Chapitre 4 : Etude de fonctions (prof)

Table des matières

1	Gér	néralités sur les fonctions	2
	1.1	Ensemble de définition, graphe et asymptote d'une fonction	2
	1.2	Parité d'une fonction	2
	1.3	Périodicité d'une fonction	3
	1.4	Monotonie d'une fonction	4
	1.5	Fonctions minorées, majorées et bornées	4
2	Lim	nites et asymptotes	5
		Limites aux bords de l'ensemble de définition	5
	2.2		
3	Dér	rivée et variations d'une fonction	7
	3.1	Justifier la dérivabilité	7
	3.2	Fonctions dérivées usuelles	7
	3.3	Dérivée et sens de variation d'une fonction	
	3.4	Opérations sur les fonctions dérivables	
	3.5	Dérivation d'une composé de fonctions	
	3.6	Equation de la tangente	

Généralités sur les fonctions 1

1.1 Ensemble de définition, graphe et asymptote d'une fonction

Définition 1.

Soit f une fonction de \mathbb{R} à valeurs dans \mathbb{R} .

On appelle domaine de définition de f le sous-espace de \mathbb{R} pour lequel la fonction f est bien définie. On le note $\overline{D_f}$.

On appelle graphe de f les points de \mathbb{R}^2 de la forme (x, f(x)).

$$C_f = \{(x, f(x)) \text{ avec } x \in D_f\}$$

Exemple 2. Déterminer l'ensemble de définition de la fonction $f: x \mapsto \frac{\sin\left(\frac{1}{x}\right)}{\sqrt{1-x^2}}$.

$$D_f = \left\{ x \in \mathbb{R} \text{ tel que } x \neq 0 \text{ et } 1 - x^2 > 0 \right\}$$

Or, $\forall x \in \mathbb{R}, \ 1 - x^2 > 0 \Leftrightarrow x \in]-1; 1[. \text{ Donc}, D_f =]-1, 0[\cup]0, 1[.$

1.2 Parité d'une fonction

Définition 3.

Soit f une fonction définie sur D_f à valeurs dans \mathbb{R} .

- La fonction f est paire lorsque $\forall x \in D_f, f(-x) = f(x)$.
- La fonction f est impaire lorsque $\forall x \in D_f, \ f(-x) = -f(x)$.

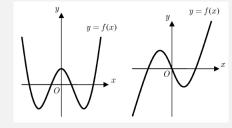
Exemple 4. Etudier la parité de
$$x \mapsto \frac{x \sin(x)}{\sqrt{1-x^2}}$$
. On commence par l'ensemble de définition : $D_f =]-1,1[$. Soit $x \in D_f$. $f(-x) = \frac{-x \sin(-x)}{\sqrt{1-(-x)^2}} = \frac{x \sin(x)}{\sqrt{1-x^2}} = f(x)$.

La fonction f est paire.

Théorème 5.

Soit f une fonction définie sur $D_f =]-a, a[$ à valeurs dans \mathbb{R} .

- 1. Si f est paire alors son graphe C_f est symétrique par rapport à l'axe (Oy).
- 2. Si f est impaire alors son graphe C_f est symétrique par rapport à l'origine O.



Dans les deux cas, il suffit d'étudier f sur [0, a[.

1. Supposons f paire. Soit (x, f(x)) un point du graphe de f. Démonstration:

Le symétrique de ce point par rapport à l'axe (Oy) est le point (-x, f(x)).

Or, f est paire donc f(x) = f(-x).

Finalement, le symétrique de (x, f(x)) par rapport à (Oy) est (-x, f(-x)) et c'est bien un point du graphe $\mathrm{de}\ f.$

2. Supposons f impaire. Soit (x, f(x)) un point du graphe de f.

Le symétrique de ce point par rapport à l'origine est le point (-x, -f(x)).

Or, f est impaire donc f(-x) = -f(x).

Finalement, le symétrique de (x, f(x)) par rapport à l'origine est (-x, f(-x)) et c'est bien un point du graphe de f.

Périodicité d'une fonction 1.3

Définition 6.

Soit f une fonction définie sur D_f à valeurs dans \mathbb{R} . Soit $T \in \mathbb{R}^*$.

La fonction f est T-périodique lorsque que $\forall x \in D_f$, f(x+T) = f(x). Le réel T est appelé une période de f.

