Devoir Surveillé n°3

BCPST 1... ah non plutét BCPST 2

31 janvier 2026

Merci de prendre connaissance de cet extrait de la notice du concours :

Les effaceurs correcteurs liquides (ou les rollers correcteurs) sont a éviter car ils
peuvent laisser des résidus sur les vitres du scanner lors de la numérisation des
copies.

Les surligneurs sont a éviter.

La rédaction se fera uniquement a I’encre bleue ou noire et ’utilisation du blanc
correcteur est interdite. Les découpages et collages sur la copie sont interdits.

Le reste...

L’usage d’abaques, de tables, de calculatrice et de tout instrument électronique
susceptible de permettre au candidat d’accéder a des données et de les traiter par
les moyens autres que ceux fournis dans le sujet est interdit.

Ce sujet comporte pages numérotées de 1 a

Si, au cours de I’épreuve, un candidat repére ce qui lui semble étre une erreur
d’énoncé, il le signale sur sa copie et poursuit sa composition en expliquant les
raisons des initiatives qu’il a été amené a prendre.

Aucune réponse sur le sujet ne sera acceptée. L’énoncé n’est pas ramassé.

Les réponses devront étre justifiées. Les résultats devront étre simplifiés au mieux
de vos possibilités.

1
Exercice 1. On considére la suite (u,)n,en définie par son premier terme ug = 3 et, pour tout

n €N, up11 = u, — arctan(uy,).
On définira par ailleurs la fonction f: R — R
r +—— x —arctanzx.

1. Montrer que, Vo € R, f(z) > 0 et en déduire que, Vn € N, u,, > 0.

Solution : Notons que f est la combinaison linéaire de deux fonctions dérivables sur R, donc

1 72
f est dérivable sur R. On a alors f'(z) =1 — 52 1 i p > 0. Ainsi, f est croissante

sur R.
Par ailleurs, f(0) =0, donc Yz > 0, on a f(x) >
Enfin notons, ¥n € N, P(n) la propriété < u, >

f(0) =0.

0 >.
1 .

On aug = 3 donc P(0) est vraie.

Soit n € N quelconque fixé tel que P(n) soit vrai.
Comme u,, € Ry, on a f(u,) € Ry vu ce qu’on vient de montrer. Ainsi, P(n + 1) est vraie.
On a donc, Vn € N, u,, > 0.

2. Etudier le sens de variation de la suite (Un)nen-

Solution : Soit n € N, on a uy11 — up, = u, — arctan(u,) — u, = —arctan(u,). Comme
Va > 0, arctan(x) > 0 et Vn € N, u,, > 0, on a — arctan(u,) < 0.

Ainsi, up41 — up, < 0 et ainsi, (uy,)nen est décroissante. [
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3. Montrer que la suite (u,)nen est convergente et déterminer sa limite que ’on notera £.

Solution : On a vu que (up)nen est décroissante et minorée par 0, donc (uy)nen converge
vers une limite finie /.

On a Vn € N, u,41 = u, — arctan(u,, ), donc par continuité de la fonction arctan, en faisant
tendre n vers +00, on a £ = ¢ — arctan({) <= arctan(¢) = 0.

Or, la seule valeur pour laquelle la fonction arctan s’annule est 0.

Ainsi, £ =0. On a donc  lim wu, =0. O
n—-+oo

1
4. Montrer que, Vz € [0,1], f(z) < 7%

Solution : Considérons la fonction ¢: R — R

1
Comme ¢ est une combinaison linéaire de fonctions dérivables sur R, ¢ est aussi dérivable sur
R. On a alors

1 x? 222 — (1 +2?%) |

/ / 1
Pla)=r@)-5=1rm"35= 2(1+22)  2(1+a2)

Ainsi, Vz € [0,1], ¢'(z) <0, donc ¢ est décroissante sur [0, 1]. De plus, ¢(0) = 0, donc
Ve e [0,1], ¢(x) <0

ce qui revient a

x.

Ve e[0,1], f(z) <

N =

O

1
5. En déduire que, Vn € N, u,, < on-
1
Solution : Notons, Vn € N, P’(n) la propriété < u, < on >
11 , .
On a up = 3 et 20 = 1 donc P’(0) est vraie.
Soit n € N quelconque fixé tel que P’(n) soit vrai.

