ℓ

)
Xℓ, donc deg

(
αn+1((X + 1)n+1 −Xn+1)

)
⩽ n.

Ainsi, deg(f(P )) ⩽ n. L’application f est bien définie à valeurs dans Kn[X].
Enfin, prenons λ et µ deux éléments de K et P , Q deux éléments de Kn+1[X]. On a

f(λP + µQ) = (λP + µQ)(X + 1)− (λP + µQ)(X)
= λ(P (X + 1)− P (X)) + µ(Q(X + 1)−Q(X))
= λf(P ) + µf(Q).

Ainsi, f ∈ L(Kn+1[X],Kn[X]).

2. Soit P ∈ Ker(f). On a alors P (X + 1)− P (X) = 0K[X], soit P (X + 1) = P (X).
Posons Q = P−P (0). On a alors Q(0) = 0, mais Q(1) = P (1)−P (0) = P (0)−P (0) =
0. On pose alors P(k) : ≪ Q(k)=0 ≫. On vient de voir que P(0) est vraie.
Soit k ∈ N. On suppose P(k) vraie. On a alorsQ(k+1) = P (k+1)−P (0) = P (k)−P (0)
car P ∈ Ker(f). Ainsi, Q(k + 1) = Q(k) = 0 car P(k) est vraie. Ainsi P(k + 1) est
vraie.
On a donc, pour tout k ∈ N, Q(k) = 0. Ainsi, Q qui est de degré au plus n+ 1 a une
infinité de racines. C’est exclu, sauf si Q = 0K[X]. On a donc P = P (0).
On vient de démontrer que Ker(f) ⊂ K0[X]. L’inclusion réciproque est immédiate.
On en conclut donc que Ker(f) = K0[X]. L’application f n’est donc pas injective.

3. Appliquons le théorème du rang : on a dim(Ker(f)) + rg(f) = dim(Kn+1[X]), donc
rg(f) = n+ 2− 1 = n+ 1.
Autrement dit, on a dim(Im(f)) = dim(Kn[X]), et comme Im(f) ⊂ Kn[X], on a bien
Im(f) = Kn[X].
L’application linéaire f est donc surjective.

Exercice 14. 1. Il s’agit tout simplement d’une famille de deux vecteurs non colinéaires,
donc ils forment une famille libre de E, qui est de dimension 2, donc une base de E.

2. On remarque que u1 = e1 + e2 et u2 = e1 − e2. Ainsi,

e1 = 1
2(u1 + u2)

et
e2 = 1

2(u1 − u2).

Ainsi, par linéarité,

f(e1) = f

(1
2(u1 + u2)

)
= 1

2f(u1) + 1
2f(u2) =

(
1, 1

2 ,
1
2

)
,

et
f(e2) = f

(1
2(u1 − u2)

)
= 1

2f(u1)− 1
2f(u2) =

(
0, 1

2 ,−
1
2

)
.

Pour finir, v = 2e1 + 3e2, donc, toujours par linéarité,

f(v) = f(2e1 + 3e2) = 2f(e1) + 3f(e2) =
(

2, 5
2 ,−

1
2

)
.
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3. Sans aucune difficulté, étant donné qu’on a déjà déterminé f(e1) et f(e2), la matrice

recherchée est

1 0
1
2

1
2

1
2 −1

2

.

4. Soit on tâtonne, soit on cherche tous les antécédents jusqu’à tomber sur une condition
et on prend un élément qui ne la vérifie pas.
On peut par exemple deviner que si (a, b, c) ∈ Im(f), on a forcément l’existence de x
et de y tels que f(xe1 + ye2) = (a, b, c).

Or f(xe1 + ye2) =
(
x, 1

2(x+ y), 1
2(x− y)

)
. En prenant par exemple (0, 1, 1), on doit

avoir x = 0 mais y = 2 et y = −2 simultanément, ce qui est bien difficile.

Exercice 15. 1. La réponse à cette question est évidente ! M =

 1 −3 −7
−1 2 4
2 −1 1


2. On peut raisonner sur la matrice ou plus simplement remarquer que les coordonnées

de l’image de (x, y, z) sont le vecteur colonne

M

xy
z

 =

 x− 3y − 7z
−x+ 2y + 4z

2x− y + z

 .
On a donc, pour tout (x, y, z) ∈ R3, f(x, y, z) = (x−3y−7z,−x+2y+4z, 2x−y+z).
On cherche (x, y, z) ∈ R3 tel que f(x, y, z) = (−1,−1, 8). C’est équivalent au système

x− 3y − 7z = −1
−x+ 2y + 4z = −1

2x− y + z = 8

En faisant L2 ← L2 + L1 et L3 ← L3 − 2L1, on a le système équivalent
x− 3y − 7z = −1
−y − 3z = −2
5y + 15z = 10

Puis en faisant L3 ← L3 + 5L2, on a
x− 3y − 7z = −1
−y − 3z = −2

0 = 0

Ainsi, l’ensemble des antécédents de u est {(5− 2z, 2− 3z, z)/z ∈ R}.
Pour v, on cherche (x, y, z) ∈ R3 tel que f(x, y, z) = (−2, 1, 3). C’est équivalent au
système 

x− 3y − 7z = −2
−x+ 2y + 4z = 1

2x− y + z = 3
En faisant L2 ← L2 + L1 et L3 ← L3 − 2L1, on a le système équivalent

x− 3y − 7z = −2
−y − 3z = −1
5y + 15z = 7
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Puis en faisant L3 ← L3 + 5L2, on a
x− 3y − 7z = −2
−y − 3z = −1

0 = 2

Ce système n’a pas de solution, donc v n’admet aucun antécédent.

3. Elle n’est pas surjective vu la question précédente (v n’admet pas d’antécédent), et
non injective (u en admet une infinité).

Exercice 16. 1. f est un isomorphisme si et seulement si A est inversible, donc si le
système homogène associé à A est de rang 3.

az = 0
x+ bz = 0
y + cz = 0

Ce système est échelonné, ses coefficients diagonaux sont a, 1 et 1, donc il est de rang
3 et et seulement si a ̸= 0.
A est inversible si et seulement si a ̸= 0, autrement dit f est un isomorphisme si et
seulement si a ̸= 0.

2. Il est nettement plus simple de travailler sur la matrice représentative de f . Ainsi,

A2 =

0 a ac
0 b a+ bc
1 c b+ c2

, puis A3 =

a ac ab+ ac2

b a+ bc ab+ ac+ b2c
c b+ c2 a+ 2bc+ c3

.

Ainsi, A3 − cA2 − bA− aI3 = 0M3(K).

3. Lorsque a ̸= 0, on a 1
a

(
A2 − cA− bI3

)
A = I3, ainsi

A−1 = 1
a

(
A2 − cA− bI3

)
.

On en déduit que f−1 = 1
a

(f2 − cf − bidR3).

Si on veut une expression explicite de f , il vaut mieux calculer A−1 ce que l’on peut
faire soit en résolvant un système, soit en se servant de ce qu’on vient de faire. On a

A−1 = 1
a

−b a 0
−c 0 a
1 0 0

 .
Donc f−1(x, y, z) = 1

a
(−bx− ay,−cx+ az, x).

4. On est dans le cas où a = 0 (sinon, f est injective). Auquel cas, (x, y, z) ∈ Ker(f) si

et seulement si A

xy
z

 =

0
0
0

.

Autrement dit

0 0 0
1 0 b
0 1 c


xy
z

 =

0
0
0

.
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Soit le brave système : 
0 = 0

x+ bz = 0
y + cz = 0

On obtient très rapidement :
Ker(f) = Vect

(
(b, c,−1)

)
.

Exercice 17. 1. Prenons u tel que f2(u) ̸= 0.
Montrons que (f2(u), f(u), u) est une famille libre. Soient λ, µ, ν ∈ K tels que

λf2(u) + µf(u) + νu = 0.

Appliquons f2 à cette égalité. Par linéarité, on obtient

λf4(u) + µf3(u) + νf2(u) = 0.

Or comme f3 = 0, on a simplement νf2(u) = 0, mais comme f2(u) ̸= 0, on a ν = 0.
Donc l’égalité devient

λf2(u) + µf(u) = 0.

Appliquons f à cette égalité. Par linéarité, on obtient

λf3(u) + µf2(u) = 0.

Soit comme ci-dessus, µf2(u) = 0, et comme ci-dessus cela implique µ = 0.
Donc en fait, on avait juste λf2(u) donc λ = 0 puisque f2(u) ̸= 0.
Ainsi, la famille (f2(u), f(u), u) est une famille libre de 3 éléments de K3 donc elle
une base de K3.

2. On a
f(f2(u)) = f3(u) = 0 = 0f2(u) + 0f(u) + 0u.

Puis
f(f(u)) = f2(u) = f2(u) + 0f(u) + 0u.

Et enfin
f(u) = 0f2(u) + f(u) + 0u.

Il s’agit de la matrice A =

0 1 0
0 0 1
0 0 0

.

Exercice 18. 1. Il est plus simple de travailler sur A.

On trouve A2 =


7 −6 −3 0
0 1 0 0
6 −6 −2 0
0 3 0 4

 .
On réalise alors que A2 − 3A+ 2I4 = 0, ce qui se traduit sur les endomorphismes par
f2 − 3f + 2id = 0.
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2. On obtient rapidement à partir de l’égalité précédente sur les matrices que −1
2(A −

3I4)A = I4, donc A est inversible et A−1 = −1
2(A− 3I4).

Ainsi, f est bijective (isomorphisme) et f−1 = −1
2(f − 3id).

On peut alors voir que A−1 =


0 1 1

2 0
0 1 0 0
−1 1 3

2 0
0 −1

2 0 1
2

 .
Autrement dit, f−1(x, y, z, t) =

(
y + 1

2z, y,−x+ y + 3
2z,−

1
2y + 1

2 t
)
.

3. Notons, pour n ∈ N, P(n) : ≪ il existe an et bn tels que fn = anf + bnid. ≫

Cette propriété est vraie au rang 0 puisque f0 = 0f + id et au rang 1, (puisque
f = f + 0id) et même au rang 2 d’après la première question.
Soit n ∈ N quelconque fixé. On suppose P(n) vraie.
On a fn+1 = f ◦ fn = f ◦ (anf + bnid) = anf

2 + bnf .
Or, on sait que f2 = 3f − 2id d’après la première question.
Ainsi, fn+1 = an(3f − 2id) + bnf . Autrement dit

fn+1 = (3an + bn)f − 2anid.

La propriété est donc vraie au rang n+1 en prenant an+1 = 3an +bn et bn+1 = −2an.
Ainsi, on a ∀n ∈ N, fn = anf + bnid où (an)n∈N et (bn)n∈N sont deux suites définies
par a0 = 0 et b0 = 1 et ∀n ∈ N, an+1 = 3an + bn et bn+1 = −2an.

4. On a pour tout n ∈ N, an+2 = 3an+1 + bn+1, or bn+1 = −2an donc

∀n ∈ N, an+2 = 3an+1 − 2an.

Résolvons l’équation caractéristique associée X2−3X+2 = 0. On trouve deux racines
évidentes, 1 et 2, donc il existe deux réels λ et µ tels que an = λ2n + µ.
En faisant n = 0, on récupère λ+ µ = 0 et 2λ+ µ = 1 donc λ = 1 et µ = −1.
On a donc, ∀n ∈ N, an = 2n − 1.
Ensuite, on a, pour tout n ∈ N, bn = an+1 − 3an = 2× 2n − 1− 3(2n − 1) = −2n + 2.
On a donc, pour tout n ∈ N, fn = (2n − 1)f + (2− 2n)id.

5. On veut savoir si pour tout n ∈ N, (f−1)n = (2−n − 1)f + (2− 2−n)id.
Composons donc

[(2−n− 1)f + (2− 2−n)id] ◦ fn = [(2−n− 1)f + (2− 2−n)id] ◦ [(2n− 1)f + (2− 2n)id].

On a donc

[(2−n − 1)f + (2− 2−n)id] ◦ fn = (2−n − 1)(2n − 1)f2

+
[
(2−n − 1)(2− 2n) + (2− 2−n)(2n − 1)

]
f + (2− 2−n)(2− 2n)id.
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Ainsi

((2−n − 1)f + (2− 2−n)id) ◦ fn = (2− 2−n − 2n)(3f − 2id)
+
[
−6 + 3× 2−n + 3× 2n] f + (5− 2× 2−n − 2× 2n)id.

En simplifiant, on obtient bien ((2−n − 1)f + (2− 2−n)id) ◦ fn = id.

Ainsi, on a bien pour tout n ∈ N, (f−1)n = (2−n − 1)f + (2− 2−n)id.

Exercice 19. 1. On sait que le vecteur f(x, y) est représenté relativement à la base

canonique par le vecteur colonne A
(
x
y

)
= 1

2

(
x+ 5y
5x+ y

)
.

Ainsi, f : R2 −→ R2

(x, y) 7−→ 1
2(x+ 5y, 5x+ y).

2. La famille B′ est constituée par seulement deux vecteurs qui s’avèrent être non co-
linéaires. Elle est donc libre. Comme elle contient exactement deux vecteurs et que
dim(R2) = 2, la famille B′ est donc une base de R2.

3. La matrice P est constituée par les coordonnées des vecteurs de B′ exprimés dans

la base canonique en colonne. Ainsi, P =
(

1 −1
1 1

)
. Ensuite, on a det(P ) = 2 donc

P−1 = 1
2

(
1 1
−1 1

)
.

4. Remarquons que f(1, 1) = (3, 3) = 3(1, 1) + 0(−1, 1) et f(−1, 1) = (2,−2) = 0(1, 1)−

2(−1, 1). Ainsi, D =
(

3 0
0 −2

)
.

Enfin, après calculs, on a PDP−1 = A.

5. Par récurrence, on pose pour tout n ∈ N, P(n) : ≪ An = PDnP−1 ≫.
On a A0 = I2 et PD0P−1 = PP−1 = I3, donc P(0) est vraie.
Soit n ∈ N quelconque fixé. On suppose P(n) vraie.
On a An+1 = AAn = ∆PDnP−1 d’après P(n). Or, en utilisant la formule de chan-
gement de base, on a A = PDP−1. Ainsi, An+1 = PDP−1PDnP−1 = PDn+1P−1,
donc P(n+ 1) est vraie.
On a donc pour tout n ∈ N, An = PDnP−1.

6. Il suffit désormais de poser les calculs. On a PDn =
(

3n −(−2)n

3n (−2)n

)
, puis

An = PDnP−1 = 1
2

(
3n + (−2)n 3n − (−2)n

3n − (−2)n 3n + (−2)n

)
.

Exercice 20. 1. Vérifions la linéarité de φ. Soient M et N deux éléments deM2(R) et
λ et µ deux éléments de R. On a

φ(λM + µN) = A(λM + µN)
= λAM + µAN
= λφ(M) + µφ(N).
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Ainsi, φ est une application linéaire. De plus, comme φ est définie sur M2(R) et à
valeur dans M2(R), il s’agit bien d’un endomorphisme de M2(R).

2. Notons E1 =
(

1 0
0 0

)
, E2 =

(
0 1
0 0

)
, E3 =

(
0 0
0 1

)
et E4 =

(
0 0
0 1

))
.

On a φ(E1) =
(
−1 0
−3 0

)
= −E1−3E3, et on a aussi φ(E2) =

(
0 −1
0 −3

)
= −E2−3E4,

puis φ(E3) =
(

1 0
3 0

)
E1 + 3E3 et pour finir φ(E4) =

(
0 1
0 3

)
= E2 + 3E4.

On a donc C =


−1 0 1 0
0 −1 0 1
−3 0 3 0
0 −3 0 3

.

3. Notons F1 =
(

1 0
1 0

)
, F2 =

(
0 1
0 1

)
, F3 =

(
1 0
3 0

)
et F4 =

(
0 1
0 3

)
.

La famille B′ est une famille de quatre vecteurs et dim(M2(R)) = 4. La famille B′ est
une base si et seulement si elle est libre.

