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BCPST 1... ah non plutôt BCPST 2

31 janvier 2026

Merci de prendre connaissance de cet extrait de la notice du concours :

Les effaceurs correcteurs liquides (ou les rollers correcteurs) sont à éviter car ils
peuvent laisser des résidus sur les vitres du scanner lors de la numérisation des
copies.
Les surligneurs sont à éviter.
La rédaction se fera uniquement à l’encre bleue ou noire et l’utilisation du blanc
correcteur est interdite. Les découpages et collages sur la copie sont interdits.

Le reste...
L’usage d’abaques, de tables, de calculatrice et de tout instrument électronique
susceptible de permettre au candidat d’accéder à des données et de les traiter par
les moyens autres que ceux fournis dans le sujet est interdit.
Ce sujet comporte 10 pages numérotées de 1 à 10.
Si, au cours de l’épreuve, un candidat repère ce qui lui semble être une erreur
d’énoncé, il le signale sur sa copie et poursuit sa composition en expliquant les
raisons des initiatives qu’il a été amené à prendre.
Aucune réponse sur le sujet ne sera acceptée. L’énoncé n’est pas ramassé.
Les réponses devront être justifiées. Les résultats devront être simplifiés au mieux
de vos possibilités.

Exercice 1. On considère la suite (un)n∈N définie par son premier terme u0 = 1
2 et, pour tout

n ∈ N, un+1 = un − arctan(un).
On définira par ailleurs la fonction f : R −→ R

x 7−→ x − arctan x.

1. Montrer que, ∀x ∈ R+, f(x) ⩾ 0 et en déduire que, ∀n ∈ N, un ⩾ 0.
Solution : Notons que f est la combinaison linéaire de deux fonctions dérivables sur R, donc

f est dérivable sur R. On a alors f ′(x) = 1 − 1
1 + x2 = x2

1 + x2 ⩾ 0. Ainsi, f est croissante
sur R.
Par ailleurs, f(0) = 0, donc ∀x ⩾ 0, on a f(x) ⩾ f(0) = 0.

Enfin notons, ∀n ∈ N, P(n) la propriété ≪ un ⩾ 0 ≫.

On a u0 = 1
2 donc P(0) est vraie.

Soit n ∈ N quelconque fixé tel que P(n) soit vrai.
Comme un ∈ R+, on a f(un) ∈ R+ vu ce qu’on vient de montrer. Ainsi, P(n + 1) est vraie.
On a donc, ∀n ∈ N, un ⩾ 0.

2. Étudier le sens de variation de la suite (un)n∈N.
Solution : Soit n ∈ N, on a un+1 − un = un − arctan(un) − un = − arctan(un). Comme
∀x ⩾ 0, arctan(x) ⩾ 0 et ∀n ∈ N, un ⩾ 0, on a − arctan(un) ⩽ 0.
Ainsi, un+1 − un ⩽ 0 et ainsi, (un)n∈N est décroissante.
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3. Montrer que la suite (un)n∈N est convergente et déterminer sa limite que l’on notera ℓ.
Solution : On a vu que (un)n∈N est décroissante et minorée par 0, donc (un)n∈N converge
vers une limite finie ℓ.
On a ∀n ∈ N, un+1 = un − arctan(un), donc par continuité de la fonction arctan, en faisant
tendre n vers +∞, on a ℓ = ℓ − arctan(ℓ) ⇐⇒ arctan(ℓ) = 0.
Or, la seule valeur pour laquelle la fonction arctan s’annule est 0.
Ainsi, ℓ = 0. On a donc lim

n→+∞
un = 0.

4. Montrer que, ∀x ∈ [0, 1], f(x) ⩽ 1
2x.

Solution : Considérons la fonction φ : R −→ R
x 7−→ f(x) − 1

2x.

Comme φ est une combinaison linéaire de fonctions dérivables sur R, φ est aussi dérivable sur
R. On a alors

φ′(x) = f ′(x) − 1
2 = x2

1 + x2 − 1
2 = 2x2 − (1 + x2)

2(1 + x2) = x2 − 1
2(1 + x2) .