1
Comme la suite (up)nen est décroissante de premier terme uy = 3 et positive, on a Vn € N,

1
Uy € [O, 2].
e . L 1 . 1
Ainsi, d’aprés la question précédente, on a f(u,) < 2 Un; autrement dit w,41 < o Un- Or
Y. ... 11 1
d’apres P’'(n), on a u, < on- Ainsi, up4q < 350 = gt

Ainsi, P’'(n + 1) est vraie.

1
On a donc, Vn € N, u,, < —. [

27l

6. Soit € €0, 1[. Déterminer un entier ng € N, tel que, Vn = ng, |u, — £] < €.
Solution : On a |u, —¢| = |u, — 0| = u, car Vn € N, u,, > 0.

Ainsi, |u, — ¥ < e <= u, < e.

.1 NS
, donc, si on < g, l'inégalité est

—In(e)
In(2)

Comme ¢ €]0, 1], In(¢) < 0 donc il suffit donc de prendre ng = | | 4+ 1 pour étre siir

que |u,| <e. O
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Exercice 2. On consideére le polynéme

UX)=X>—4X?+5X —2.

On considere également les matrices

A=

1 0 -1 110 100 010
-1 2 -1|, T=|0o 10|, D=f01 0], N=[|0o00
-1 1 1 00 2 00 2 00 0

Et dans le tout le probleme, pour un polynéme

V(X)=> apX*
k=0

et une matrice M € M3(R), on pose

V(M) =" apM".
k=0

Par exemple, si V(X) =2 — 3X + X?, alors V(M) = 213 — 3M + M?.

L’objectif de cet exercice est de construire une décomposition des polynémes par rapport a U,
puis d’utiliser cette décomposition pour calculer les puissances de la matrice A.

La partie III est indépendante des parties I et II. En admettant le résultat final de la partie I, il
est tout a fait possible de traiter la partie II intégralement.

Partie I — Décomposition des polynémes

1. Soit T' € R[X]. On cherche & montrer qu’il existe un unique couple de polynémes (@, R) €
R[X]? tel que

a.

b.

T=UQ+R avec deg(R) < 2.

Montrer que si deg(7) = 0, on peut choisir @ = Og[x)] et préciser alors R.

Solution : On a évidemment 7' = U x Og[x] + T avec deg(T") < 2. [

De la méme fagon, donner les valeurs de Q et de R si deg(T) =1 ou deg(T') = 2.
Solution : Cette décomposition reste vraie! On a T'= U x Og[x] + T avec deg(7T) < 2.
O

Soit n > 3 et soit T'un polynéme de degré n+ 1. En écrivant T = a X" + T} avec a € R*
et deg(T1) < n, montrer que le polynéme

T—aX" U

est de degré inférieur ou égal a n.

Solution : Soit 7' € R[X] tel que deg(T) = n + 1. En notant a le coeflicient dominant
de T (celui de degré n+ 1), on a T = a X" + T ou deg(T}) < n.

On a alors

T—aX" U = aX" T +T1 —aX" 3(X?—4X?+5X —2) = Ty +4a X" —5a X" ' +2a X" 2.

Ainsi, on peut remarquer que T} +4aX"™ —5aX" ! +2aX" "2 est la somme de polyndmes
de degré inférieur ou égal a n, donc est de degré inférieur ou égal a n. [J

En raisonnant par récurrence forte sur le degré de T, montrer qu’il existe des polynoémes
Q et R tels que
T=UQ+R avec deg(R) < 2.

Solution : Notons P(n) la propriété < pour tout T' € R[X] avec deg(T) = n, il existe
des polynoémes @ et R tels que T'=UQ + R avec deg(R) < 2. »

Notons que l'initialisation a été faite pour n = 0,1 et 2 lors des premieres questions.

Soit n € N,n > 2, tel que, pour tout k € [0,n], P(k) est vraie.
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Considérons un polynéme 7' de degré égal a n + 1.
D’apres la question précédente, si on note a le coefficient dominant de 7', on a

k= deg(T — aX"2U) < n,
donc d’apres P(k), il existe deux polynomes @ et R avec deg(R) < 2 tels que
T—aX"2U=UQ+R.

Donc T = U(aX" "2+ Q) + R avec deg(R) < 2. Ainsi la propriété P(n + 1) est vraie avec
les polynémes a X" 2 +Q et R.

Ainsi, pour tout T' € R[X], il existe un couple de polynomes (Q, R) tels que T =UQ + R
avec deg(R) < 2. O

e. Supposons que l'on ait deux décompositions (Q1, R1) et (Q2, R2) telles que
T=UQ1+ R, =UQ>+ Ry avec deg(R1) < 2 et deg(R2) < 2.