Considérons (λ1, λ2, λ3, λ4) ∈ R4 tels que
4∑

k=1
λkFk = 0M2(R). Cela implique le système


λ1 +λ3 = 0

λ2 +λ4 = 0
λ1 +3λ3 = 0

λ2 +3λ4 = 0

⇐⇒
L3←L3−L1
L4←L4−L2


λ1 +λ3 = 0

λ2 +λ4 = 0
2λ3 = 0

2λ4 = 0

Ce qui implique λ1 = λ2 = λ3 = λ4 = 0.
La famille B′ est donc une base de M2(R).

4. On a φ(F1) = 0M2(R), φ(F2) = 0M2(R), φ(F3) = 2F3 et φ(F4) = 2F4.

La matrice D est donc D =


0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 2

.

5. On a F1 = E1 + E3, F2 = E2 + E4, F3 = E1 + 3E3 et F4 = E2 + 3E4.

Ainsi, on a P =


1 0 1 0
0 1 0 1
1 0 3 0
0 1 0 3

 et le calcul donne C = PDP−1.

Exercice 21. 1. Prenons λ et µ deux éléments de K et P , Q deux éléments de K[X].
On a

φn(λP + µQ) = ((λP + µQ)(0), . . . , (λP + µQ)(n))
= (λP (0) + µQ(0), . . . , λP (n) + µQ(n))
= λ(P (0), . . . , P (n)) + µ(Q(0), . . . , Q(n))
= λφn(P ) + µφn(Q).

Ainsi, φn ∈ L(K[X],Kn+1).
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2. Considérons P ∈ K[X]. On a P ∈ Ker(φn) si et seulement si (P (0), . . . , P (n)) =
(0, . . . , 0) soit si et seulement si P a 0, . . . , n comme racines.

Ainsi, P ∈ Ker(φn) si et seulement si il existe Q ∈ K[X] tel que P =
n∏

k=0
(X − k)Q.

On peut encore écrire Ker(φn) = {∏n
k=0(X − k)Q/Q ∈ K[X]}. L’application φn n’est

donc pas injective.

3. L’application ψn est tout aussi linéaire que φn, donc ψn ∈ L(Kn[X],Kn+1). Par
ailleurs, considérons P ∈ Kn[X]. Si P ∈ Ker(ψn), alors ψn(P ) = φn(P ) = (0, . . . , 0),

donc P ∈ Ker(φn). Ainsi, il existe Q ∈ K[X] tel que P =
n∏

k=0
(X − k)Q. Cependant,

si Q ̸= 0K[X], deg(P ) = deg(Q) + n+ 1 > n, ce qui est exclu car P ∈ Kn[X].
Ainsi, Q = 0K[X] ce qui implique P = 0K[X]. On a donc Ker(ψn) = {0K[X]}. L’appli-
cation ψn est injective.
De plus, comme en plus dim(Kn[X]) = n + 1 = dim(Kn+1), l’application ψn est un
isomorphisme.

4. Considérons P0 tel que ψn(P0) = (1, 0, . . . , 0). Ainsi, P0 s’annule pour tout ℓ ∈ [[1, n]],

et comme deg(P0) ⩽ n, il existe C ∈ K tel que P0 = C
n∏

ℓ=1
(X − ℓ). Comme P0(0) = 1,

on prend C = 1
n∏

ℓ=1
(0− ℓ)

= (−1)n

n! .

On a donc P0 = (−1)n

n!

n∏
ℓ=1

(X − ℓ).

5. De la même façon, on considère P1 tel que ψn(P1) = (0, , 1, 0, . . . , 0). Ainsi, P1 s’annule
pour tout ℓ ∈ [[0, n]] \ {1}, et comme deg(P1) ⩽ n, il existe C ∈ K tel que P1 =

C
n∏

ℓ=0
ℓ̸=1

(X − ℓ). Comme P1(1) = 1, on prend C = 1
n∏

ℓ=0
ℓ̸=1

(1− ℓ)
= (−1)n−1

(n− 1)! .

On a donc P1 = (−1)n−1

(n− 1)!

n∏
ℓ=1

(X − ℓ).

6. Plus généralement, on considère Pk tel que ψn(Pk) = (0, . . . , 0, 1, 0, . . . , 0) où le 1
apparait en position k + 1. Ainsi, Pk s’annule pour tout ℓ ∈ [[0, n]] \ {k}, et comme

deg(Pk) ⩽ n, il existe C ∈ K tel que Pk = C
n∏

ℓ=0
ℓ̸=k

(X − ℓ). Comme Pk(1) = 1, on prend

C = 1
n∏

ℓ=0
ℓ̸=1

(k − ℓ)
.

7. Considérons (a, b, c) ∈ K3. On a (a, b, c) = a(1, 0, 0)+b(0, 1, 0)+c(0, 0, 1) = aψ2(P0)+
bψ2(P1) + cψ2(P2).
Plus précisément, on a (a, b, c) = ψ2(aP0 + bP1 + cP2). Rappelons que l’on a, d’après
les questions précédentes, P0 = 1

2(X−1)(X−2), P1 = −X(X−2) et P2 = 1
2X(X−1).
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Ainsi, comme ψ2 est un isomorphisme, sa réciproque est l’application

ψ−1
2 : K3 −→ K2[X]

(a, b, c) 7−→ a
1
2(X − 1)(X − 2)− bX(X − 2) + c

1
2X(X − 1).

8. Il s’agit de généraliser la démarche précédente. On considère (a0, . . . , an) ∈ Kn+1 et on

remarque que (a0, . . . , an) =
n∑

k=0
akψk(Pk), donc que (a0, . . . , an) = ψn

(
n∑

k=0
akPk

)
.

Ainsi, comme ψn est un isomorphisme, sa réciproque est l’application

ψ−1
n : K3 −→ K2[X]

(a0, . . . , an) 7−→
n∑

k=0
akPk.

Exercice 22. 1. Déterminons Ker(f). Soit (x, y, z) ∈ Ker(f), alors c’est équivalent à

A

xy
z

 =

0
0
0

 c’est-à-dire le système


x− y − z = 0
x+ y + z = 0

−x = 0

Soit tout simplement 
x = 0

−y − z = 0
y + z = 0

Ou encore, pour bien détailler, {
x = 0
y = −z

Ainsi,
Ker(f) = Vect

(
(0,−1, 1)

)
.

On remarque que
(
(0,−1, 1)

)
forme une base de Ker(f) à lui tout seul (un seul vecteur

non nul). On a donc dim(Ker(f)) = 1.
Par ailleurs Im(f) = Vect

(
f(1, 0, 0), f(0, 1, 0), f(0, 0, 1)

)
, soit

Im(f) = Vect
(
(1, 1,−1), (−1, 1, 0), (−1, 1, 0)

)
.

Ou plus simplement
Im(f) = Vect

(
(1, 1,−1), (−1, 1, 0)

)
.(

(1, 1,−1), (−1, 1, 0)
)

est une base de Im(f) puisqu’en plus de l’engendrer, cette famille
est composée de deux vecteurs non colinéaires donc libres. On a donc dim(Im(f)) = 2.

310 / 359



2. C’est équivalent à regarder le rang de A − λI3 autrement dit le rang du système

homogène associé à cette matrice soit (A− λI3)

xy
z

 =

0
0
0

. C’est à dire :


(1− λ)x −y −z = 0

x +(1− λ)y +z = 0
−x −λz = 0

On fait ensuite L1 ← L1 + (1− λ)L3 et L2 ← L2 + L3 et on a
−y +(λ2 − λ− 1)z = 0

+(1− λ)y +(1− λ)z = 0
−x −λz = 0

Ensuite, faisons, L2 ← L2 + (1− λ)L1 et on a
−y +(λ2 − λ− 1)z = 0

(−λ+ 2λ2 − λ3)z = 0
−x −λz = 0

En réorganisant un peu les termes, on trouve
−x −λz = 0

−y +(λ2 − λ− 1)z = 0
−λ(λ− 1)2z = 0

Le système n’est pas de rang 3 lorsque λ = 0 ou λ = 1.

3. On ne l’a encore jamais écrit mais f(x, y, z) = (x− y − z, x+ y + z,−x).
Si s ∈ Vect(u), il existe µ ∈ R tel que s = µu, ainsi f(s) = µf(u) = µ(0, 0, 0) ∈
Vect(u).
Si s ∈ Vect(v), il existe µ ∈ R tel que s = µv, ainsi f(s) = µf(v) = µ(1, 1,−1) ∈
Vect(v).
Ainsi, Vect(u) et Vect(v) sont des droites vectorielles stables par f .
Soit w non nul tel que Vect(w) soit une droite vectorielle stable par f . Alors f(w) ∈
Vect(w), donc il existe un λ ∈ R tel que f(w) = λw.
On peut le réécrire tel que f(w) − λw = (0, 0, 0) ou encore (f − λid)(w) = 0. Cela
implique que rg(f − λid) < 3 (sinon d’après le théorème du rang, Ker(f − λid) =
{(0, 0, 0)} donc w = (0, 0, 0) et il n’engendrerait pas grand chose).
Ainsi, on remarque que, d’après la question précédente, λ = 0 ou λ = 1.
Or si λ = 0, c’est tout simplement w ∈ Ker(f) = Vect(u), donc on retrouve la première
droite vectorielle.
Si λ = 1, alors w = (x, y, z) est solution du système de la question précédente avec
λ = 1, donc de 

−x −z = 0
−y −z = 0

0 = 0

On trouve donc w ∈ {(−z,−z, z)/z ∈ R} = Vect
(
(−1,−1, 1)

)
= Vect(v).

Ainsi, on retrouve la deuxième droite vectorielle.
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Exercice 23. 1. Soit x ∈ Ker(f). On a alors f(x) = 0, donc g(f(x)) = 0, autrement dit
g ◦ f(x) = 0, soit x ∈ Ker(g ◦ f).
Ainsi, Ker(f) ⊂ Ker(g ◦ f).
Soit y ∈ Im(g◦f), alors il existe x ∈ Kn tel que y = g◦f(x) = g(f(x)) donc y ∈ Im(g)
Ainsi, Im(g ◦ f) ⊂ Im(g).

2. Soit y ∈ Ker(g) ∩ Im(f), alors il existe x ∈ Kn tel que y = f(x) et on a g(y) = 0.
Ainsi, g(f(x)) = 0, donc g ◦ f(x) = 0. Ainsi x ∈ Ker(g ◦ f). Or y = f(x), donc
y ∈ f(Ker(g ◦ f)).
On a donc Ker(g) ∩ Im(f) ⊂ f(Ker(g ◦ f)).
Réciproquement, soit y ∈ f(Ker(g◦f)), donc il existe x ∈ Ker(g◦f) tel que f(x) = y,
donc y ∈ Im(f).
Par ailleurs g(y) = g(f(x)) = g ◦ f(x) = 0 puisque x ∈ Ker(g ◦ f), donc y ∈ Ker(g).
Ainsi, on a y ∈ Ker(g) ∩ Im(f).
On a donc f(Ker(g ◦ f)) ⊂ Ker(g) ∩ Im(f).
Par double inclusion, on a bien Ker(g) ∩ Im(f) = f(Ker(g ◦ f)).

3. Soit x ∈ Ker(g). On a

g(f(x)) = g ◦ f(x) = f ◦ g(x) = f(g(x)) = f(0) = 0

puisque x ∈ Ker(g).
Ainsi, g(f(x)) = 0, donc f(x) ∈ Ker(g). Ker(g) est donc bien stable par f .
Soit y ∈ Im(g). Ainsi, il existe x ∈ Kn tel que g(x) = y. On a

f(y) = f(g(x)) = f ◦ g(x) = g ◦ f(x) = g(f(x)),

autrement dit f(y) ∈ Im(g).
Im(g) est donc bien stable par f .

4. Soit x ∈ Kn. On a f ◦g(x) = f(g(x)) donc f ◦g(x) ∈ Im(f). De même, g◦f(x) ∈ Im(g).
Or, ∀x ∈ Kn, f ◦ g(x) = g ◦ f(x), donc f ◦ g(x) ∈ Im(g).
Ainsi, f ◦g(x) ∈ Im(f)∩Im(g) = {0}. Donc ∀x ∈ Kn, f ◦g(x) = 0. On a donc f ◦g = 0
et comme f ◦ g = g ◦ f , g ◦ f = 0 aussi.

Exercice 24. 1. On prend x ∈ Ker(fp). On a donc fp+1(x) = f(fp(x)) = f(0) = 0,
donc x ∈ Ker(fp+1).
On a donc Ker(fp) ⊂ Ker(fp+1).
Soit y ∈ Im(fp+1), alors il existe x ∈ Kn tel que y = fp+1(x) = fp(f(x)). Ainsi, y
admet un antécédent par fp qui est f(x). Donc y ∈ Im(fp).
On a donc Im(fp+1) ⊂ Im(fp).

2. a. Supposons ℓ /∈ N.
En prenant ε = min(ℓ − ⌊ℓ⌋, ⌊ℓ⌋ + 1 − ℓ), on remarque que, il existe un entier p0
tel que, ∀p ⩾ p0,

|up − ℓ| < ε,

autrement dit
ℓ− ε < up < ℓ+ ε.
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Cependant, puisque ε ⩽ ℓ− ⌊ℓ⌋, ℓ− ε ⩾ ⌊ℓ⌋, et comme ε ⩽ ⌊ℓ⌋+ 1− ℓ, on a

⌊ℓ⌋ < up < ⌊ℓ⌋+ 1.

Or il est rigoureusement impossible d’avoir un entier compris strictement entre
deux entiers successifs.
On a donc forcément ℓ ∈ N.

b. On a désormais lim
p→+∞

up = ℓ ∈ N. D’après la définition de limite appliquée à

ε = 1
2, on récupère qu’il existe un p0 ∈ N tel que, pour tout p ⩾ p0,

|up − ℓ| <
1
2 ,

autrement dit
ℓ− 1

2 < up < ℓ+ 1
2 .

Or comme up ∈ N, le seul entier possible est up = ℓ.

3. a. Si on note dp = dim(Ker(fp)), on peut remarquer que, puisque pour tout p ∈ N,
Ker(fp) ⊂ Ker(fp+1), on a dp ⩽ dp+1.
La suite (dp)p∈N est donc croissante. Elle est majorée par n (puisque dimension
d’un sous-espace de Kn est forcément inférieure à celle de Kn).
La suite est donc convergente. D’après la question précédente, il existe p0 ∈ N tel
que, ∀p ⩾ p0, dp = dp0 .

b. On a donc Ker(fp0) ⊂ Ker(fp) ainsi que l’égalité des dimensions, ce qui nous
donne que pour tout p ⩾ p0, Ker(fp) = Ker(fp0).

4. a. Appliquons le théorème du rang à fp. On a alors dim(Ker(fp)) + rg(fp) =
dim(Kn).
On a donc, dim(Im(fp)) = n − dim(Ker(fp)). Or comme pour tout p ⩾ p0,
Ker(fp) = Ker(fp0), on a

dim(Im(fp)) = n− dim(Ker(fp0)).

Et d’après le théorème du rang appliqué à fp0 , on a

dim(Im(fp0)) = n− dim(Ker(fp0)).

On a donc pour tout p ⩾ p0, dim(Im(fp)) = dim(Im(fp0)).
b. C’est la même chose que précédemment. On a donc Im(fp) ⊂ Im(fp0) ainsi que

l’égalité des dimensions, ce qui nous donne que pour tout p ⩾ p0, Im(fp) =
Im(fp0)

5. Comme Ker(fp0) et Im(fp0) sont des sous-espaces vectoriels, il est clair que {0} ⊂
Ker(fp0) ∩ Im(fp0).
Soit y ∈ Ker(fp0)∩ Im(fp0). Comme y ∈ Im(fp0), il existe x ∈ Kn tel que y = fp0(x).
On a de plus fp0(y) = 0, donc f2p0(x) = 0. Autrement dit x ∈ Ker(f2p0). Cependant,
Ker(f2p0) = Ker(fp0) puisque 2p0 ⩾ p0. On a donc x ∈ Ker(fp0), donc fp0(x) = 0. Or
comme y = fp0(x), on a y = 0, ce qui nous donne l’inclusionKer(fp0)∩Im(fp0) ⊂ {0}.
On a donc démontré par double inclusion que Ker(fp0) ∩ Im(fp0) = {0}.
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21 Compléments sur les variables aléatoires finies
Exercice 1. Par linéarité de l’espérance, on a E(Z) = E(X − Y ) = E(X)− E(Y ) par
linéarité de l’espérance. Comme X et Y suivent la même loi uniforme, on a E(Z) = 0.
Parce que X et Y sont indépendantes, on a

V (Z) = V (X − Y ) = V (X) + V (−Y ) = V (X) + V (Y ) = 2n
2 − 1
12 = n2 − 1

6 .