Ainsi, ∀x ∈ [0, 1], φ′(x) ⩽ 0, donc φ est décroissante sur [0, 1]. De plus, φ(0) = 0, donc

∀x ∈ [0, 1], φ(x) ⩽ 0

ce qui revient à
∀x ∈ [0, 1] , f(x) ⩽ 1

2x.

5. En déduire que, ∀n ∈ N, un ⩽
1
2n

.

Solution : Notons, ∀n ∈ N, P ′(n) la propriété ≪ un ⩽
1
2n

≫.

On a u0 = 1
2 et 1

20 = 1 donc P ′(0) est vraie.

Soit n ∈ N quelconque fixé tel que P ′(n) soit vrai.

Comme la suite (un)n∈N est décroissante de premier terme u0 = 1
2 et positive, on a ∀n ∈ N,

un ∈
[
0,

1
2

]
.

Ainsi, d’après la question précédente, on a f(un) ⩽
1
2un, autrement dit un+1 ⩽

1
2un. Or

d’après P ′(n), on a un ⩽
1
2n

. Ainsi, un+1 ⩽
1
2

1
2n

= 1
2n+1 .

Ainsi, P ′(n + 1) est vraie.

On a donc, ∀n ∈ N, un ⩽
1
2n

.

6. Soit ε ∈]0, 1[. Déterminer un entier n0 ∈ N, tel que, ∀n ⩾ n0, |un − ℓ| ⩽ ε.
Solution : On a |un − ℓ| = |un − 0| = un car ∀n ∈ N, un ⩾ 0.
Ainsi, |un − ℓ| ⩽ ε ⇐⇒ un ⩽ ε.

Or, d’après la question précédente, on a ∀n ∈ N, un ⩽
1
2n

, donc, si 1
2n

⩽ ε, l’inégalité est

vérifiée. Or 1
2n

⩽ ε ⇐⇒ −n ln(2) ⩽ ln(ε) ⇐⇒ n ⩾
− ln(ε)
ln(2) .

Comme ε ∈]0, 1[, ln(ε) < 0 donc il suffit donc de prendre n0 = ⌊− ln(ε)
ln(2) ⌋ + 1 pour être sûr

que |un| ⩽ ε.

2 / 10



Exercice 2. On considère le polynôme

U(X) = X3 − 4X2 + 5X − 2.

On considère également les matrices

A =

 1 0 −1
−1 2 −1
−1 1 1

 , T =

1 1 0
0 1 0
0 0 2

 , D =

1 0 0
0 1 0
0 0 2

 , N =

0 1 0
0 0 0
0 0 0

 .

Et dans le tout le problème, pour un polynôme

V (X) =
m∑

k=0
αkXk

et une matrice M ∈ M3(R), on pose

V (M) =
m∑

k=0
αkMk.

Par exemple, si V (X) = 2 − 3X + X2, alors V (M) = 2I3 − 3M + M2.
L’objectif de cet exercice est de construire une décomposition des polynômes par rapport à U ,
puis d’utiliser cette décomposition pour calculer les puissances de la matrice A.
La partie III est indépendante des parties I et II. En admettant le résultat final de la partie I, il
est tout à fait possible de traiter la partie II intégralement.

Partie I – Décomposition des polynômes

1. Soit T ∈ R[X]. On cherche à montrer qu’il existe un unique couple de polynômes (Q, R) ∈
R[X]2 tel que

T = UQ + R avec deg(R) ⩽ 2.

a. Montrer que si deg(T ) = 0, on peut choisir Q = 0R[X] et préciser alors R.
Solution : On a évidemment T = U × 0R[X] + T avec deg(T ) ⩽ 2.

b. De la même façon, donner les valeurs de Q et de R si deg(T ) = 1 ou deg(T ) = 2.
Solution : Cette décomposition reste vraie ! On a T = U × 0R[X] + T avec deg(T ) ⩽ 2.

c. Soit n ⩾ 3 et soit T un polynôme de degré n+1. En écrivant T = aXn+1 +T1 avec a ∈ R∗
et deg(T1) ⩽ n, montrer que le polynôme

T − aXn−2U

est de degré inférieur ou égal à n.
Solution : Soit T ∈ R[X] tel que deg(T ) = n + 1. En notant a le coefficient dominant
de T (celui de degré n + 1), on a T = aXn+1 + T1 où deg(T1) ⩽ n.