Montrer que Q1 = Q2 et Ry = R».
Solution : Supposons l'existence de ces deux décompositions. On a alors

UQi+ R =UQ2+ Ry <= U(Q1 — Q2) = Ry — Ry.

Or deg(Ry — R1) < max(deg(Ry),deg(R2)) < 2.

Mais par ailleurs deg(U(Q1 — Q2)) = deg(U) + deg(Q1 — @2) = 3 + deg(Q1 — Q2).
Ainsi, deg(Ry — R1) = deg(U(Q1 — @Q2)) implique 3 + deg(Q1 — Q2) < 2.

On a donc deg(Q1 — Q2) < —1, donc deg(Q1 — Q2) = —oc.

On en conclut que @1 = Q5.

L’égalité de départ devient UQ; + Ry = UQ1 + Ry qui se simplifie alors en Ry = Rs.
Ainsi, la décomposition T'= U@ + R est unique. [

2. Factoriser le polynéme U sur R. Préciser ses racines et leur multiplicité.
Solution : On peut remarquer que U(1) = 0.
Ainsi, il existe trois réels a,b et c tels que U = (X — 1)(aX? + bX + c).
Donc U = aX? + (b—a)X? + (c = b)X —c.

Par unicité de I’écriture développée réduite, on a le systeme

a =1 a =1
—a+b =—-4 b =-3
b+e =5 ) —(=3)+2 =5

—c =-2 c =2

Ainsi, U = (X — 1)(X? - 3X +2).

Par ailleurs X2 — 3X + 2 admet 1 pour racine évidente, et le produit des racines faisant 2,
lautre vaut 2.

On a donc U = (X — 1)3(X —2).
1 est donc racine double de U et 2 est racine d’ordre 1.

Les étudiants efficaces ont bien évidemment remarqué que 1 et 2 étaient racines évidentes,
puis ont calculé U’ = 3X% — 8X + 5 et ont remarqué que U’(1) = 0. Ils ont immédiatement
compris que 1 était donc racine au moins double, et comme deg(U) = 3 et que son coefficient
dominant est 1, la factorisation est immédiatement U = (X — 1)%(X —2). O

3. Pour n € N, on note (@, R,) 'unique couple de polyndémes avec R, de degré inférieur ou
égal a 2 dont on justifiera I'existence tel que

X" =UQ, +R,.
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a. Montrer que R, (1) =1, R,(2) =2" et R, (1) =n.
Solution : Pour n € N, en utilisant la décomposition précédente le polynome X",
on sait qu’il existe un unique couple de polynémes (Q,, R,) avec deg(R,) < 2 tel que
X" =UQn + Ry.
On adonc R, = X" —-UQ,.
On a donc R, (1) =1—-U(1)Q,(1). Or, comme U(1) =0, on a R,(1) = 1.
De la méme facon, on a R, (2) = 2" — U(2)Q,(2) = 2" car U(2) = 0.
Enfin, on a R, =nX""! - U'Q,, — UQ!, donc

On a déja vu que U(1) = 0 et comme 1 est une racine double de U, on a aussi U’(1) = 0.
Ainsi, R/, (1) = n.

Notons que, méme si n = 0, on a bien R/, (1) = 0 car R,, = X° = 1 d’aprés la premiere
question de cet exercice. [J

b. En écrivant R, = aX2+bX +c¢, oll a, b et ¢ sont trois réels, établir un systéme d’équations
vérifié par a, b et c.

Solution : On note R,, = aX? 4+ bX + c avec a,b et ¢ sont trois réels.

En utilisant la question précédente, on a
R,(1)=1l<=a+b+c=1
et, comme R/ =2aX + b, on a
Rl (1)=n<+=2a+b=n.

Enfin,
R,(2)=2" <= 4da+2b+c=2"

On a donc le systeme

a +b +c =1
2a  +b =n
4a +2b +c =2"

O

c. En déduire que l'expression explicite de R,, est

R,=(2"—n—1)X%+(-2"" +3n +2)X +2" — 2n.