Ensuite, on a Z(Ω) = [[−n+ 1, n− 1]].
Ensuite, nous allons utiliser la formule des probabilités totales appliquée au système
complet d’événements associé à Y , et on a, ∀k ∈ Z(Ω),

P (Z = k) =
n∑

ℓ=1
P (Z = k ∩ Y = ℓ)

=
n∑

ℓ=1
P (X − Y = k ∩ Y = ℓ)

=
n∑

ℓ=1
P (X = k + ℓ ∩ Y = ℓ)

Si k ⩾ 0, on a

P (Z = k) =
n−k∑
ℓ=1

P (X = k + ℓ ∩ Y = ℓ) les autres termes sont nuls

=
n−k∑
ℓ=1

P (X = k + ℓ)P (Y = ℓ) par indépendance

=
n−k∑
ℓ=1

1
n

1
n

= n− k
n2 .

Si k < 0, on a

P (Z = k) =
n∑

ℓ=1−k

P (X = k + ℓ ∩ Y = ℓ) les autres termes sont nuls

=
n∑

ℓ=1−k

P (X = k + ℓ)P (Y = ℓ) par indépendance

=
n∑

ℓ=1−k

1
n

1
n

= n− (1− k) + 1
n2

= n+ k

n2 .

En résumé, on a ∀k ∈ [[−n+ 1, n− 1]], P (Z = k) = n− |k|
n2 .
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On a alors,

E(Z) =
n−1∑

k=−n+1
kP (Z = k)

=
n−1∑

k=−n+1
k
n− |k|
n2

=
−1∑

k=−n+1
k
n+ k

n2 +
n−1∑
k=0

k
n− k
n2

Posons ℓ = −k dans la première, on a alors

E(Z) =
n−1∑
ℓ=1
−ℓn− ℓ

n2 +
n−1∑
k=0

k
n− k
n2

E(Z) = 0.

Puis, on a V (Z) = E(Z2) comme E(Z) = 0 et

E(Z2) =
n−1∑

k=−n+1
k2P (Z = k)

=
n−1∑

k=−n+1
k2n− |k|

n2

=
−1∑

k=−n+1
k2n− |k|

n2 +
n−1∑
k=0

k2n− k
n2

Posons ℓ = −k dans la première, on a alors Posons ℓ = −k dans la première, on a alors

E(Z2) =
n−1∑
ℓ=1

ℓ2
n− |ℓ|
n2 +

n−1∑
k=0

k2n− k
n2

= 2
n−1∑
k=0

k2n− k
n2

= 2
n2

[
n

n−1∑
k=0

k2 −
n−1∑
k=0

k3
]

= 2
n2

[
n

(n− 1)n(2n− 1)
6 − n2(n− 1)2

4

]

= (n− 1)(2n− 1)
3 − (n− 1)2

2

= (4n2 − 6n+ 2)− (3n3 − 6n+ 3)
6

= n2 − 1
6 .

Donc on a bien V (Z) = n2 − 1
6 . Ouf.

Exercice 2. Comme souvent dans ce chapitre, la réponse est dans la formule des pro-
babilités totales. Appliquons la au système complet d’événements (Y = k)k∈[[0,n]].
On a alors :
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P (X = Y ) =
n∑

k=0
P (X = Y ∩ Y = k)

=
n∑

k=0
P (X = k ∩ Y = k)

=
n∑

k=0
P (X = k)P (Y = k)car X et Y sont indépendantes

=
n∑

k=0

(
n

k

)(1
2

)k (1
2

)n−k
(
n

k

)(1
2

)k (1
2

)n−k

= 1
22n

n∑
k=0

(
n

k

)(
n

k

)

= 1
22n

n∑
k=0

(
n

k

)(
n

n− k

)
d’après la propriété sur les coefficients binomiaux.

Pour terminer de simplifier, on a besoin de la formule de Vandermonde dans un cas par-
ticulier. Cette formule de Vandermonde figure dans l’exercice sur la loi hypergéométrique
du chapitre des variables aléatoires. En voilà une démonstration différente dans le cas
général (on prendra ensuite n = m et k = n pour son application).

On a (1 + x)m+n =
m+n∑
k=0

(
m+ n

k

)
xk.

Par ailleurs, (1 + x)m+n = (1 + x)m(1 + x)n =
m∑

i=0

(
m

i

)
xi

n∑
j=0

(
n

j

)
xj .

Ainsi, (1 + x)m+n =
m∑

i=0

n∑
j=0

(
m

i

)(
n

j

)
xi+j .

En posant k = i+j, on a (1+x)m+n =
m∑

i=0

n+i∑
k=i

(
m

i

)(
n

k − i

)
xk. En utilisant la convention

habituelle que
(
n

k

)
= 0 si k /∈ [[0, n]], on peut écrire

(1 + x)m+n =
m∑

i=0

m+n∑
k=0

(
m

i

)(
n

k − i

)
xk =

m+n∑
k=0

m∑
i=0

(
m

i

)(
n

k − i

)
xk.

L’unicité de l’écriture développée réduite d’un polynôme assure l’égalité de Vander-
monde.
Revenons-en à notre problème. Nous avions

P (X = Y ) = 1
22n

n∑
k=0

(
n

k

)(
n

n− k

)

= 1
22n

(
2n
n

)
d’après la formule de Vandermonde.

Ainsi, on a P (X = Y ) =
(

2n
n

)
1

22n
.

Exercice 3. 1. Il est clair que X et Y suivent des lois uniformes sur [[1, 20]] et sont
indépendantes.
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On a E(Z) = E(X + Y ) = E(X) + E(Y ) par linéarité de l’espérance. Or E(X) =
E(Y ) = 21

2 , donc E(Z) = 21.

De la même façon, on a E(T ) = E(X − Y ) = E(X) − E(Y ) = 0 en utilisant la
linéarité.
Pour les variances, on a V (Z) = V (X + Y ) = V (X) + V (Y ) puisque X et Y sont
indépendantes. Or

V (X) = V (Y ) = 400− 1
12 = 399

12 = 133
4 .

Ainsi, V (Z) = 133
2 .

Ensuite, V (T ) = V (X − Y ) = V (X) + V (−Y ) puisque X et −Y sont indépendantes.
Mais comme V (−Y ) = V (Y ), on trouve V (T ) = V (Z) = 133

2 .

2. Remarquons que Z(Ω) = [[2, 40]] et T (Ω) = [[−19, 19]] et Z > T car Y > 0.
Ainsi

(ZT = 48) = (Z = 8∩T = 6)∪(Z = 16∩T = 3)∪(Z = 12∩T = 4)∪(Z = 24∩T = 2).

Réfléchissons un peu pour voir si chaque chose est possible.

• (Z = 8) ∩ (T = 6) = (X + Y = 8 ∩X − Y = 6) = (X = 7 ∩ Y = 1) ;
• (Z = 12 ∩ T = 4) = (X + Y = 12 ∩X − Y = 4) = (X = 8 ∩ Y = 4) ;
• (Z = 16 ∩ T = 3) = (X + Y = 16 ∩X − Y = 3) = (X = 19

2 ∩ Y = 13
2 ) = ∅ ;

• (Z = 24 ∩ T = 2) = (X + Y = 24 ∩X − Y = 2) = (X = 13 ∩ Y = 11).

Ainsi, P (ZT = 48) = P
(
(X = 7∩Y = 1)∪∅∪ (X = 8∩Y = 4)∪ (X = 13∩Y = 11)

)
.

Par incompatibilité, on a

P (ZT = 48) = P (X = 7 ∩ Y = 1) + 0 + P (X = 8 ∩ Y = 4) + P (X = 13 ∩ Y = 11).

Par indépendance de X et Y , on a

P (ZT = 48) = P (X = 7)P (Y = 1) + P (X = 8)P (Y = 4) + P (X = 13)P (Y = 11).

Et donc, P (ZT = 48) = 3
202 = 3

400 .

Exercice 4. 1. Il est évident que X suit une loi de Bernoulli de paramètre 1
2.

De plus, Y compte le nombre de succès à l’épreuve ≪ obtenir face ≫ de probabilité
1
2 répétée 3 fois de façon indépendante, donc Y suit une loi binomiale de paramètre(

3, 1
2

)
.

2. On a X(Ω) = {0, 1} et Y (Ω) = {0, 1, 2, 3}.
Il est clair que P (X = 0 ∩ Y = 0) = 0 (on ne peut pas avoir eu un face en premier et
aucun face) et P (X = 1 ∩ Y = 3) aussi.
Calculons P (X = 1 ∩ Y = 1). Notons Fi l’événement ≪ faire face au rang i ≫.
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On a (X = 1 ∩ Y = 1) =
(
F1 ∩ F2 ∩ F3

)
∪
(
F1 ∩ F2 ∩ F3

)
.

Ainsi,

P (X = 1 ∩ Y = 1) = P
((
F1 ∩ F2 ∩ F3

)
∪
(
F1 ∩ F2 ∩ F3

))
.

Par incompatibilité, on a

P (X = 1 ∩ Y = 1) = P
(
F1 ∩ F2 ∩ F3

)
+ P

(
F1 ∩ F2 ∩ F3

)
.

Par indépendance des lancers, on a

P (X = 1 ∩ Y = 1) = P (F1)P (F2)P (F3) + P (F1)P (F2)P (F3).

Et donc
P (X = 1 ∩ Y = 1) = 1

8 + 1
8 = 2

8 = 1
4 .

A ce stade là, on a le tableau suivant.

Y
X 0 1 P (Y = j)

0 0 1
8

1 2
8

3
8

2 3
8

3 0 1
8

P (X = i) 1
2

1
2

La formule des probabilités totales qui se traduit par la somme de la ligne j donne
P (Y = j) et la somme sur la colonne i donne P (X = i) nous permet de remplir toutes
les autres cases !

Y
X 0 1 P (Y = j)

0 0 1
8

1
8

1 1
8

2
8

3
8

2 2
8

1
8

3
8

3 1
8 0 1

8

P (X = i) 1
2

1
2

Exercice 5. 1. Pour que ce soit une probabilité, il faut que
N∑

i=0

N∑
j=0

P (X = i ∩ Y = j) = 1.
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Calculons cette somme. On a
N∑

i=0

N∑
j=0

P (X = i ∩ Y = j) =
N∑

i=0

N∑
j=0

ApiqN−j

= A

(
N∑

i=0
pi

) N∑
j=0

qN−j


= A

(
N∑

i=0
pi

)(
N∑

k=0
qk

)
avec k = N − j

= A
1− pN+1

1− p
1− qN+1

1− q

= A
(1− pN+1)(1− qN+1)

pq
.

Ainsi, il faut avoir
A = pq

(1− pN+1)(1− qN+1) .

2. Utilisons la formule des probabilités totales appliquée au système complet d’événements
associé à Y .
On a alors, ∀i ∈ [[0, N ]],

P (X = i) =
N∑

j=0
P (X = i ∩ Y = j)

=
N∑

j=0
ApiqN−j

= Api
N∑

j=0
qN−j on reconnait une somme déjà calculée

= Api 1− qN+1

1− q

= Api−1(1− qN+1)

= pq

(1− pN+1)(1− qN+1)p
i−1(1− qN+1)

= qpi

1− qN+1

Utilisons la formule des probabilités totales appliquée au système complet d’événements
associé à X.
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On a alors, ∀i ∈ [[0, N ]],

P (Y = j) =
N∑

i=0
P (X = i ∩ Y = j)

=
N∑

i=0
ApiqN−j

= AqN−j 1− pN+1

1− p

= pq

(1− pN+1)(1− qN+1)q
N−j−1(1− pN+1)

= pqN−j

1− qN+1 .

On remarque alors, que ∀(i, j) ∈ [[0, N ]]2, on a

P (X = i ∩ Y = j) = P (X = i)P (Y = j).

Elles sont donc indépendantes.

3. On a évidemment, X + Y (Ω) = [[0, 2N ]]. Ainsi, ∀k ∈ [[0, 2N ]], on a en utilisant la
formule des probabilités totales appliquée au système complet d’événements associés
à Y ,

P (X + Y = k) =
N∑

j=0
P (X + Y = n ∩ Y = j)

=
N∑

j=0
P (X = k − j ∩ Y = j).

Il faut distinguer selon la position de k par rapport à N .
Pour k ∈ [[0, C]], on a

P (X + Y = k) =
k∑

j=0
P (X = k − j ∩ Y = j)

=
k∑

j=0
Apk−jqN−j

= AqN−k
k∑

j=0
(pq)k−j

= AqN−k
k∑

ℓ=0
(pq)ℓ avec ℓ = k − j

= AqN−k 1− (pq)k+1

1− pq .
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Pour k ∈ [[N + 1, 2N ]], on a

P (X + Y = k) =
N∑

j=k−N

P (X = k − j ∩ Y = j)

=
N∑

j=k−N

Apk−jqN−j

= Apk−N
N∑

j=k−N

(pq)N−j

= Apk−N
2N−k∑
ℓ=0

(pq)ℓ avec ℓ = N − j

= Apk−N 1− (pq)2N−k+1

1− pq .

Pour les deux expressions, on peut bien évidemment remplacer A par sa valeur, mais
je n’ai pas vu de belle simplification.

Exercice 6. Remarquons tout d’abord que si X(Ω) = [[0, N ]], on a par contre Y (Ω) =
[[0, 2N ]].
Pour déterminer la première marginale, utilisons la formule des probabilités totales ap-
pliquée au système complet d’événements associé à Y , on a alors, pour tout i ∈ [[0, N ]],

P (X = i) =
2N∑
j=0

P (X = i ∩ Y = j)

=
i+N∑
j=i

P (X = i ∩ Y = j) les autres termes sont nuls

=
i+N∑
j=i

1
(N + 1)2

= 1
N + 1 .

On a donc X ↪→ U([[0, N ]]).
Pour la seconde, on utilise la formule des probabilités totales appliquée au système
complet d’événements associé à X. On a, pour j ∈ [[0, 2N ]],

P (Y = j) =
N∑

i=0
P (X = i ∩ Y = j).

Il faut distinguer différents cas.
Si k ∈ [[0, N ]],

P (Y = j) =
j∑

i=0
P (X = i ∩ Y = j) les autres termes sont nuls

=
j∑

i=0

1
(N + 1)2

= j + 1
N + 1 .

Si k ∈ [[N + 1, 2N ]],
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P (Y = j) =
N∑

i=j−N

P (X = i ∩ Y = j) les autres termes sont nuls

=
N∑

i=j−N

1
(N + 1)2

= 2N − j + 1
N + 1 .

On a donc pour tout j ∈ [[0, 2N ]],

P (Y = j) =


j + 1
N + 1 si j ⩽ N

2N − j + 1
N + 1 si j > N.

Elles ne sont pas indépendantes parce que P (X = 1 ∩ Y = 0) = 0 alors que P (X =
1)P (Y = 0) = 1

N + 1
1

N + 1 ̸= 0.

Exercice 7. 1. On a X(Ω) = Y (Ω) = {0, 1, 2}.
On peut poser mais ce n’est pas si simple que ça. Le plus simple est de faire du
dénombrement. On note Ω l’ensemble des combinaisons à deux éléments de {01, 02, 11, 12, 21, 22}
qu’on muni de la probabilité uniforme. Donc Card(Ω) =

(6
2
)

= 15.