On a alors

T −aXn−2U = aXn+1+T1−aXn−2(X3−4X2+5X−2) = T1+4aXn−5aXn−1+2aXn−2.

Ainsi, on peut remarquer que T1 + 4aXn − 5aXn−1 + 2aXn−2 est la somme de polynômes
de degré inférieur ou égal à n, donc est de degré inférieur ou égal à n.

d. En raisonnant par récurrence forte sur le degré de T , montrer qu’il existe des polynômes
Q et R tels que

T = UQ + R avec deg(R) ⩽ 2.

Solution : Notons P(n) la propriété ≪ pour tout T ∈ R[X] avec deg(T ) = n, il existe
des polynômes Q et R tels que T = UQ + R avec deg(R) ⩽ 2. ≫

Notons que l’initialisation a été faite pour n = 0, 1 et 2 lors des premières questions.
Soit n ∈ N, n ⩾ 2, tel que, pour tout k ∈ [[0, n]], P(k) est vraie.
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Considérons un polynôme T de degré égal à n + 1.
D’après la question précédente, si on note a le coefficient dominant de T , on a

k = deg(T − aXn−2U) ⩽ n,

donc d’après P(k), il existe deux polynômes Q et R avec deg(R) ⩽ 2 tels que

T − aXn−2U = UQ + R.

Donc T = U(aXn−2 + Q) + R avec deg(R) ⩽ 2. Ainsi la propriété P(n + 1) est vraie avec
les polynômes aXn−2 + Q et R.
Ainsi, pour tout T ∈ R[X], il existe un couple de polynômes (Q, R) tels que T = UQ + R
avec deg(R) ⩽ 2.

e. Supposons que l’on ait deux décompositions (Q1, R1) et (Q2, R2) telles que

T = UQ1 + R1 = UQ2 + R2 avec deg(R1) ⩽ 2 et deg(R2) ⩽ 2.

Montrer que Q1 = Q2 et R1 = R2.
Solution : Supposons l’existence de ces deux décompositions. On a alors

UQ1 + R1 = UQ2 + R2 ⇐⇒ U(Q1 − Q2) = R2 − R1.

Or deg(R2 − R1) ⩽ max(deg(R1), deg(R2)) ⩽ 2.
Mais par ailleurs deg(U(Q1 − Q2)) = deg(U) + deg(Q1 − Q2) = 3 + deg(Q1 − Q2).
Ainsi, deg(R2 − R1) = deg(U(Q1 − Q2)) implique 3 + deg(Q1 − Q2) ⩽ 2.
On a donc deg(Q1 − Q2) ⩽ −1, donc deg(Q1 − Q2) = −∞.
On en conclut que Q1 = Q2.
L’égalité de départ devient UQ1 + R1 = UQ1 + R2 qui se simplifie alors en R1 = R2.
Ainsi, la décomposition T = UQ + R est unique.

2. Factoriser le polynôme U sur R. Préciser ses racines et leur multiplicité.
Solution : On peut remarquer que U(1) = 0.
Ainsi, il existe trois réels a, b et c tels que U = (X − 1)(aX2 + bX + c).
Donc U = aX3 + (b − a)X2 + (c − b)X − c.

Par unicité de l’écriture développée réduite, on a le système
a = 1

−a + b = −4
−b + c = 5

−c = −2

⇐⇒


a = 1
b = −3

−(−3) + 2 = 5
c = 2

Ainsi, U = (X − 1)(X2 − 3X + 2).
Par ailleurs X2 − 3X + 2 admet 1 pour racine évidente, et le produit des racines faisant 2,
l’autre vaut 2.
On a donc U = (X − 1)2(X − 2).
1 est donc racine double de U et 2 est racine d’ordre 1.
Les étudiants efficaces ont bien évidemment remarqué que 1 et 2 étaient racines évidentes,
puis ont calculé U ′ = 3X2 − 8X + 5 et ont remarqué que U ′(1) = 0. Ils ont immédiatement
compris que 1 était donc racine au moins double, et comme deg(U) = 3 et que son coefficient
dominant est 1, la factorisation est immédiatement U = (X − 1)2(X − 2).