Solution : Il ne reste qu’a résoudre le systéme précédent :
a +b H4c¢ =1
2a +b =n
4a +2b +c =2"
a +b +c =1
= 2a  +b =n
L3« L3—L- 3a +b —9on _ 1
a +b +c =1
= 2a  +b =n
Lacls=lo | =2" —n—-1
b +c =-2"+n+2
<— b =—-2x2"+3n+2
LL;:LL;:QLL33 a =2"—n-1
c =2"—-2n
— b =-2x2"+3n+2
LicLi=La | o _on_,_ 1
On a donc
R,=2"—n—-1DX?4+(-2""" +3n+2)X +2" — 2n.
O
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Partie IT — Application aux matrices

4. Montrer que U(A) = O, w)-

2 -1 =2
Solution : On trouve rapidement A? = | =2 3 —2| puis
-3 3 1
5 —4 =3
AB=[-3 4 -3
-7 7 1L
Il ne reste plus qu’a calculer
0 0 0
U(A) = A® —4A? + 54 -2I3= {0 0 0
0 0 0

O
5. En utilisant la décomposition X" = UQ,, + R,,, montrer que
A" = R, (A)

pour tout n > 1, puis en déduire une expression explicite de A™.

Solution : En utilisant la décomposition précédente, on a A™ = U(A)Q,(A) + R, (A) mais
comme U(A) = Opq,(r), 00 a, ¥n € N,

A" = R, (A).
En utilisant les valeurs obtenues précédemment, on a

Ry(A) = (2" —n—1)A% + (=2"" + 3n + 2)A + (2" — 2n) 5.

Autrement dit

2 -1 =2 1 0 -1 100
A" =(2"—n—-1) -2 3 —2|+(=2""'43n+2)[ -1 2 —1|4+(2"-2n)|0 1 O
-3 3 1 -1 1 1 0 0 1

Ce qui s’écrit
2" —n =2"4n+1 -—n
A" = —n n+1 —n
2" +1 2" —1 1

O

Partie ITI — Une autre méthode de calcul
On propose maintenant une méthode indépendante pour calculer les puissances de A.

6. Déterminer les valeurs propres de A ainsi que les sous-espaces propres associés.

x 0
Solution : Considérons le systéme homogene associé (A —A3) |y ]| =10
z 0
(1—=Nz —z =0
= —x +(2-Ny —z =
—x +y +(1-XNz =0
(I=MNzx —z =0
L= (—2+ Nz +2-Ny =
Lo
LyeLst(l—nL, | A(=2+ M)z +y =0



(1-Nx

= (—2+ Nz
L3<—L3—)\L2

¢ (—2+ Nz

+(1 =M%y

+(2-Ny
+(1 =22+ N2y
—z +(1 =Nz
+(2 -y

=0
=0
=0

Le systeme n’est pas de rang trois si et seulement si A =2 ou A = 1.

On a donc Ay =1 et Ay = 2.

Pour la premiere valeur propre, chercher le sous-espace propre revient a résoudre (A —

x 0
MIz) [y ] = (0], donc le systéme que nous avons vu ci-dessus en prenant A = \; = 1.
z 0
C’est donc équivalent a
—2 =0
= - +y =0
0 =0
{ z 0
aad
r =Y

L’ensemble solution est donc

Y

Y
0

[yeR ) =

1
yl1]/yeR, = Vect
0

-1
-1
0

. (Le

choix vient juste de ma matrice P choisie aléatoirement lors de la conception du sujet et pour

coller avec les résultats déja écrits pour mes éleves.)

Pour la seconde valeur propre, chercher le sous-espace propre revient a résoudre (A— Ao 13)

0 |, donc le systéme que nous avons vu ci-dessus en prenant A = Ay = 2.

0
0
C’est donc équivalent a
—z - =0
= 0 =0
—y =0
= TF
y =0

L’ensemble solution est donc

O

—z
0
z

/zER =

. Est-ce que la matrice A est diagonalisable 7

Solution :

. Montrer que la matrice A est semblable & la matrice 7.

Solution :

colonne de T est bonne.

En prenant comme troisieme vecteur

En prenant comme premier vecteur d’une nouvelle base

-1

-1
-1
0

I IS

Non. La somme des dimensions des sous-espaces propres fait 2 (ils sont tres
clairement de dimension 1). O

, la premiere

0 |, c’est la troisieme colonne de T' qui est bonne.

1
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10.