On a P (X ⩾ 0) = 1 (évidemment), P (X ⩾ 1) =
(4

2
)

15 = 6
15 = 2

5 (on compte le
nombre de combinaisons à deux éléments pris parmi {11, 12, 21, 22}) et pour finir,

P (X ⩾ 2) =
(2

2
)

15 = 1
15.

Ensuite, on a P (X = 0) = P (X ⩾ 0) − P (X ⩾ 1) = 3
5 et P (X = 1) = P (X ⩾

1)− P (X ⩾ 2) = 1
3 et pour terminer P (X = 2) = P (X ⩾ 2) = 1

15.

Par symétrie, il est clair que P (Y = 0) = 1
15, P (Y = 1) = 1

3, P (Y = 2) = 3
5. Et si ce

n’est pas clair, il faut déterminer P (Y ⩽ 2) = 1, P (Y ⩽ 1) = 6
15 et P (Y ⩽ 0) = 1

15 .

2. Le plus simple est de remarquer que P ((X = i) ∩ (Y = j)) = 0 lorsque i > j et de
dresser le désormais classique tableau à double entrée, et que P (X = i∩Y = i) = 1

15
(une seule possibilité avoir pioché les deux boules de même numéro).

Y
X 0 1 2 P (Y = j)

0 1
15 0 0 1

15

1 1
15 0 5

15

2 1
15

9
15

P (X = i) 9
15

5
15

1
15
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En remplaçant ce qu’on peut par la formule des probabilités totales (somme sur une
ligne donne P (Y = j) et sur une colonne P (X = i)), on se rend compte que

Y
X 0 1 2 P (Y = j)

0 1
15 0 0 1

15

1 4
15

1
15 0 5

15

2 4
15

4
15

1
15

9
15

P (X = i) 9
15

5
15

1
15

3. Il suffit en réalité de calculer

P (X = 0|Y = 2) = P (X = 0 ∩ Y = 2)
P (Y = 2) =

4
15
9
15

= 4
9 .

A noter qu’il faut bien réaliser que ça marche uniquement parce qu’on sait que 2 est
forcément le plus grande de deux jetons piochés ! Si la question avait été ≪ sachant
qu’un des jetons porte le numéro 2, quelle est la probabilité que l’autre porte le 0 ? ≫ on
n’aurait pas pu se servir des variables X et Y .

Exercice 8. 1. Beaucoup de dénombrements dans cet exercice.
On considérera Ω l’ensemble des combinaisons à n éléments de [[1, N ]] que l’on munira
de la probabilité uniforme. Comme (X ⩾ k) est l’ensemble des combinaisons à n
éléments de [[k,N ]], on a

P (X ⩾ k) =
(N−k+1

n

)(N
n

) si k ⩽ N − n+ 1, 0 sinon.

Et comme (Y ⩽ k) est l’ensemble des combinaisons à n éléments de [[n,N ]], on a

P (Y ⩽ k) =
(k

n

)(N
n

) si k ⩾ n, 0 sinon.

2. En utilisant la question 1, on trouve

∀k ∈ [[1, N ]], P (X = k) =
(N−k+1

n

)
−
(N−k

n

)(N
n

) =
(N−k

n−1
)(N

n

) .

Et pour Y :

∀k ∈ [[1, N ]], P (Y = k) =
(k

n

)
−
(k−1

n

)(N
n

) =
(k−1

n−1
)(N

n

) .
Ça peut se simplifier avec la formule de Pascal.

3. On a X(Ω) = [[1, N ]] = Y (Ω). Si j − i ⩽ n − 1, P ((X = i) ∩ (Y = j)) = 0 (il y a
forcément une différence de n− 1 entre le plus petit et le plus grand puisqu’on pioche

n boules). Sinon, P ((X = i)∩ (Y = j)) =
(j−i−1

n−2
)(N

n

) car (X = i∩ Y = j) est l’ensemble

des combinaisons à n− 2 éléments pris entre i+ 1 et j − 1 auxquelles on a ajouté i et
j.
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Ainsi, ∀(i, j) ∈ [[1, N ]]2, on a

P ((X = i) ∩ (Y = j)) =



(j−i−1
n−2

)(N
n

) si j − i ⩾ n− 1

0 sinon.

Exercice 9. 1. Il s’agit du nombre de boules dont le numéro correspond à numéro de
tirage.

2. a. Il s’agit d’une Bernoulli. Par symétrie du problème, la probabilité de piocher une
boule donnée ne peut être que la même pour chaque boule. Ainsi, la probabilité
de piocher la boule numéro k au kème tirage ne peut être que 1

n
. Donc Xk suit

loi de Bernoulli de paramètre 1
n

, donc d’espérance 1
n

et de variance n− 1
n2 .

b. On trouve, par linéarité de l’espérance

E(X) =
n∑

k=1
E(Xk) =

n∑
k=1

1
n

= 1

et par indépendance,

V (X) =
n∑

k=1
V (Xk) =

n∑
k=1

n− 1
n2 = n− 1

n
.

3. a. Pour exactement les mêmes raisons, il s’agit aussi d’une Bernoulli de paramètre
1
n

, donc d’espérance 1
n

et de variance n− 1
n2 .

b. De la même façon, on trouve E(X) = 1. Attention, la variance ne sera pas la
même puisque les variables aléatoires ne sont plus indépendantes.

Exercice 10 (Attention à mener les calculs soigneusement). 1. a. C’est du cours ! On
voit que X compte le nombre de succès à l’épreuve ≪ répondre correctement à
la question ≫ répétée n fois de façon indépendante avec la même probabilité de
succès. Ainsi, X ↪→ B(n, p).

b. On a donc E(X) = np et V (X) = np(1− p).
c. C’est un classique...

from random import random

def qcm(n,p):
X=0
for k in range(n):

if random () <=p:
X+=1

return X
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2. a. En refaisant tout depuis le début, on peut faire :

from random import random

def qcm2(n,p):
Z=0
for k in range(n):

if random ()>p:
if random () <=p:

Z+=1
return Z

Ou en plus court et en se servant de ce qu’on vient de faire :

def qcm2(n,p):
return qcm(n-qcm(n,p),p)

b. Remarquons que Z(Ω) = [[0, n]]. Pour ℓ ∈ [[0, n]], on doit distinguer plusieurs cas.
• Si k + ℓ > n c’est-à-dire ℓ > n− k, P (Z = ℓ|X = k) = 0.
• Si ℓ ⩽ n − k, on compte le nombre de succès à une expérience répétée n − k

fois de façon indépendante avec la même probabilité p de succès. Ainsi

P (Z = ℓ|X = k) =
(
n− k
ℓ

)
pℓqn−k−ℓ.

c. Dans ces conditions, on a(
n− k
ℓ

)(
n

k

)
= (n− k)!

ℓ!(n− k − ℓ)!
n!

k!(n− k)!

= n!
ℓ!k!(n− k − ℓ)!

= n!
ℓ!(n− ℓ)!

(n− ℓ)!
k!(n− k − ℓ)!

=
(
n

ℓ

)(
n− ℓ
k

)
.

d. Il est temps d’utiliser la formule des probabilités totales appliquée au système
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complet d’événements associé à X. On a alors, pour tout ℓ ∈ [[0, n]],

P (Z = ℓ) =
n∑

k=0
P (Z = ℓ|X = k)P (X = k)

=
n−ℓ∑
k=0

P (Z = ℓ|X = k)P (X = k) les autres termes étant nuls

=
n−ℓ∑
k=0

(
n− k
ℓ

)
pℓqn−k−ℓ

(
n

k

)
pkqn−k

= pℓqℓ
n−ℓ∑
k=0

(
n− k
ℓ

)(
n

k

)
pkq2n−2k−2ℓ

= pℓqℓ
n−ℓ∑
k=0

(
n

ℓ

)(
n− ℓ
k

)
pk(q2)n−k−ℓ

=
(
n

ℓ

)
(pq)ℓ

n−ℓ∑
k=0

(
n− ℓ
k

)
pk(q2)n−k−ℓ

=
(
n

ℓ

)
(pq)ℓ(p+ q2)n−ℓ.

On peut remarquer que

p+ q2 = p+ (1− p)2 = 1− p+ p2 = 1− p(1− p) = 1− pq.

Ainsi, P (Z = ℓ) =
(
n

ℓ

)
(pq)ℓ(1− pq)n−ℓ.

On a donc, Z ↪→ B(n, pq), et ensuite E(Z) = npq et V (Z) = npq(1− pq).
e. Oui, Z compte le nombre de succès à l’épreuve ≪ rater puis réussir sa réponse ≫ répétée
n fois de manière indépendante et de probabilité de succès qp (puisque les deux
passages sont indépendants).

3. a. S représente le nombre de bonnes réponses à l’issue des deux passages du QCM.

b. La bêtise serait de renvoyer qcm(n,p)+qcm2(n,p) parce que les deux simulations
ne simulent pas simultanément la même expérience : on pourrait tout à fait avoir
un résultat qui dépasse n.
Il faut donc refaire les choses.
La version longue

def qcm3(n,p):
S=0
for k in range(n):

if random ()>p:
if random () <=p:

S+=1
else:

S+=1
return S

La version courte :

def qcm3(n,p):
X=qcm(n,p)
Z=qcm(n-X,p)
return X+Z
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c. On a S(Ω) = [[0, n]].
Et si on utilisait la formule des probabilités totales appliquée au système complet
d’événements associé à X ? Ainsi, ∀ℓ ∈ [[0, n]], on a

P (S = ℓ) =
n∑

k=0
P (S = ℓ ∩X = k)

=
n∑

k=0
P (X + Z = ℓ ∩X = k)

=
n∑

k=0
P (Z = ℓ− k ∩X = k)

=
ℓ∑

k=0
P (Z = ℓ− k ∩X = k) les autres termes étant nuls

=
ℓ∑

k=0
P (Z = ℓ− k|X = k)P (X = k) car P (X = k) ̸= 0

=
ℓ∑

k=0

(
n− k
ℓ− k

)
pℓ−kqn−k−ℓ+k

(
n

k

)
pkqn−k

=
ℓ∑

k=0

(
n− k
ℓ− k

)(
n

k

)
pℓq2n−k−ℓ.

Or, on a (
n− k
ℓ− k

)(
n

k

)
= (n− k)!

(ℓ− k)!(n− ℓ)!
n!

k!(n− k)!

= n!
k!(ℓ− k)!(n− ℓ)!

= n!
ℓ!(n− ℓ)!

ℓ!
k!(ℓ− k)!

=
(
n

ℓ

)(
ℓ

k

)
.

Ainsi, reprenons notre calcul :

P (S = ℓ) =
ℓ∑

k=0

(
n

ℓ

)(
ℓ

k

)
pℓq2n−k−ℓ

=
(
n

ℓ

)
pℓq2n−2ℓ

ℓ∑
k=0

(
ℓ

k

)
qℓ−k

=
(
n

ℓ

)
pℓq2n−2ℓ(1 + q)ℓ

=
(
n

ℓ

)
(p(1 + q))ℓ (q2)n−ℓ.

Or, p(1 + q) = (1− q)(1 + q) = 1− q2.

Ainsi, P (S = ℓ) =
(
n

ℓ

)(
1− q2

)ℓ
(q2)n−ℓ.

Ainsi, S ↪→ B(n, 1− q2).
On a donc E(S) = n(1− q2) et V (S) = n(1− q2)q2.
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d. Oui, S compte le nombre de succès à l’épreuve ≪ on n’a pas raté deux fois la
question ≫ répétée n fois de manière indépendante et de probabilité de succès
1− q2 (puisque les deux passages sont indépendants).

Exercice 11. 1.

from random import randint
def varY(n):

return randint (1, randint (1,n))

2.

def espY(n):
N =10000
S=0
for k in range(N):

S+= varY(n)
return S/N

On pourrait croire que ça vaut n+ 3
4 .

3. Il est clair que X ↪→ U([[1, n]]), donc E(X) = n+ 1
2 et V (X) = n2 − 1

12 .

4. On a Y (Ω) = [[1, n]]. Soit ℓ ∈ [[1, n]].

Si ℓ > k, P (Y = ℓ|X = k) = 0 et pour tout ℓ ⩽ k, P (Y = ℓ|X = x) = 1
k

. C’est une
U([[1, k]])

5. On trouve ∀(k, ℓ) ∈ [[1, n]]2,

P (X = k ∩ Y = ℓ) = P (Y = ℓ|X = k)P (X = k).

Donc on a

P (X = k ∩ Y = ℓ) =


1
nk

si ℓ ⩽ k

0 sinon.

Ensuite, on utilise la formule des probabilités totales appliquée au système complet
d’événements associé à X et on a, ∀ℓ ∈ [[1, n]],

P (Y = ℓ) =
n∑

k=1
P (X = k ∩ Y = ℓ)

=
n∑

k=ℓ

P (X = k ∩ Y = ℓ)les autres termes sont nuls

=
n∑

k=ℓ

1
nk
.

Ainsi, on a ∀ℓ ∈ [[1, n]], P (Y = ℓ) = 1
n

n∑
k=ℓ

1
k

.

328 / 359



6. On a

E(Y ) =
n∑

ℓ=1
ℓP (Y = ℓ)

=
n∑

ℓ=1
ℓ

n∑
k=ℓ

1
kn

=
n∑

ℓ=1

n∑
k=ℓ

ℓ
1
kn

=
∑

1⩽ℓ⩽k⩽n

ℓ
1
kn
.

E(Y ) =
n∑

k=1

k∑
ℓ=1

ℓ
1
kn

=
n∑

k=1

1
kn

k(k + 1)
2

= 1
2n

n∑
k=1

(k + 1)

= 1
2n

n∑
k=1

k + 1
2n

n∑
k=1

1

= n(n+ 1)
4n + 1

2

= n+ 3
4 .

On a donc E(Y ) = n+ 3
4 .

On va procéder de la même façon pour le calcul de E(Y 2).

E(Y 2) =
n∑

ℓ=1
ℓ2P (Y = ℓ)

=
n∑

ℓ=1
ℓ2

n∑
k=ℓ

1
kn

=
n∑

ℓ=1

n∑
k=ℓ

ℓ2
1
kn

=
∑

1⩽ℓ⩽k⩽n

ℓ2
1
kn
.
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Ainsi,

E(Y 2) =
n∑

k=1

k∑
ℓ=1

ℓ2
1
kn

=
n∑

k=1

1
kn

k(k + 1)(2k + 1)
6

= 1
6n

n∑
k=1

(k + 1)(2k + 1)

= 1
6n

n∑
k=1

2k2 + 1
6n

n∑
k=1

3k + 1
6n

n∑
k=1

1

= 2n(n+ 1)(2n+ 1)
36n + 3n(n+ 1)

12n + 1
6

= 2(n+ 1)(2n+ 1)
36 + 9(n+ 1)

36 + 6
36

= 4n2 + 15n+ 17
36 .

On utilise alors la formule de Koenig-Huygens pour avoir :

V (Y ) = E(Y 2)− E(Y )2,

soit

V (Y ) = 4n2 + 15n+ 17
36 −

(
n+ 3

4

)2

= 4n2 + 15n+ 17
36 − n2 + 6n+ 9

16

= 4n2 + 15n+ 17
36 − n2 + 6n+ 9

16

= 16n2 + 60n+ 68
144 − 9n2 + 54n+ 81

144

= 7n2 + 6n− 13
144

On peut remarquer que la variance s’annule pour n = 1 (ce qui est logique) et donc
factoriser un peu le résultat. On trouve alors V (Y ) = (n− 1)(7n+ 13)

144 .

Exercice 12. 1. Il est clair que Xn ↪→ U([[1, n]]), donc

E(Xn) = n+ 1
2 et V (Xn) = n2 − 1

12 .

2. On a Yn(Ω) = [[1, n]].
Pour ℓ ∈ [[1, n]], on va appliquer la formule des probabilités totales appliquée au
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système complet d’événements associé à X,

P (Yn = ℓ) =
n∑

k=1
P (Yn = ℓ|Xn = k)P (Xn = k)

=
n∑

k=1
P (Yn = ℓ|X = k) 1

n

= 1
n

 n∑
k=1
k ̸=ℓ

P (Yn = ℓ|X = k) + P (Yn = ℓ|X = ℓ)


= 1

n

 n∑
k=1
k ̸=ℓ

1
n+ k

+ ℓ+ 1
n+ ℓ


= 1

n

[
n∑

k=1

1
n+ k

+ ℓ

n+ ℓ

]

= 1
n

(
an + ℓ

n+ ℓ

)
.