3. Pour n ∈ N, on note (Qn, Rn) l’unique couple de polynômes avec Rn de degré inférieur ou
égal à 2 dont on justifiera l’existence tel que

Xn = UQn + Rn.
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a. Montrer que Rn(1) = 1, Rn(2) = 2n et R′n(1) = n.
Solution : Pour n ∈ N, en utilisant la décomposition précédente le polynôme Xn,
on sait qu’il existe un unique couple de polynômes (Qn, Rn) avec deg(Rn) ⩽ 2 tel que
Xn = UQn + Rn.
On a donc Rn = Xn − UQn.

On a donc Rn(1) = 1 − U(1)Qn(1). Or, comme U(1) = 0, on a Rn(1) = 1.

De la même façon, on a Rn(2) = 2n − U(2)Qn(2) = 2n car U(2) = 0.
Enfin, on a R′n = nXn−1 − U ′Qn − UQ′n donc

R′n(1) = n − U ′(1)Qn(1) − U(1)Qn(1).

On a déjà vu que U(1) = 0 et comme 1 est une racine double de U , on a aussi U ′(1) = 0.
Ainsi, R′n(1) = n.

Notons que, même si n = 0, on a bien R′n(1) = 0 car Rn = X0 = 1 d’après la première
question de cet exercice.

b. En écrivant Rn = aX2 +bX +c, où a, b et c sont trois réels, établir un système d’équations
vérifié par a, b et c.
Solution : On note Rn = aX2 + bX + c avec a, b et c sont trois réels.
En utilisant la question précédente, on a

Rn(1) = 1 ⇐⇒ a + b + c = 1

et, comme R′n = 2aX + b, on a

R′n(1) = n ⇐⇒ 2a + b = n.

Enfin,
Rn(2) = 2n ⇐⇒ 4a + 2b + c = 2n.

On a donc le système  a +b +c = 1
2a +b = n
4a +2b +c = 2n

c. En déduire que l’expression explicite de Rn est

Rn = (2n − n − 1)X2 + (−2n+1 + 3n + 2)X + 2n − 2n.

Solution : Il ne reste qu’à résoudre le système précédent : a +b +c = 1
2a +b = n
4a +2b +c = 2n

⇐⇒
L3←L3−L1

 a +b +c = 1
2a +b = n
3a +b = 2n − 1

⇐⇒
L3←L3−L2

 a +b +c = 1
2a +b = n
a = 2n − n − 1

⇐⇒
L1←L1−L3

L2←L2−2L3

 b +c = −2n + n + 2
b = −2 × 2n + 3n + 2

a = 2n − n − 1

⇐⇒
L1←L1−L2

 c = 2n − 2n
b = −2 × 2n + 3n + 2
a = 2n − n − 1

On a donc
Rn = (2n − n − 1)X2 + (−2n+1 + 3n + 2)X + 2n − 2n.
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Partie II – Application aux matrices

4. Montrer que U(A) = 0M3(R).

Solution : On trouve rapidement A2 =

 2 −1 −2
−2 3 −2
−3 3 1

 puis

A3 =

 5 −4 −3
−3 4 −3
−7 7 1.


Il ne reste plus qu’à calculer

U(A) = A3 − 4A2 + 5A − 2I3 =

0 0 0
0 0 0
0 0 0

 .

5. En utilisant la décomposition Xn = UQn + Rn, montrer que

An = Rn(A)

pour tout n ⩾ 1, puis en déduire une expression explicite de An.
Solution : En utilisant la décomposition précédente, on a An = U(A)Qn(A) + Rn(A) mais
comme U(A) = 0M3(R), on a, ∀n ∈ N,

An = Rn(A).

En utilisant les valeurs obtenues précédemment, on a

Rn(A) = (2n − n − 1)A2 + (−2n+1 + 3n + 2)A + (2n − 2n)I3.