T -1

Il reste a trouver un vecteur X = |y | tel que AX = | -1 | + X.
z 0
3
On trouve par exemple X = | 3
1

11 reste a vérifier que ces trois vecteurs forment une base de M3 ;(R). O

En déduire qu’il existe une matrice P que vous donnerez telle que A = PTP~! et montrer
que, pour tout n € N,

A" = PT"P L.
-1 3 -1
Solution : On utilise P = | —1 3 0 | la matrice représentative de la base évoquée dans
0 1 1

la question précédente, la formule de changement de base donne A = PTP~!.

Pour la suite, soit on justifie joliment la chose avec des compositions et des formules de
changement de base soit on fait une petite récurrence.

Notons, pour tout n € N, P(n) la propriété « A® = PT"P~1 .
Ona Ay = Iy et PTOP~! = PL,P—3 — PP~1 — [;.

La propriété P(0) est vraie.

Soit n € N quelconque fixé tel que P(n) est vrai.

On a A1 = A" A Or d’apreés la question précédente donne A = PTP~! donc en utilisant
P(n), on a
A"t = prrpTtPpTPT = PT P

Ainsi, P(n + 1) est vraie.
On a donc, pour tout n € N, A" = PT"P~!. [

Calculer P~1.

x a
Solution : Considérons le systeme associé P |y | = [ b |. Ce systéme est équivalent a
z c

- +3y —z =a

—x +3y =b
Y +z =c
—z =a —b
= —xr 43y = b
Li4+Li—L> y 1y = c
-z +3y = b
<~ Y +z = c
L1<—L2<—L3<—L1 —z —q —b

Le systeme est échelonné et ses coeflicients diagonaux sont non nuls, donc P est inversible et
on a

x a —r 43y = b
Plyl=1|b — Y =a —b +c
2 Lo« Lo+Lg — —a —b
—x =-3a 4b -3¢

y =a -b  +c
L1<—L1—3L2 — —a 7b
r =3a —4b +3c
= Yy =a -b +c
Ly+Ly—3Lo s — g —|—b
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11.

12.

T 3 —4 3
— |ly|l=(1 -1 1
z -1 1 0
3 -4 3

Ainsi, P7'=( 1 -1 1}|.0O
-1 1 0

En utilisant la formule du bindéme, calculer 7.

Solution : Avec les matrices introduites en premiere question, on a T’ = D + N.

1 00 0 1 0 0 1 0
Par ailleurs, ona DN =10 1 0 0 0 0)J=(10 0O O] =N.
0 0 2 0 0 O 0 0 O
0 1 0 1 0 0 01 0
De méme,ona ND= |0 0 0 01 0J=(0 0 0] =N.
0 0 O 0 0 2 0 0 0
On peut donc utiliser la formule du binome.
Ainsi, on a
" /n
T — Nan—k
> ()
k=0
0 1 0 01 0
OrN2=10 0 O 0 0 0] =0rw)-
0 0 O 0 0 O

n
On a donc T" = D" + nND" ' + ZOMB(R)'
k=2
Ainsi, T" = D" + nND" 1.
Cependant, on a pu remarquer que ND = N, donc ND"~! = N (si on ne le remarque pas,
¢a se calcule sans difficulté).

1 0 0 010
Ainsi,onaT"=D"4+nN=|0 1 0| +n|{0 0 O
0 o0 27 0 00
1 n O
On adonc, Vn e N, T" = [0 1 0 |. (En toute rigueur, ¢ca n’a pas été démontré pour
0o 0 27
n = 0, mais 1’égalité reste vraie.) O

En déduire a nouveau l'expression de A™ et comparer avec celle obtenue dans la partie
précédente.

Solution : Comme, ¥n € N, A" = PT"P~!, il suffit de calculer PT™, ce qui donne

-1 3 —1\ /1 n 0 -1 -n+3 -2
P=[-1 3 o0 01 0]=[-1 —n+3 0
0 1 1 0 0 2" 0 1 2"
Enfin, on a
-1 —n+3 —2" 3 —4 3 2" —n 2" 4n+1 —n
A" = (PT")P'=|-1 —n+3 0 1 -1 1] = -n n+1 -n
0 1 2" -1 1 0 —2" +1 2" — 1 1

Pour ceux qui font les calculs en commencant par la droite, on a du trouver
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1
TP '=10
0

puis
—-1
A" =P(T"P ") = [-1
0

O

3 —4 3

-1 1 0

n-+3
1
_9n

n+3 —n—4 n+3

1 -1
_on on

10 /[iq]

1
0

-n—4 n+3

-1
2”

2" —n

= —n

—m 41

1
0

—2"+n+1
n+1
2" —1

1
—n