3. On a an =
n∑

k=1

1
k + n

= 1
n

n∑
k=1

1
1 + k

n

. Il s’agit d’une somme de Riemann associée à la

fonction continue sur [0, 1] x 7→ 1
1 + x

. On a donc

lim
n→+∞

n∑
k=1

1
k + n

=
∫ 1

0

1
1 + x

dx = ln(2)

4. Notons Sn = 1
n2

n∑
ℓ=1

ℓ2

n+ ℓ
= 1
n

n∑
ℓ=1

(ℓ/n)2

1 + (ℓ/n) . Ainsi,

lim
n→∞

Sn =
∫ 1

0

x2

1 + x
dx

On note I cette intégrale. Or

I =
∫ 1

0

x2 − 1
1 + x

+ 1
1 + x

dx =
∫ 1

0
x− 1 + 1

1 + x
dx.

Ainsi, I =
[1

2x
2 − x+ ln(1 + x)

]1

0
= ln(2)− 1

2 .

On a donc,

lim
n→∞

1
n2

n∑
ℓ=1

ℓ2

n+ ℓ
= ln(2)− 1

2 .

5. On a E(Yn) =
n∑

ℓ=1
ℓP (Yn = ℓ).
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Ainsi, on a

E(Yn) =
n∑

ℓ=1
ℓ

1
n

(
an + ℓ

n+ ℓ

)

= an

n

n∑
ℓ=1

ℓ+ 1
n

n∑
ℓ=1

ℓ2

n+ ℓ

= an

n

n(n+ 1)
2 + n

1
n2

n∑
ℓ=1

ℓ2

n+ ℓ

= (n+ 1)an

2 + nSn.

6. On a,
Le plus simple est de déterminer

lim
n→+∞

E(Yn)
n

.

Or, on a
E(Yn)
n

=
(1 + 1

n)an

2 + Sn.

Or on sait que lim
n→∞

an = ln(2) et lim
n→∞

Sn = ln(2)− 1
2.

Donc d’après les opérations habituelles, on a

E(Yn)
n

−−−→
n→∞

ln(2)
2 + ln(2)− 1

2 = 3 ln(2)− 1
2 .

Et donc, E(Yn) ∼ 3 ln(2)− 1
2 n.

Exercice 13. 1. Notons, pour tout l’exercice, Fi avoir obtenu face au lancer i.
On a X2(Ω) = {0, 1}.
Par ailleurs, (X2 = 1) = (F1 ∩ F2) ∪ (F1 ∩ F2), ainsi, on a

P (X2 = 0) = P ((F1 ∩ F2) ∪ (F1 ∩ F2)).

Par incompatibilité, on obtient,

P (X2 = 0) = P (F1 ∩ F2) + P (F1 ∩ F2).

Par indépendance des lancers, on a

P (X2 = 0) = P (F1)P (F2) + P (F1)P (F2).

Et donc P (X2 = 0) = 1
2

1
2 + 1

2
1
2 = 1

2.

Comme (X2 = 0), (X2 = 1)) forme un système complet d’événements, on a et P (X2 =
1) = 1

2.

Ensuite, on a X3(Ω) = {0, 1, 2}.
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De plus, (X3 = 0) = (F1 ∩ F2 ∩ F3) ∪ (F1 ∩ F2 ∩ F3), ainsi, on a

P (X3 = 0) = P
(
(F1 ∩ F2 ∩ F3) ∪ (F1 ∩ F2 ∩ F3)

)
.

Par incompatibilité, on obtient,

P (X3 = 0) = P (F1 ∩ F2 ∩ F3) + P (F1 ∩ F2 ∩ F3).

Par indépendance des lancers, on a

P (X3 = 0) = P (F1)P (F2)P (F3) + P (F1)P (F2)P (F3).

Et donc P (X3 = 0) = 1
2

1
2

1
2 + 1

2
1
2

1
2 = 1

4.

Ensuite, (X3 = 2) = (F1 ∩ F2 ∩ F3) ∪ (F1 ∩ F2 ∩ F3), ainsi, on a

P (X3 = 2) = P
(
(F1 ∩ F2 ∩ F3) ∪ (F1 ∩ F2 ∩ F3)

)
.

Par incompatibilité, on obtient,

P (X3 = 2) = P (F1 ∩ F2 ∩ F3) + P (F1 ∩ F2 ∩ F3).

Par indépendance des lancers, on a

P (X3 = 2) = P (F1)P (F2)P (F3) + P (F1)P (F2)P (F3).

Et donc P (X3 = 2) = 1
2

1
2

1
2 + 1

2
1
2

1
2 = 1

4.

Comme ((X3 = 0), (X3 = 1), (X3 = 2)) forme un système complet d’événements, on
a P (X3 = 1) = 1

2.

2. Soit n ∈ N, n ⩾ 2. On a Xn(Ω) = [[0, n− 1]].
Notons, en utilisant la formule des probabilités totales appliquée au système complet
d’événements associé à Xn−1 , ∀i ∈ [[0, n− 1]], on a

P (Xn = i) =
n−2∑
k=0

P (Xn = i|Xn−1 = k)P (Xn−1 = k)

= P (Xn = i|Xn−1 = i− 1)P (Xn−1 = i− 1) + P (Xn = i|Xn−1 = i)P (Xn−1 = i)

car les autres termes sont nuls (on a forcément Xn = Xn−1 ou Xn = Xn−1 + 1). Par
ailleurs, on note bien que si i = 0, P (Xn−1 = −1) = 0 et si i = n − 1, P (Xn−1 =
n− 1) = 0.

Enfin, on remarque que P (Xn = i|Xn−1 = i−1) = 1
2 = P (Xn = i|Xn−1 = i) puisqu’il

s’agit de la probabilité d’avoir un résultat différent de celui du lancer n − 1 pour le
premier, ou différent pour le second, comme la pièce est équilibrée.
Ainsi, on a pour tout i ∈ [[0, n− 1]],

P (Xn = i) = 1
2(P (Xn−1 = i− 1) + P (Xn−1 = i)).
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3. Remarquons que φn est un polynôme donc est C∞(R).

On a φn(1) =
n−1∑
k=0

P (Xn = k), or (Xn = k)k∈[[0,n−1]] est un système complet d’événements.

Ainsi, φn(1) = 1.

Par ailleurs, on a φ′n(x) =
n−1∑
k=1

kP (Xn = k)xk−1.

On a donc φ′n(1) =
n−1∑
k=1

kP (Xn = k) =
n−1∑
k=0

kP (Xn = k) car le premier terme est nul

et on reconnait φ′n(1) = E(X).

Ensuite, on a φ′′n(x) =
n−1∑
k=2

k(k − 1)P (Xn = k)xk−2.

On a donc φ′′n(1) =
n−1∑
k=2

k(k − 1)P (Xn = k) =
n−1∑
k=0

k(k − 1)P (Xn = k) car les deux

premiers termes sont nuls et on reconnait φ′′n(1) = E(X(X − 1)).

4. On a φn(x) =
n−1∑
k=0

P (Xn = k)xk. Or, on a précédemment montré que

∀k ∈ [[0, n− 1]], P (Xn = k) = 1
2(P (Xn−1 = k − 1) + P (Xn−1 = k)).

Ainsi,

φn(x) =
n−1∑
k=0

1
2(P (Xn−1 = k − 1) + P (Xn−1 = k))xk

= 1
2

n−1∑
k=0

P (Xn−1 = k − 1)xk + 1
2

n−1∑
k=0

P (Xn−1 = k)xk

= 1
2

n−1∑
k=1

P (Xn−1 = k − 1)xk + 1
2

n−2∑
k=0

P (Xn−1 = k)xk.

en enlevant les termes nuls. On pose ℓ = k−1 dans la première somme, et on reconnait
φn−1 dans l’autre pour avoir

φn(x) = 1
2

n−2∑
ℓ=0

P (Xn−1 = ℓ)xℓ+1 + 1
2φn−1(x)

= 1
2x

n−2∑
ℓ=0

P (Xn−1 = ℓ)xℓ + 1
2φn−1(x)

= 1
2xφn−1(x) + 1

2φn−1(x)

= 1 + x

2 φn−1(x).

Ainsi, (φn(x))n∈N est une suite géométrique de raison 1 + x

2 .

Par ailleurs φ1(x) = 1.

Ainsi, ∀n ∈ N∗, φn(x) =
(1 + x

2

)n−1
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5. On a donc φ′n(x) = n− 1
2

(1 + x

2

)n−2
, donc φ′n(1) = n− 1

2

Ainsi, E(Xn) = n− 1
2 .

Ensuite, on a φ′′n(x) = (n− 1)(n− 2)
4

(1 + x

2

)n−3
, donc φ′′n(1) = (n− 1)(n− 2)

4 .

On a donc E(X(X − 1)) = (n− 1)(n− 2)
4 et E(X(X − 1)) = E(X2)− E(X).

On a donc en utilisant la loi de Koenig-Huygens,

V (Xn) = E(X2
n)− E(Xn)2 = E(Xn(Xn − 1)) + E(Xn)− E(Xn)2.

Autrement dit,

V (Xn) = (n− 1)(n− 2)
4 + n− 1

2 −
(
n− 1

2

)2

= n− 1
4 ((n− 2) + 2− (n− 1))

= n− 1
4 .

On a donc, V (Xn) = n− 1
4 .

Exercice 14. 1. Si on note Ω l’ensemble des k-listes de [[1, n]], alors (Xk = 1) représente
l’ensemble des k-listes dont tous les termes sont égaux. Il y en a donc n.
Ainsi, en prenant P la probabilité uniforme sur Ω, on a

P (Xk = 1) = n

nk
= 1
nk−1 .

2. Si k > n, c’est nul. Sinon, toujours dans le même contexte de dénombrement, on a
(Xk = k) qui est l’ensemble des k-listes sans répétitions. On a donc

P (Xk = k) = n!
nk(n− k)! .

3. On notera que pour tout k ∈ N∗, Xk(Ω) = [[1, n]] (en réalité, c’est [[1,min(k, n)]])
quitte à prendre certaines probabilités nulles.
Pour tout i ∈ [[1, n]], en appliquant la formule des probabilités totales au système
complet d’événements associé à Xk, événements , on a

P (Xk+1 = i) =
n∑

j=1
P (Xk+1 = i|Xk = j)P (Xk = j)

= P (Xk+1 = i|Xk = i− 1)P (Xk = i− 1) + P (Xk+1 = i|Xk = i)P (Xk = i).

Puisque les autres termes sont nuls (il n’est pas possible d’avoir que 0 ou 1 boules
distinctes de plus qu’au rang k au rang k + 1).
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Ensuite, P (Xk+1 = i|Xk = i− 1) = n− i+ 1
n

puisque cela revient à avoir pioché une

des boules qui n’ont pas été déjà obtenues alors que P (Xk+1 = i|Xk = i) = i

n
puisque

là il faut avoir pioché une boule déjà obtenue.
Ainsi, pour tout k ∈ N∗ et pour tout i ∈ [[1, n]]

P (Xk+1 = i) = n− i+ 1
n

P (Xk = i− 1) + i

n
P (Xk = i).

4. On a

E(Xk+1) =
n∑

i=1
iP (Xk+1 = i)

=
n∑

i=1
i

(
n− i+ 1

n
P (Xk = i− 1) + i

n
P (Xk = i)

)
=

n∑
i=1

i
n− i+ 1

n
P (Xk = i− 1) +

n∑
i=1

i
i

n
P (Xk = i).

On pose alors j = i− 1 dans la première somme, et on a

E(Xk+1) =
n−1∑
j=0

(j + 1)n− j
n

P (Xk = j) +
n∑

i=1
i
i

n
P (Xk = i).

On remarque que dans la première, le terme en j = 0 est nul (donc on l’isole) et on
peut ajouter le terme en j = n qui est nul aussi pour obtenir les mêmes bornes dans
les deux sommes. En renommant j en i, on a

E(Xk+1) =
n∑

i=1

(i+ 1)(n− i)
n

P (Xk = i) +
n∑

i=1

i2

n
P (Xk = i)

=
n∑

i=1

(i+ 1)(n− i) + i2

n
P (Xk = i)

=
n∑

i=1

(n− 1)i+ n

n
P (Xk = i)

= n− 1
n

n∑
i=1

iP (Xk = i) +
n∑

i=1
P (Xk = i)

= n− 1
n

E(Xk) + 1.

Ainsi, on a bien pour tout k ⩾ 1, E(Xk+1) = n− 1
n

E(Xk) + 1.

5. On reconnait une suite arithético-géométrique. Ainsi, en posant ℓ tel que

ℓ = n− 1
n

ℓ+ 1

on obtient ℓ = n.
On pose ensuite, pour tout k ∈ N∗, vk = E(Xk)− n.
On a alors, pour tout k ∈ N∗,

vk+1 = E(Xk+1)− n = n− 1
n

E(Xk) + 1− n = n− 1
n

(vk + n) + 1− n
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et donc vk+1 = n− 1
n

vk.

On a alors ∀k ∈ N∗, vk =
(
n− 1
n

)k−1
v1.

Or v1 = E(X1)− n = 1− n. Ainsi, vk =
(
n− 1
n

)k−1
(1− n) = −n

(
n− 1
n

)k

.

Or E(Xk) = vk + n, ainsi, E(Xk) = −n
(
n− 1
n

)k

+ n, soit

E(Xk) = n

[
1−

(
n− 1
n

)k
]
.

6. Comme n− 1
n
∈]− 1, 1[, on a lim

k→∞

(
n− 1
n

)k

= 0, donc

lim
k→+∞

E(Xk) = n.

Autrement, au bout d’un grand nombre de tirage, on aura en moyenne tiré toutes les
boules, ce qui n’est pas très étonnant.

7. On a 1−
(
n− 1
n

)k

= 1−
(

1− 1
n

)k

.

Or lim
n→∞

1
n

= 0 et, en 0, 1− (1− x)k ∼ kx.

Ainsi, en n→ +∞, 1−
(

1− 1
n

)k

∼ k 1
n

.

On a donc, en n→ +∞ ;

n

[
1−

(
n− 1
n

)k
]
∼ k.

On peut donc en conclure que lim
n→+∞

E(Xk) = k.

Avec un très grand nombre de boules différentes, on ne tirera en moyenne que des
boules différentes.

22 Etude locale de fonctions
1. Limites, équivalents, développements limités et asymptotiques
Exercice 1 (Exercice fondamental utilisant les développements limités). 1. On a, en 0,

sin(x) = x− x3

6 + o(x4). Nous aurions pu nous arrêter à l’ordre 3, mais avec sinus, le
4ème est gratuit.
Ainsi, en 0, pour x ̸= 0, on a

f(x) = 1− x2

6 + o(x3).

Il est donc clair que f est prolongeable par continuité en 0 en posant f(0) = 1. Par
ailleurs, on a f(x)− f(0)

x
= −x6 + o(x), donc f est dérivable en 0 et f ′(0) = 0.
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Par ailleurs, vu le développement limité obtenu, nous avons une tangente horizontale
en 0 d’équation y = 1 et la courbe est sous la tangente.
Remarquons que nous aurions pu nous contenter de garder le DL de sinus à l’ordre 3.

2. On a, en 0, ln(1 + x) = x− x2

2 + x3

3 + o(x3). Nous aurions pu nous arrêter à l’ordre
2, pour avoir la dérivabilité et la tangente, mais il est indispensable d’avoir l’ordre
suivant pour la position relative.
Ainsi, en 0, pour x ̸= 0, on a

g(x) = 1− x

2 + x2

3 + o(x2).

Il est donc clair que g est prolongeable par continuité en 0 en posant g(0) = 1. Par
ailleurs, on a g(x)− g(0)

x
= −1

2 + x

3 + o(x), donc g est dérivable en 0 et g′(0) = −1
2.