Autrement dit

An = (2n−n−1)

 2 −1 −2
−2 3 −2
−3 3 1

+(−2n+1+3n+2)

 1 0 −1
−1 2 −1
−1 1 1

+(2n−2n)

1 0 0
0 1 0
0 0 1

 .

Ce qui s’écrit

An =

 2n − n −2n + n + 1 −n
−n n + 1 −n

−2n + 1 2n − 1 1



Partie III – Une autre méthode de calcul
On propose maintenant une méthode indépendante pour calculer les puissances de A.

6. Déterminer les valeurs propres de A ainsi que les sous-espaces propres associés.

Solution : Considérons le système homogène associé (A − λI3)

x
y
z

 =

0
0
0

.

⇐⇒

 (1 − λ)x −z = 0
−x +(2 − λ)y −z = 0
−x +y +(1 − λ)z = 0

⇐⇒
L2←L2−L1

L3←L3+(1−λ)L1

 (1 − λ)x −z = 0
(−2 + λ)x +(2 − λ)y = 0

λ(−2 + λ)x +y = 0
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⇐⇒
L3←L3−λL2

 (1 − λ)x −z = 0
(−2 + λ)x +(2 − λ)y = 0

+(1 − 2λ + λ)2y = 0

⇐⇒

 −z +(1 − λ)x = 0
(−2 + λ)x +(2 − λ)y = 0

+(1 − λ)2y = 0
Le système n’est pas de rang trois si et seulement si λ = 2 ou λ = 1.
On a donc λ1 = 1 et λ2 = 2.

Pour la première valeur propre, chercher le sous-espace propre revient à résoudre (A −

λ1I3)

x
y
z

 =

0
0
0

, donc le système que nous avons vu ci-dessus en prenant λ = λ1 = 1.

C’est donc équivalent à

⇐⇒

 −z = 0
−x +y = 0

0 = 0

⇐⇒
{

z = 0
x = y

L’ensemble solution est donc


y

y
0

 /y ∈ R

 =

y

1
1
0

 /y ∈ R

 = Vect

−1
−1
0

. (Le

choix vient juste de ma matrice P choisie aléatoirement lors de la conception du sujet et pour
coller avec les résultats déjà écrits pour mes élèves.)

Pour la seconde valeur propre, chercher le sous-espace propre revient à résoudre (A−λ2I3)

x
y
z

 =0
0
0

, donc le système que nous avons vu ci-dessus en prenant λ = λ2 = 2.

C’est donc équivalent à

⇐⇒

 −z −x = 0
0 = 0

−y = 0

⇐⇒
{

x = −z
y = 0

L’ensemble solution est donc


−z

0
z

 /z ∈ R

 =

z

−1
0
1

 /z ∈ R

 = Vect

−1
0
1

.

7. Est-ce que la matrice A est diagonalisable ?
Solution : Non. La somme des dimensions des sous-espaces propres fait 2 (ils sont très
clairement de dimension 1).

8. Montrer que la matrice A est semblable à la matrice T .

Solution : En prenant comme premier vecteur d’une nouvelle base

−1
−1
0

, la première

colonne de T est bonne.

En prenant comme troisième vecteur

−1
0
1

, c’est la troisième colonne de T qui est bonne.
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Il reste à trouver un vecteur X =

x
y
z

 tel que AX =

−1
−1
0

 + X.

On trouve par exemple X =

3
3
1

 .

Il reste à vérifier que ces trois vecteurs forment une base de M3,1(R).

9. En déduire qu’il existe une matrice P que vous donnerez telle que A = PTP−1 et montrer
que, pour tout n ∈ N,

An = PT nP−1.

Solution : On utilise P =

−1 3 −1
−1 3 0
0 1 1

 la matrice représentative de la base évoquée dans

la question précédente, la formule de changement de base donne A = PTP−1.
Pour la suite, soit on justifie joliment la chose avec des compositions et des formules de
changement de base soit on fait une petite récurrence.
Notons, pour tout n ∈ N, P(n) la propriété ≪ An = PT nP−1 ≫.
On a A0 = I3 et PT 0P−1 = PI3P−3 = PP−1 = I3.