Par ailleurs, vu le développement limité obtenu, nous avons une tangente en 0 d’équation
y = 1− x

2 et la courbe est sur la tangente.

Exercice 2. 1. On a, ln(1 + x) ∼
0
x et 2x+ 2x2 −−−→

x→0
0, donc on a par substitution,

ln(1 + 2x+ 2x2) ∼
0

2x+ 2x2 = 2x(1 + x) ∼
0

2x.

On peut donc en conclure que ln(1 + 2x+ 2x2) ∼
0

2x.

2. On voit bien que 1 + x+ x2

1− 2x −−−→
x→0

1, donc on a très envie d’utiliser ln(1 + x) ∼
0
x à

condition de mettre ça sous la forme appropriée.

Comme c’est un quotient de polynôme, on peut écrire 1 + x+ x2

1− 2x = 1+ 1 + x+ x2

1− 2x −1
et arranger la deuxième partie.

Mais utilisons les DL. On a 1
1− 2x = 1 + 2x+ o(x).

Ainsi, on a 1 + x+ x2

1− 2x = (1 + x+ x2)(1 + 2x+ o(x)) = 1 + 3x+ o(x).

On peut donc écrire, ln
(1 + x+ x2

1− 2x

)
= ln(1 + 3x+ o(x)) ∼

0
3x+ o(x) ∼

0
3x.

On trouve f(x) ∼
0

3x.

3. Le piège est d’essayer de faire des équivalents parce que ça pousse à ajouter des
équivalents (et je vous rappelle que c’est mal...).
Par contre, on sait que, en 0, ex = 1 + x+ o(x).
Ainsi, e3x − 1 + 2x2 = 1 + 3x− 1 + 2x2 + o(x) = 3x+ o(x). On trouve f(x) ∼

0
3x.

4. On a, ln(1 + x) ∼
0
x et 3

x
−−−−→
x→+∞

0, donc on a par substitution,

ln
(

1 + 3
x

)
∼

+∞

3
x
.
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5. On a, ln(1 + x) ∼
0
x et − x+ 1

x2 − 1 −−−−→x→+∞
0, donc on a par substitution,

ln
(

1− x+ 1
x2 − 1

)
∼

+∞
− x+ 1
x2 − 1 .

Or, on a l’habitude de montrer que − x+ 1
x2 − 1 ∼+∞ −

1
x
.

On trouve f(x) ∼
+∞
−1
x

.

6. On a ex − 1 ∼
0
x, or 1

x+ 1 −−−−→x→+∞
0. Ainsi, on a par substitution,

exp
( 1
x+ 1

)
− 1 ∼

+∞

1
x+ 1 ∼+∞

1
x
.

On trouve f(x) ∼
+∞

1
x

.

7. Un peu plus difficile, posons X = 1
x

et essayons de faire un DL à l’ordre 2 de f lorsque
X tend vers 0. Pourquoi 2 ? Au cas où les termes d’ordre 1 s’annulent.
On a

exp
(

x

x2 + 1

)
− x+ 1
x+ 2 = exp

(
X−1

X−2 + 1

)
− X−1 + 1
X−1 + 2 = exp

(
X

X2 + 1

)
− 1 +X

1 + 2X .

Or on a 1
1 +X2 = 1−X2 + o(X2), donc X

X2 + 1 = X −X3 + o(X3) = X + o(X2).

Ainsi,

exp
(

X

X2 + 1

)
= exp(X + o(X2))

= 1 +X + 1
2X

2 + o(X2)

Et 1
1 + 2X = 1− 2X + 4X2 + o(X2), donc

1 +X

1 + 2X = (1 +X)(1− 2X + 4X2 + o(X2)) = 1−X + 2X2 + o(X2).

Ainsi,

exp
(

X

X2 + 1

)
− 1 +X

1 + 2X = 2X − 3
2X

2 + o(X2) = 2
x
− 3

2x2 + o

( 1
x2

)
.

On trouve f(x) ∼
+∞

2
x

.

Exercice 3. 1. On a, en 0, ex = 1 + x+ x2

2 + o(x2), donc la courbe représentative de f
admet la droite d’équation y = x+1 comme tangente en 0 et la courbe est localement
au-dessus de la tangente.
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2. Posons X = x − 2. On a, lorsque X tend vers 0, ex = eX+2 = e2eX = e2(1 + X +
X2

2 + o(X2)).

Autrement dit, ex = e2 +e2(x−2)+e2 (x− 2)2

2 +o((x−2)2). La courbe représentative
de f admet la droite d’équation y = e2 + e2(x− 2) = e2x− e2 comme tangente en 2
et la courbe est localement au-dessus de la tangente.

3. On a, en 0, ln(1 + x) = x− x2

2 + o(x2). Donc la courbe représentative de f admet la
droite d’équation y = x comme tangente en 0 et la courbe est localement au-dessous
de la tangente.

4. Posons X = x− 1. On a alors, lorsque X tend vers 0, ln(x) = ln(1 +X) = X − X
2

2 +
o(X2).

Soit ln(x) = −1 + x− (x− 1)2

2 + o((x− 1)2).

Ainsi, la courbe représentative de f admet la droite d’équation y = x − 1 comme
tangente en 1 et la courbe est localement au-dessous de la tangente.

5. On a pas franchement besoin d’aller chercher toutes nos nouvelles connaissances

pour répondre à cette question, mais on a cos(x) = 1 − x2

2 + o(x2), donc la courbe
représentative de cos admet une tangente horizontale d’équation y = 1 en 0 et elle est
localement dessous (en fait toujours).

6. On a sin(x) = x− x
3

6 +o(x3), donc la courbe représentative de sin admet une tangente
d’équation y = x en 0 et la courbe est localement dessus si x < 0, au dessous si x > 0.

7. Posons X = x− 2π. On a f(x) = cos(X + 2π)− 1 = cos(X)− 1 = −X
2

2 + o(X2).

Ainsi, f(x) = −(x− 2π)2

2 + o((x − 2π)2). Et donc la courbe représentative de f

admet la droite d’équation y = 0 comme tangente en 2π et la courbe est localement
au-dessous de la tangente.

8. On a f(x) = xex = x(1+x+o(x)) = x+x2+o(x2). Ainsi, en 0, la courbe représentative
de f admet la droite d’équation y = x comme tangente et la courbe est localement
au-dessus de la tangente.

9. Comme ex = 1 + x+ x2

2 + x3

6 + o(x3), on a

f(x) =
1 + x+ x2

2 + x3

6 + o(x3)− 1
x

= 1 + x

2 + x2

6 + o(x2).

Ainsi, en 0, la courbe représentative de f admet la droite d’équation y = 1+ x

2 comme
tangente et la courbe est localement au-dessus de la tangente.

Exercice 4. 1. On a, en remarquant que 1
n
−−−−−→
n→+∞

0, et le fait que, en 0, (1 + x)p =
1 + px+ o(x),
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(n+ 1)p − (n− 1)p = np
[(

1 + 1
n

)p

−
(

1− 1
n

)p]
= np

[
1 + p

1
n
−
(

1− p 1
n

)
+ o

( 1
n

)]
= 2pnp

( 1
n

+ o

( 1
n

))
∼ 2pnp−1.

2. Commençons par factoriser par le terme le plus gros. On a

e(n+1)p − e(n−1)p = e(n+1)p(1− e(n−1)p−(n+1)p).

Or, on a vu que (n+ 1)p − (n− 1)p ∼ 2pnp−1,
donc si p > 1, on a

(n− 1)p − (n+ 1)p −−−−−→
n→+∞

−∞,

donc
e(n−1)p−(n+1)p −−−−−→

n→+∞
0.

Ainsi,
e(n+1)p − e(n−1)p ∼ e(n+1)p

.

Si p = 1, on a (n− 1)− (n+ 1) = −2, donc, on ne peut pas dire bien mieux que

e(n+1) − e(n−1) = en+1(1− e−2) = (e− e−1)en.

Enfin, si p < 1, on a (n+ 1)p − (n− 1)p −−−−−→
n→+∞

0.

Or ex − 1 ∼
0
x, donc

1− e(n−1)p−(n+1)p ∼
+∞
− ((n− 1)p − (n+ 1)p) ∼

+∞
2pnp−1.

Ainsi, dans ce dernier cas, e(n+1)p − e(n−1)p ∼ 2pnp−1e(n+1)p .

Exercice 5. 1. On a 1
x
−−−−→
x→+∞

0 et ln(1 + x) ∼
0
x, donc par substitution,

ln
(

1 + 1
x

)
∼

+∞

1
x
.

On a donc x ln
(

1 + 1
x

)
∼

+∞
1.

Ou encore lim
x→+∞

x ln
(

1 + 1
x

)
= 1.

2. En fait, on l’a déjà faite, car

x(ln(x+ 1)− ln(x)) = x ln
(
x+ 1
x

)
= x ln

(
1 + 1

x

)
et on retrouve une question précédente. On a donc lim

x→+∞
x(ln(x+ 1)− ln(x)) = 1.
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3. On a ex − x2 = ex(1− x2e−x) ∼
+∞

ex par croissances comparées car x2e−x −−−−→
x→+∞

0.
On a donc, lim

x→+∞
ex − x2 = +∞.

4. On rappelle simplement que x−x = e−x ln(x) et que ça ne pose plus aucun problème.
Par composition, on obtient lim

x→+∞
x−x = 0.

5. On rappelle simplement que x−x = e−x ln(x) et ensuite que par croissance comparées,
x ln(x) −−−→

x→0
x ln(x) = 0. Par composition, avec exponentielle qui est continue en 0,

on obtient lim
x→0
x>0

x−x = 1.

6. On a ln(x) − x = −x
(
1− ln(x)

x

)
. Or par croissances comparées, ln(x)

x
−−−−→
x→+∞

0.
Ainsi, ln(x)− x ∼

+∞
−x et on en conclue lim

x→+∞
ln(x)− x = −∞.

7. On a

ln(1 + x)− x = −x
(

1− ln(1 + x)
x

)
= −x

(
1− ln(x)

x
−

ln(1 + 1
x)

x

)
.

Or par croissances comparées, ln(x)
x
−−−−→
x→+∞

0 et par quotient
ln(1 + 1

x)
x

−−−−→
x→+∞

0.

Ainsi, ln(1 + x)− x ∼
+∞
−x, et donc lim

x→+∞

ln(1 + x)− x
x

= −1.

8. En 0, on a ln(1 + x) = x + o(x). Ainsi, ln(1+x)−x
x = o(x)

x = o(1). Autrement dit,

lim
x→0

ln(1 + x)− x
x

= 0.

9. Sans trop de détails, parce que vous connaissez, on a

ex − 1− x
x2 ∼

+∞

ex

x2 −−−−→x→+∞
+∞

par croissance comparées.

Ainsi, lim
x→+∞

ex − 1− x
x2 = +∞.

10. On a, en 0, ex = 1 + x+ x2

2 + o(x2). Ainsi

ex − 1− x
x2 =

1 + x+ x2

2 + o(x2)− 1− x
x2 =

x2

2 + o(x2)
x2 = 1

2 + o(1).

On a donc lim
x→+∞

ex − 1− x
x2 = 1

2.

11. Sans trop de détails, parce que vous connaissez, on a

ex − 1− x
x2 ∼

+∞
− x

x2 = −1
x
−−−−→
x→+∞

0.

lim
x→−∞

ex − 1− x
x2 = 0.
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12. En voilà une encombrante. Le plus simple est peut-être de poser X = x− 1. Auquel
cas, on a

ex2+x − e2x

ex+1 − e4x−2 = e(X+1)2+X+1 − e2X+2

eX+2 − e4X+2 = eX2+3X − e2X

eX − e4X

en simplifiant par e2. Ensuite, comme X → 0, on peut faire des développements
limités d’ordre 1. On a

eX2+3X − e2X

eX − e4X
= 1 + 3X − 1− 2X + o(X)

1 +X − 1− 4X + o(X) = 1 + o(1)
−3 + o(1) .

Ainsi, on a lim
x→1

ex2+x − e2x

ex+1 − e4x−2 = −1
3 .

13. On a, en 0, ex = 1 + x+ o(x). Ainsi,

ln(ex + x)
x

= ln(1 + 2x+ o(x))
x

.

Mais comme, en 0, ln(1 + x) = x+ o(x), on a

ln(ex + x)
x

= 2x+ o(x)
x

= 2 + o(1).

On a donc lim
x→0

ln(ex + x)
x

= 2.

14. On peut s’en sortir avec une quantité conjuguée et une factorisation habile, mais
utilisons nos connaissances nouvellement acquises. On a, comme x < 0

√
x2 + 3x+ 2 + x = −x

√
1 + 3

x
+ 2
x2 + x.

Ainsi, en posant X = 1
x

, on trouve

√
x2 + 3x+ 2 + x = 1

X

(
1−

√
1 + 3X + 2X2

)
.

Faisons un développement limité à l’ordre 1 avec
√

1 + x = 1 + 1
2x+ o(x), ce qui nous

donne √
x2 + 3x+ 2 + x = 1

X

(
1− 1− 3

2X + o(X)
)

= −3
2 + o(1).

Ainsi, on a lim
x→−∞

√
x2 + 3x+ 2 + x = −3

2 .

15. Faisons un développement limité de chaque fonction du numérateur à l’ordre 2. En 0,
on a

ln(1 + x)− sin(x)
x2 =

x− x2

2 − x+ o(x2)
x2 = −1

2 + o(1).

Ainsi, lim
x→0

ln(1 + x)− sin(x)
x2 = −1

2 .
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16. Même esprit, mais il faut aller à l’ordre 4. En 0, on a
√

1 + x = 1 + 1
2x−

1
8x

2 + o(x2),
et donc

cos(x)−
√

1− x2

x4 =
1− x2

2 + x4

24 −
(
1− 1

2x
2 − 1

8x
4
)

+ o(x4)
x4 =

1
6x

4 + o(x4)
x4 = 1

6+o(1).

On a donc lim
x→0

cos(x)−
√

1− x2

x4 = 1
6 .

17. On a

(2x + 3x − 5x)1/x = exp
(1
x

ln(2x + 3x − 5x)
)
.

Or 2x+3x−5x = ex ln(2)+ex ln(3)−ex ln(5), donc en utilisant le classique développement
limité d’exponentielle à l’ordre 1, on obtient

2x + 3x− 5x = 1 + x ln(2) + 1 + x ln(3)− 1− x ln(5) + o(x) = 1 + ln
(2× 3

5

)
x+ o(x).

ln(1 + x) = x+ o(x), donc ln
(

1 + ln
(2× 3

5

)
x+ o(x)

)
= ln

(2× 3
5

)
x+ o(x).

Ainsi,
1
x

ln(2x + 3x − 5x) = ln
(2× 3

5

)
+ o(1).

On a donc
(2x + 3x − 5x)1/x = exp

(
ln
(2× 3

5

)
+ o(1)

)
.

Comme la fonction exponentielle est continue, on a

lim
x→0

(2x + 3x − 5x)1/x = exp
(

ln
(2× 3

5

))
= 2× 3

5 .

lim
x→0

(2x + 3x − 5x)1/x = 2× 3
5 .

Je sais bien que 2×3
5 = 6

5 , mais je les ai laissés pour bien faire apparâıtre les chiffres
qui composaient la fonction de l’énoncé...

18. On a ( ln(1 + x)
ln(x)

)x ln(x)
= exp

(
x ln(x) ln

( ln(1 + x)
ln(x)

))
.

Soit encore ( ln(1 + x)
ln(x)

)x ln(x)
= exp

(
x ln(x) ln

(
ln(x) + ln(1 + 1

x)
ln(x)

))
.

Ce qu’on arrange en( ln(1 + x)
ln(x)

)x ln(x)
= exp

(
x ln(x) ln

(
1 +

ln(1 + 1
x)

ln(x)

))
.
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Or, ln(1+ 1
x

)
ln(x) −−−−→x→+∞

0, et comme ln(1 + x) ∼
0
x, on a

ln
(

1 +
ln(1 + 1

x)
ln(x)

)
∼

+∞

ln(1 + 1
x)

ln(x) .