La propriété P(0) est vraie.
Soit n ∈ N quelconque fixé tel que P(n) est vrai.
On a An+1 = AnA Or d’après la question précédente donne A = PTP−1 donc en utilisant
P(n), on a

An+1 = PT nP−1PTP−1 = PT n+1P−1.

Ainsi, P(n + 1) est vraie.
On a donc, pour tout n ∈ N, An = PT nP−1.

10. Calculer P−1.

Solution : Considérons le système associé P

x
y
z

 =

a
b
c

. Ce système est équivalent à

 −x +3y −z = a
−x +3y = b

y +z = c

⇐⇒
L1←L1−L2

 −z = a −b
−x +3y = b

y +z = c

⇐⇒
L1←L2←L3←L1

 −x +3y = b
y +z = c

−z = a −b

Le système est échelonné et ses coefficients diagonaux sont non nuls, donc P est inversible et
on a

P

x
y
z

 =

a
b
c

 ⇐⇒
L2←L2+L3

 −x +3y = b
y = a −b +c

−z = a −b

⇐⇒
L1←L1−3L2

 −x = −3a 4b −3c
y = a −b +c

−z = a −b

⇐⇒
L1←L1−3L2

 x = 3a −4b +3c
y = a −b +c
z = −a +b
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⇐⇒

x
y
z

 =

 3 −4 3
1 −1 1

−1 1 0

 .

Ainsi, P−1 =

 3 −4 3
1 −1 1

−1 1 0

.

11. En utilisant la formule du binôme, calculer T n.
Solution : Avec les matrices introduites en première question, on a T = D + N .

Par ailleurs, on a DN =

1 0 0
0 1 0
0 0 2

 0 1 0
0 0 0
0 0 0

 =

0 1 0
0 0 0
0 0 0

 = N .

De même, on a ND =

0 1 0
0 0 0
0 0 0

 1 0 0
0 1 0
0 0 2

 =

0 1 0
0 0 0
0 0 0

 = N .

On peut donc utiliser la formule du binôme.
Ainsi, on a

T n =
n∑

k=0

(
n

k

)
NkDn−k.

Or N2 =

0 1 0
0 0 0
0 0 0

 0 1 0
0 0 0
0 0 0

 = 0M3(R).

On a donc T n = Dn + nNDn−1 +
n∑

k=2
0M3(R).

Ainsi, T n = Dn + nNDn−1.

Cependant, on a pu remarquer que ND = N , donc NDn−1 = N (si on ne le remarque pas,
ça se calcule sans difficulté).

Ainsi, on a T n = Dn + nN =

1 0 0
0 1 0
0 0 2n

 + n

0 1 0
0 0 0
0 0 0

 .

On a donc, ∀n ∈ N, T n =

1 n 0
0 1 0
0 0 2n

. (En toute rigueur, ça n’a pas été démontré pour

n = 0, mais l’égalité reste vraie.)

12. En déduire à nouveau l’expression de An et comparer avec celle obtenue dans la partie
précédente.
Solution : Comme, ∀n ∈ N, An = PT nP−1, il suffit de calculer PT n, ce qui donne

PT n =

−1 3 −1
−1 3 0
0 1 1

 1 n 0
0 1 0
0 0 2n

 =

−1 −n + 3 −2n

−1 −n + 3 0
0 1 2n

 .

Enfin, on a

An = (PT n)P−1 =

−1 −n + 3 −2n

−1 −n + 3 0
0 1 2n

  3 −4 3
1 −1 1

−1 1 0

 =

 2n − n −2n + n + 1 −n
−n n + 1 −n

−2n + 1 2n − 1 1

 .

Pour ceux qui font les calculs en commençant par la droite, on a du trouver
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T nP−1 =

1 n 0
0 1 0
0 0 2n

  3 −4 3
1 −1 1

−1 1 0

 =

n + 3 −n − 4 n + 3
1 −1 1

−2n 2n 0

 ,

puis

An = P (T nP−1) =

−1 3 −1
−1 3 0
0 1 1

 n + 3 −n − 4 n + 3
1 −1 1

−2n 2n 0

 =

 2n − n −2n + n + 1 −n
−n n + 1 −n

−2n + 1 2n − 1 1

 .
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