Ainsi,

x ln(x) ln
(

1 +
ln(1 + 1

x)
ln(x)

)
∼

+∞
x ln(1 + 1

x
).

Et comme 1
x
−−−−→
x→+∞

0, le même équivalent permet de récupérer,

x ln(x) ln
(

1 +
ln(1 + 1

x)
ln(x)

)
∼

+∞
1.

Ainsi, on avait

( ln(1 + x)
ln(x)

)x ln(x)
= exp (1 + o(1)) .

Ce qui nous donne, par composition avec exponentielle continue en 1,

lim
x→+∞

( ln(1 + x)
ln(x)

)x ln(x)
= e.

19. Posons X = 1
x

. Ainsi, on pourra faire des développements limités en 0, et on a

x

(1
e
− exp

(
x ln

(
x

1 + x

)))
= 1
X

(1
e
− exp

( 1
X

ln
( 1

1 +X

)))
.

Or

ln
( 1

1 +X

)
= ln(1−X+X2+o(X2)) = −X+X2−(X −X2)2

2 +o(X2) = −X+1
2X

2+o(X2).

Donc
1
X

ln
( 1

1 +X

)
= −1 + X

2 + o(X).

On a donc

1
X

(1
e
− exp

( 1
X

ln
( 1

1 +X

)))
= 1
X

(1
e
− exp

(
−1 + X

2 + o(X)
))

.

Factorisons par 1
e

pour faire apparaitre un développement limité bien connu

1
X

(1
e
− exp

( 1
X

ln
( 1

1 +X

)))
= 1
eX

(
1− exp

(
X

2 + o(X)
))

.
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Or exp
(
X

2 + o(X)
)

= 1 + X

2 + o(X), ce qui donne

1
X

(1
e
− exp

( 1
X

ln
( 1

1 +X

)))
= 1
eX

(
1−

(
1 + X

2 + o(X)
))

.

Et enfin, en version simplifiée :

1
X

(1
e
− exp

( 1
X

ln
( 1

1 +X

)))
= 1
eX

(
−X2 + o(X)

)
= − 1

2e + o(1).

Et pour revenir à l’expression de départ :

x

(1
e
− exp

(
x ln

(
x

1 + x

)))
= − 1

2e + o(1).

On en conclue donc lim
x→+∞

x

(1
e
− exp

(
x ln

(
x

1 + x

)))
= − 1

2e.

2. Suites implicites
Exercice 6. 1. Remarquons que f est la somme de deux fonctions dérivables sur R∗+

donc dérivable et que
∀x ∈ R∗+, f ′(x) = 1 + 1

x
> 0.

Ainsi f est strictement croissante. Par ailleurs,

lim
x→0

f(x) = −∞ et lim
x→+∞

f(x) = +∞.

Ainsi, f est une fonction strictement croissante et continue, donc établit une bijection
de R∗+ dans R. Ainsi, f−1 sa réciproque est une fonction strictement croissante avec

lim
x→−∞

f−1(x) = 0 et lim
x→+∞

f−1(x) = +∞.

A partir de là tout devient beaucoup plus simple : en effet, ∀n ∈ N, un = f−1(n) ∈ R∗+
ce qui assure l’existence et l’unicité de un.

2. Comme f−1 est strictement croissante, n < n+ 1 implique f−1(n) < f−1(n+ 1) donc
un < un+1 ainsi (un)n∈N est strictement croissante.

3. On a un = f−1(n) −−−−−→
n→+∞

+∞.

4. On a, en +∞, x+ ln(x) ∼ x, car x+ ln(x) = x

(
1 + ln(x)

x

)
avec lim

x→+∞

ln(x)
x

= 0 par
croissances comparées. Or lim

n→+∞
un = +∞, donc

un + ln(un) ∼ un.

Mais comme un + ln(un) = n, on a en fait démontré que un ∼ n.

5. On a un − n
ln(n) = − ln(un)

ln(n) . Or un = n− ln(un) donc

un − n
ln(n) = − ln(n− ln(un))

ln(n) .
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Ainsi, en factorisant par n, on a

un − n
ln(n) = −

ln(n) + ln(1− ln(un)
n )

ln(n) = −1 +
ln(1− ln(un)

n )
ln(n) .

Or ln(un)
n

= n− un

n
= 1− un

n
−−−−−→
n→+∞

0 car un ∼ n.

Ainsi, on a donc,
ln(1− ln(un)

n )
ln(n) −−−−−→

n→+∞
0, ce qui assure enfin que

lim
n→+∞

un − n
ln(n) = −1.

Exercice 7. 1. a. fn est une fonction polynôme donc dérivable. On a alors

f ′n(x) = (n+ 1)xn − nxn−1 = xn−1[(n+ 1)x− n].

Ainsi, sur R+, fn est du signe de (n + 1)x − n, donc on en déduit le tableau de
variation suivant avec de la monotonie stricte lorsque fn est monotone, la dérivée
ne s’annulant qu’en un point.

x

f ′n(x)

fn(x)

0 n
n+1 +∞

− 0 +

00

fn

(
n

n+1

)
fn

(
n

n+1

)
+∞+∞

La limite en +∞ n’étant pas bien compliquée puisque

fn(x) = xn+1
(

1− 1
x

)
∼

+∞
xn+1.

b. Sur
[
0, n

n+ 1

]
, fn est décroissante et fn(0) = 0, donc

fn

(
n

n+ 1

)
⩽ 0 < 1.

Ainsi, l’équation ne peut pas admettre de solution sur cet intervalle.

Sur
[

n

n+ 1 ,+∞
[
, fn est strictement croissante, avec fn

(
n

n+ 1

)
⩽ 0 < 1 et

lim
x→+∞

fn(x) = +∞. Comme fn est continue, d’après le corollaire du théorème des
valeurs intermédiaires, 1 admet un unique antécédent par fn que l’on note αn.
Ainsi, fn(x) = 1 admet une unique solution αn sur R+.

c. On a fn(1) = 0 et fn(2) = 2n+1 − 2n = 2n(2− 1) = 2n.
Ainsi, comme fn est continue sur [1, 2], il existe un antécédent à 1 sur [1, 2]. Comme
il n’en existait qu’un sur R+, on a ∀n ∈ N∗, αn ∈ [1, 2].
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2. a. On a ∀n ∈ N∗, et ∀x ∈ R+,

fn+1(x)− fn(x) = xn+2−xn+1− (xn+1−xn) = xn(x2− 2x+ 1) = xn(x− 1)2 ⩾ 0.

Ainsi, en appliquant cette inégalité à αn, on a

fn+1(αn) ⩾ fn(αn).

Or fn(αn) = 1 = fn+1(αn+1), donc

fn+1(αn) ⩾ fn+1(αn+1).

Or, sur [1, 2], fn+1 est croissante, et comme αn et αn+1 sont dans cet intervalle,
on a forcément αn+1 ⩽ αn.
La suite (αn)n∈N∗ est donc décroissante.

b. La suite (αn)n∈N∗ est une suite décroissante minorée par 1 donc elle converge vers
une limite ℓ ∈ [1, 2].

c. Supposons ℓ ̸= 1, donc ℓ > 1 puisque ℓ ∈ [1, 2].
On a fn(αn) = αn

n(αn − 1). Ainsi, on a αn − 1 −−−−−→
n→+∞

ℓ− 1 > 0 et

αn
n = en ln(αn) −−−−−→

n→+∞
+∞

par produit puis composition.
Ainsi, on a fn(αn) −−−−−→

n→+∞
+∞. Or fn(αn) = 1, ce qui pose problème...

Ainsi, on a forcément lim
n→+∞

αn = 1.

3. a. On a ∀n ∈ N∗, fn(αn) = 1, ce qui se réécrit en factorisant en

αn
n(αn − 1) = 1.

On a αn = un + 1 ce qui transforme les choses en

(1 + un)nun = 1.

b. On a (1+un)n = en ln(1+un), or (1+un)nun = 1, ce qui se transforme immédiatement
en

un = e−n ln(1+un).

c. On a lim
n→+∞

un = 0, donc en prenant le logarithme, on a lim
n→+∞

ln(un) = −∞.

Or ln(un) = −n ln(1 +un). Or un −−−−−→
n→+∞

0 et ln(1 +x) ∼
0
x donc ln(1 +un) ∼ un.

Ainsi, on a ln(un) = −n ln(1 + un) ∼ −nun.

On a donc lim
n→+∞

−nun = −∞, autrement dit

lim
n→+∞

nun = +∞.
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d. On a vu que −nun ∼ ln(un), donc nun ∼ − ln(un), soit encore

un ∼ −
ln(un)
n

.

e. A partir d’un certain rang, les suites sont forcément toutes deux strictement po-
sitives, donc on peut bien prendre les logarithmes. On sait qu’il existe (xn) une
suite telle que lim

n→+∞
xn = 1 et vn = xnwn.

Ainsi, ln(vn) = ln(xn) + ln(wn) = ln(wn)
(

1 + ln(xn)
ln(wn)

)
.

Or lim
n→+∞

ln(xn)
ln(wn) = 0, donc on a bien ln(vn) ∼ ln(wn).

f. On a n ∼ − ln(un)
un

. Or d’après la question précédente, cela veut implique

ln(n) ∼ ln
(− ln(un)

un

)
.

Or

ln
(− ln(un)

n

)
= ln(− ln(un))− ln(un) = − ln(un)

(
1− ln(− ln(un))

ln(un)

)
.

Or − ln(un) −−−−−→
n→+∞

+∞ et lim
x→+∞

ln(x)
x

= 0, donc

lim
n→+∞

ln(− ln(un))
ln(un) = 0.

Ainsi, on a ln
(− ln(un)

n

)
∼ − ln(un).

Or on avait ln(n) ∼ ln
(− ln(un)

un

)
, ce qui donne

ln(n) ∼ − ln(un).

En reprenant un ∼ −
ln(un)
n

, on récupère

un ∼
ln(n)
n

.

g. On a un ∼
ln(n)
n
⇐⇒ un −

ln(n)
n

= o

( ln(n)
n

)
.

Or un = αn − 1, ce qui se transforme en

αn = 1 + ln(n)
n

+ o

( ln(n)
n

)
.

Exercice 8. 1. fn est dérivable sur R, on a f ′n(x) = 2nx2n−1 + 3x2 = x2(2nx2n−3 + 3).

Si on note xn =
(
− 3

2n

)1/(2n−3)
, on a f est décroissante sur

]
−∞,

(
− 3

2n

)1/(2n−3)]
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puis croissante sur
[(
− 3

2n

)1/(2n−3)
,+∞

[
. Par ailleurs, en +∞ et −∞, f tend vers

+∞ car f(x) ∼ x2n.

x

f ′n(x)

fn(x)

−∞ xn +∞

− 0 +

+∞+∞

fn(xn)fn(xn)

+∞+∞

2. Il suffit de remarquer que fn

((
− 3

2n

)1/(2n−3)
)

⩽ fn(0) = −1 car fn est croissante

entre les deux.

On peut appliquer le théorème de la bijection sur
]
− ∞,

(
− 3

2n

)1/(2n−3)]
puis sur[(

− 3
2n

)1/(2n−3)
,+∞

[
à fn qui est strictement monotone et continue sur chacun de

ces intervalles pour assurer que fn s’annule au plus une fois sur chaque intervalle.
Ensuite, comme fn(0) = −1 et comme en +∞ et −∞, fn tend vers +∞, on peut
en conclure, toujours avec le théorème des valeurs intermédiaires, qu’une solution est
positive et l’autre négative

3. a. On a fn(0) = −1 et fn(1) = 1, et comme fn est continue sur [0, 1], fn s’annule sur
]0, 1[ d’après le théorème des valeurs intermédiaires, donc αn ∈]0, 1[.

b. Tout simplement :

def alpha(n):
a=0
b=1
while b-a >10**( -9):

c=(a+b)/2
if (a**(2*n)+a**3 -1) *(c**(2*n)+c**3 -1) <=0:

b=c
else:

a=c
return c

c. Soit n ∈ N, comme αn ∈]0, 1[, α2n+2
n ⩽ α2n

n , et donc

α2n+2
n + α3

n − 1 ⩽ α2n
n + α3

n − 1 = 0.

Autrement dit,
fn+1(αn) ⩽ 0 = fn+1(αn+1).

Comme fn+1 est croissante sur ]0, 1[, on doit avoir αn ⩽ αn+1 pour que l’inégalité
précédente soit vraie.
La suite (αn) est croissante.
De plus, (αn) est majorée par 1 donc convergente vers ℓ ∈ [0, 1].
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Si elle convergeait vers ℓ < 1, comme fn(αn) = e2n ln(αn) + α3
n − 1 on aurait par

composition, lim
n→+∞

fn(αn) = ℓ3− 1 ̸= 0. Or ∀n ⩾ 2, fn(αn) = 0, donc cette limite
est impossible. Ainsi, la seule limite envisageable est 1.
On a donc lim

n→+∞
αn = 1.

d. A partir d’un certain rang, les suites sont forcément toutes deux strictement po-
sitives, donc on peut bien prendre les logarithmes. On sait qu’il existe (xn) une
suite telle que lim

n→+∞
xn = 1 et vn = xnwn.

Ainsi, ln(vn) = ln(xn) + ln(wn) = ln(wn)
(

1 + ln(xn)
ln(wn)

)
.

Or lim
n→+∞

ln(xn)
ln(wn) = 0, donc on a bien ln(vn) ∼ ln(wn).

e. On a α2n
n = 1− α3

n = (1− αn)(1 + αn + α2
n).

En utilisant l’écriture un, on a

(1− un)2n = un(2− un + (1− un)2).

En prenant le logarithme de cette quantité, on trouve

2n ln(1− un) = ln(un) + ln(3− 3un + u2
n) ∼ ln(un)

car ln(3− 3un + u2
n) −−−−−→

n→+∞
ln(3) alors que ln(un) −−−−−→

n→+∞
+∞.

Comme ln(1− un) ∼ −un car lim
n→+∞

un = 0, on a

−2nun ∼ ln(un).

f. Puis en prenant le logarithme d’après la question précédente, on a

ln(2) + ln(n) + ln(un) ∼ ln(− ln(un)).

En divisant tout par ln(un), on a

ln(2)
ln(un) + ln(n)

ln(un) + 1 ∼ ln(− ln(un))
ln(un) .

Or lim
n→+∞

ln(− ln(un))
ln(un) = 0 par composition car, lim

x→+∞

ln(x)
x

= 0 (croissances

comparées) et lim
n→+∞

ln(un) = −∞.

Ainsi, lim
n→+∞

ln(2)
ln(un) + ln(n)

ln(un) + 1 = 0, autrement dit

lim
n→+∞

ln(n)
ln(un) = −1 puisque lim

n→+∞

ln(2)
ln(un) = 0.

On a donc ln(n) ∼ − ln(un).
Or, on avait démontré que −2nun ∼ ln(un), on a donc −2nun ∼ − ln(n).
En combinant ces deux résultats, on a donc

un ∼
ln(n)
2n .
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4. a. On a fn(−2) = 22n − 7 > 0 car n ⩾ 2 et fn(−1) = −1 donc, d’après le théorème
des valeurs intermédiaires appliqué à f continue, on obtient que f s’annule sur
]− 2,−1[, donc βn ∈]− 2,−1[.

b. Soit n ∈ N, n ⩾ 2.
Comme β2

n ⩾ 1, on a
β2n

n ⩽ β2n+2
n

donc

β2n
n + β3

n − 1 ⩽ β2n+2
n + β3

n − 1.
Autrement dit, fn(βn) ⩽ fn+1(βn).
Puis on remarque que fn(βn) = 0 = fn+1(βn+1) ⩽ fn+1(βn).
Or comme fn est décroissante sur cet intervalle, cela implique que βn+1 ⩾ βn donc
(βn)n⩾2 est croissante.

c. Comme (βn)n⩾2 est croissante et majorée par −1, elle converge vers un réel ℓ ⩽ −1.
Si ℓ < −1, on aurait fn(βn) −−−−−→

n→+∞
+∞ par composition.

On a donc lim
n→+∞

βn = −1.

23 Fonctions réelles de deux variables réelles
Exercice 1. Remarquons que f est C1(R2). On a

∂f

∂x
(x, y) = 4x3 − 2(x− y) et ∂f

∂y
(x, y) = 4y3 + 2(x− y).

On a donc ∂f

∂x
(0, 0) = ∂f

∂y
(0, 0) = 0, donc (0, 0) est un point critique.

Par ailleurs, on a f(x, x) = 2x4. Ainsi, ∀x ∈ R, f(x, x) ⩾ f(0, 0), donc f n’atteint pas
de maximum en (0, 0).
De plus, f(x, 0) = x4− x2 = x2(x2− 1). Ainsi, ∀x ∈ [−1, 1], f(x, 0) ⩽ 0 = f(0, 0). Ainsi,
f n’atteint pas de minimum en (0, 0). C’est un point critique, mais ni un maximum, ni
un minimum.

Exercice 2. 1. f est un polynôme donc C1(R2), et on a

∂f

∂x
(x, y) = 3x2 − 3y2 et ∂f

∂y
(x, y) = −6xy.

2. Soit (x, y) un tel couple. Les conditions sont alors équivalentes à{
3x2 − 3y2 = 0
−6xy = 0

C’est équivalent à {
(x− y)(x+ y) = 0

xy = 0

Ainsi, soit x soit y est nul mais x = −y ou x = y. Ainsi, le seul couple qui vérifie ces
conditions est (0, 0).

3. On a, pour tout x ∈ R,f(x, x) = −2x3. Ainsi, f(x, x) change de signe autour de
f(0, 0) = 0. Donc il ne s’agit ni d’un maximum, ni d’un minimum.
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4. Ça ressemble à une selle, mais une bien particulière.

−4
−2

0
2

4 −4 −3 −2 −1 0 1 2 3 4

−100

0

100

Est-ce qu’un singe tiendrait confortablement sur une selle destinée à un être humain ?
Ce qui explique les trois ≪ trous ≫ et trois ≪ montées ≫.

Exercice 3. 1. f est bien C1(R2) puisqu’il s’agit du produit entre un polynôme et une
exponentielle composée avec un polynôme.

On trouve ∂f
∂x

(x, y) = (1 +x(y2 + 1))ex(y2+1) et ∂f
∂y

(x, y) = 2x2yex(y2+1). Ainsi, (x, y)
est un point critique si et seulement si

∂f

∂x
(x, y) = 0

∂f

∂y
(x, y) = 0

ce qui revient à {
(1 + x(y2 + 1))ex(y2+1) = 0

2x2yex(y2+1) = 0
Ce qui se simplifie en {

1 + xy2 + x = 0
xy = 0

Et donc : {
1 + x = 0
xy = 0

Ce qui nous permet d’assurer que le seul point critique est (−1, 0).

2. La fonction est assez simple pour qu’on puisse le démontrer en faisant la différence
et qu’on distingue selon le signe de x. Mais la méthode classique est d’étudier, à x
fixé, la fonction h : y 7→ xex(y2+1). Elle est bien C1(R), puisque c’est une application
partielle de f qui l’était.
Ensuite, on a h′(y) = 2x2yex(1+y2). Ainsi h est décroissante sur R− et croissante sur
R+, donc minimale en 0.
Ainsi, ∀x ∈ R, ∀y ∈ R, on a f(x, y) ⩾ h(0) = xex.
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3. Cette fonction g est bien C1(R) par produit, et on a

g′(x) = ex + xex = (x+ 1)ex.

Ainsi, g est décroissante sur ]−∞,−1] et croissante sur [−1,+∞[. On a donc ∀x ∈ R,
g(x) ⩾ g(−1) = −e−1.

4. On a démontré que ∀(x, y) ∈ R2, f(x, y) ⩾ g(x) ⩾ −e−1 = f(−1, 0). f est donc
minorée par −e−1 et elle l’atteint. f atteint bien un minimum global en (−1, 0).

Exercice 4. 1. f est un polynôme donc C1(R2). On a ∂f

∂x
(x, y) = 2x − 3y + 4 et

∂f

∂y
(x, y) = −3x+ 4y − 2.

2. (x, y) est un point critique si et seulement si
∂f

∂x
(x, y) = 0

∂f

∂y
(x, y) = 0

ce qui revient à {
2x− 3y = −4
−3x+ 4y = 2

En faisant L2 ← 2L2 + 3L1, on a{
2x− 3y = −4

−y = −8

Ce qui pour finir, {
2x = 20
y = 8

Le seul point critique est donc (10, 8).

3. On a f(10, 8) = 15, puis f(x, y)− f(10, 8) = x2 − 3xy + 2y2 + 4x− 2y − 12.
Ensuite, soit on part du résultat et on développe, soit on utilise une forme canonique.
On a alors

f(x, y)− f(10, 8) =
(
x− 3

2y + 2
)2
−
(
−3

2y + 2
)2

+ 2y2 − 2y − 12.

En développant on trouve

f(x, y)− f(10, 8) =
(
x− 3

2y + 2
)2
− 1

4y
2 + 4y − 16.

On reconnait enfin une identité remarquable.

4. Non, car on a ∀x ∈ R, on a f(x, 8) ⩾ f(10, 8) donc il ne s’agit pas d’un maximum.

Par ailleurs, on a ∀y ∈ R, f
(3

2y − 2, y
)
⩽ f(10, 8) en remarquant que, si y = 8 on a

3
2y − 2 = 10. Ainsi, on n’a pas de minimum en (10, 8).

Il s’agit d’un point selle ou un point col.
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Exercice 5. 1. a. g est bien une fonction dérivable comme il s’agit d’un polynôme. On
a g′(y) = 2y − 2x− 2 = 2(y − x− 1). Ainsi, g est décroissante sur ]−∞, x+ 1] et
croissante sur [x+ 1,+∞[.
On a donc g minimale en x+ 1. Ainsi, ∀y ∈ R, g(y) ⩾ g(x+ 1).
On a donc t(x) = x+ 1.

b. Pas de miracle, il faut développer. On a f(x, t(x)) = 2x2 + (x+ 1)2 − 2x(x+ 1) +
8x− 2(x+ 1) + 8, ce qui donne

∀x ∈ R, f(x, t(x)) = x2 + 6x+ 7.

c. Remarquons que, pour tout x ∈ R, on a f(x, t(x)) = (x+ 3)2 − 2 qui est minimal
en x = −3.
On a donc montré que ∀x, y,

f(x, y) ⩾ f(x, x+ 1) ⩾ f(−3,−2) = −2.

f atteint un minimum en (−3,−2) qui est −2.

2. a. f est un polynôme donc C1(R2). On a ∂f

∂x
(x, y) = 4x − 2y + 8 et ∂f

∂y
(x, y) =

2y − 2x− 2.
b. (x, y) est un point critique si et seulement si

∂f

∂x
(x, y) = 0

∂f

∂y
(x, y) = 0

ce qui revient à {
4x− 2y = −8
−2x+ 2y = 2

On le simplifie en {
2x− y = −4
−x+ y = 1

En faisant L2 ← L2 + L1, on récupère x = −3 puis y = −2. Ainsi, le seul point
critique est (α, β) = (−3,−2).

c. On a f(−3,−2) = −2 (on l’a calculé ci-dessus). On a donc, pour tout (x, y) ∈ R2,

f(x, y)− f(α, β) = 2x2 + y2 − 2xy + 8x− 2y + 8 + 2.

Ainsi, on a

f(x, y)− f(α, β) = (y − x− 1)2 − (x+ 1)2 + 2x2 + 8x+ 8 + 2.

Et donc
f(x, y)− f(α, β) = (y − x− 1)2 + x2 + 6x+ 9.

On a donc, pour tout (x, y) ∈ R2,

f(x, y)− f(−3,−2) = (y − x− 1)2 + (x+ 3)2 ⩾ 0.

Autrement dit, pour tout (x, y) ∈ R2,

f(x, y) ⩾ f(−3,−2).

f atteint bien un minimum en (−3,−2).
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Exercice 6. 1. La première égalité permet d’affirmer qu’il existe une fonction g qui ne
dépend que de y telle que pour tout (x, y) ∈ R2,

f(x, y) = 1
2x

2y2 + g(y).

En dérivant cette égalité par rapport à y, on obtient

∂f

∂y
(x, y) = x2y + g′(y).

Ainsi, on doit avoir g′(y) = 0, soit g constante.
Ainsi, on voit que si f satisfait les deux égalités, on doit avoir, l’existence d’un k ∈ R
tel que ∀(x, y) ∈ R2, f(x, y) = 1

2x
2y2 + k.

On vérifie alors que ces fonctions satisfont évidemment les égalités demandées.

2. La première égalité permet d’affirmer qu’il existe une fonction g qui ne dépend que
de y telle que, pour tout (x, y) ∈ (R∗+)2, f(x, y) =

√
x2 + y2 + g(y).

En dérivant cette égalité par rapport à y, on obtient

∂f

∂y
(x, y) = y√

x2 + y2 + g′(y).

Ainsi, on doit avoir g′(y) = 0, soit g constante.
Ainsi, on voit que si f satisfait les deux égalités, on doit avoir, l’existence d’un k ∈ R
tel que ∀(x, y) ∈ R2, f(x, y) =

√
x2 + y2 + k. A noter que l’on peut en réalité élargir

les conditions à R2 \ {(0, 0)}.

3. La première égalité permet d’affirmer qu’il existe une fonction g qui ne dépend que
de y telle que, pour tout (x, y) ∈ (R∗+)2, f(x, y) =

√
x2 + y2 + g(y).

En dérivant cette égalité par rapport à y, on obtient

∂f

∂y
(x, y) = y√

x2 + y2 + g′(y).

Ainsi, on doit avoir g′(y) = − 2y√
x2 + y2 , mais ça dépend de x.

Ainsi, une telle fonction n’existe pas !

Exercice 7. On considère un nuage de points (xi, yi)1⩽i⩽n tels qu’il existe (i, j) ∈ [[1, n]]
tel que xi ̸= xj . (On veut que le nuage ne soit pas sur une droite verticale, auquel cas
tout ça n’a aucun intérêt.)
On notera f : R −→ R, x 7−→ ax+ b.
Le but de cet exercice est de déterminer a et b pour que la somme des carrés des distances
entre (xi, yi) et (xi, f(xi)) soit minimale. On appelle l’ajustement affine par la méthode
des moindres carrés ou droite de régression linéaire la courbe représentative de f pour
les choix de a et b qui minimisent la quantité :

d(a, b) =
n∑

i=1
((axi + b)− yi)2.

On notera x = (x1, . . . , xn), x = 1
n

n∑
i=1

xi, la moyenne de (x1, . . . , xn).
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De plus, on notera y = (y1, . . . , yn), y = 1
n

n∑
i=1

yi la moyenne de (y1, . . . , yn).

De plus, on notera cov(x, y) = 1
n

n∑
i=1

(xi−x)(yi− y) et V (x) = 1
n

n∑
i=1

(xi−x)2, autrement

dit la covariance empirique et la variance empirique.

1. Commençons par quelques considérations pour simplifier nos futurs calculs.

a. On a V (x) = 1
n

n∑
i=1

(xi−x)2. Or V (x) ne peut être nul que si si ∀i ∈ [[1, n]], xi = x,

ce qui implique que tous les xi sont égaux, ce qui est exclu d’après les hypothèses.
Ainsi, on a V (x) > 0.

b. On a

V (x) = 1
n

n∑
i=1

(xi − x)2

= 1
n

n∑
i=1

(x2
i − 2xxi + x2)

= 1
n

n∑
i=1

x2
i − 2x 1

n

n∑
i=1

xi + 1
n
nx2

= 1
n

n∑
i=1

x2
i − 2xx+ x2.

= 1
n

(
n∑

i=1
x2

i

)
− x2

c. On a

cov(x, y) = 1
n

n∑
i=1

(xi − x)(yi − y)

= 1
n

n∑
i=1

(xiyi − xyi − xyi + xy)

= 1
n

n∑
i=1

xiyi − x
1
n

n∑
i=1

yi − y
1
n

n∑
i=1

xi + 1
n
nxy

= 1
n

(
n∑

i=1
xiyi

)
− xy − yx+ xy.

= 1
n

(
n∑

i=1
xiyi

)
− xy

2. On remarque tout simplement que d est un polynôme en ses variables a et b, donc
C1(R2).

Ainsi, on a ∂d

∂a
(a, b) =

n∑
i=1

2xi(axi + b− yi).

On arrange ça un peu en développant pour obtenir

∂d

∂a
(a, b) = 2a

n∑
i=1

x2
i + 2b

n∑
i=1

xi − 2
n∑

i=1
xiyi.

En utilisant les notations de l’énoncé, on a
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∂d

∂a
(a, b) = 2(nV (x) + nx2)a+ 2nxb− 2n(cov(x, y) + xy).

Et on a ∂d

∂b
(a, b) =

n∑
i=1

2(axi + b− yi).

On a alors
∂d

∂b
(a, b) = 2a

n∑
i=1

xi + 2nb− 2
n∑

i=1
yi.

On peut ainsi, le réécrire en

∂d

∂b
(a, b) = 2nxa+ 2nb− 2ny.

Ainsi, (a0, b0) est un point critique si et seulement si on a
2(nV (x) + nx2)a+ 2nxb− 2n(cov(x, y) + xy) = 0

2nxa+ 2nb− 2ny = 0.

En simplifiant un peu
(V (x) + x2)a+ xb = cov(x, y) + xy

xa+ b = y.

En faisant L1 ← L1 − xL2, on récupère
V (x)a = cov(x, y)

xa+ b = y.

Le système est échelonné (donc on a un unique couple solution) si et seulement si
V (x) ̸= 0 ce qui est bien le cas d’après la toute première question.

3. C’est exactement la deuxième égalité !

4. Montrer que le coefficient directeur de cette droite est a0 = cov(x, y)
V (x) . C’est exacte-

ment la première égalité !

5. C’est la droite passant par (x, y) et de coefficient directeur cov(x, y)
V (x) . C’est donc la

droite d’équation y = cov(x, y)
V (x) (x− x) + y.

Ou encore y = cov(x, y)
V (x) x+ y − cov(x, y)

V (x) x.

Pour votre culture, le coefficient de corrélation dont vous cherchez s’il est proche de
1, est en réalité cov(x, y)√

V (x)V (y)
.
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6. Désormais, il faut voir si on n’arrive bien à un minimum.
A a fixé, cherchons pour quelle valeur de b on minimise d(a, b).
Notons ainsi, f : b 7→ d(a, b). Il s’agit d’un polynôme en b et on a

f ′(b) = ∂d

∂b
(a, b) = 2n(xa+ b− y).

Ainsi, f est décroissante sur ]−∞, y − ax], puis croissante sur [y − ax,+∞[.
Ainsi, f est minimale en b0(a) = y − ax.
Notons alors g la fonction a 7→ d(a, y − ax).
On a ainsi,

g(a) =
n∑

i=1
((axi + y − ax)− yi)2

=
n∑

i=1
((xi − x)a− (yi − y))2

= a2
n∑

i=1
(xi − x)2 − 2a

n∑
i=1

(xi − x)(yi − y) +
n∑

i=1
(yi − y)2

= nV (x)a2 − 2an cov(x, y) + nV (y)

= n(V (x)a2 − 2a cov(x, y) + V (y)).

Il s’agit d’un trinôme du second degré dont le coefficient dominant est strictement
positif. Donc cette quantité est minimale pour a0 = cov(x, y)

V (x) .

Et on a b0 = y − a0x = y − cov(x, y)
V (x) x

7. On vient de démontrer que la fonction d admet un minimum global en (a0, b0) avec
a0 = cov(x, y)

V (x) et b0 = y − a0x = y − cov(x, y)
V (x) x.

Or il s’agissait du point critique trouvé ci-dessus. Et cela nous donne l’équation de la
droite de régression linéaire.
Allons voir le cours d’informatique pour savoir comment implémenter cette méthode.
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