Exemple 7. Les fonctions cos et sin sont périodiques de période 2π .

Exemple 8. Etudier la périodicité de la fonction $x \mapsto x - \lfloor x \rfloor$.

On commence par l'ensemble de définition de $f: D_f = \mathbb{R}$.

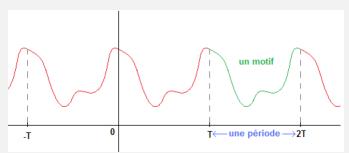
Soit $x \in D_f$. $f(x+1) = x+1 - \lfloor x+1 \rfloor = x+1 - \lfloor x \rfloor - 1 = f(x)$.

La fonction f est 1—périodique.

Théorème 9.

Soit f une fonction définie sur D_f à valeurs dans \mathbb{R} .

Si f est T-périodique alors son graphe \mathcal{C}_f s'obtient par une infinité de translation de son graphe réduit à un ensemble de longueur T.



Il suffit alors d'étudier f sur une période [0; T].

Démonstration : Supposons f paire de période T. Soit $x \in \mathbb{R}$.

Notons $n = \left\lfloor \frac{x}{T} \right\rfloor$. On a alors $n \le \frac{x}{T} < n+1$. Donc, $nT \le x < nT + T$

Donc, $0 \le x - nT < T$.

Or, f(x) = f(x - nT) et $x - nT \in [0; T]$ donc le graphe de f est bien obtenu par translations de son graphe réduit

Exemple 10. Sur quel ensemble doit-on étudier la fonction $f: x \mapsto \cos(2x) + 1$?

 $\overline{\text{La fonction } f}$ est définie sur \mathbb{R} .

 $\forall x \in \mathbb{R}, \ f(-x) = f(x) \ \text{donc} \ f \ \text{est paire}.$

 $\forall x \in \mathbb{R}, f(x+\pi) = \cos(2x+2\pi) + 1 = f(x)$. La fonction f est π -périodique.

On l'étudie seulement sur $\left[0, \frac{\pi}{2}\right]$.

En effet, par parité, on étend l'étude à $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ et, par périodicité, on étend l'étude à \mathbb{R} .

Monotonie d'une fonction 1.4

Définition 11.

Soit f une fonction définie sur D_f à valeurs dans \mathbb{R} . Soit I un intervalle de \mathbb{R} inclus dans D_f .

 \bullet La fonction est croissante sur I lorsque

$$\forall (x,y) \in I^2, \ x \le y \Rightarrow f(x) \le f(y)$$

ullet La fonction est décroissante sur I lorsque

$$\forall (x,y) \in I^2, \ x \le y \Rightarrow f(x) \ge f(y)$$

• Une fonction croissante ou décroissante sur I est monotone sur I.

Exemple 12. Etudier, sans calcul de la dérivée, la monotonie de la fonction $f: x \mapsto \frac{1}{\sqrt{1-x^2}}$ définie sur [0,1[.

Soit $(x,y) \in [0,1[^2 \text{ avec } x \leq y]$. Alors, $x^2 \leq y^2 \text{ car } x \mapsto x^2 \text{ est croissante sur } [0;1[$. Donc, $1-x^2 \geq 1-y^2$. Donc, $\sqrt{1-x^2} \geq \sqrt{1-y^2}$ par croissance de la fonction racine carrée. Donc, $\frac{1}{\sqrt{1-x^2}} \leq \frac{1}{\sqrt{1-y^2}}$ par décroissance de la fonction inverse.

Donc, f est croissante sur [0,1].

1.5 Fonctions minorées, majorées et bornées

Définition 13.

Soit f une fonction définie sur D_f et à valeurs dans \mathbb{R} . Soit $A \subset D_f$. On dit que f est minorée sur \underline{A} lorsque

$$\exists m \in \mathbb{R}, \forall x \in A, m \leq f(x).$$

m est un minorant de f sur A.

On dit que f est majorée sur A lorsque

$$\exists M \in \mathbb{R}, \ \forall x \in A, \ f(x) \leq M.$$

m est un majorant de f sur A.

On dit que f est bornée sur A lorsque

$$\exists (m, M) \in \mathbb{R}^2, \ \forall x \in A, \ m \le f(x) \le M.$$

2 Limites et asymptotes

2.1 Limites aux bords de l'ensemble de définition

Théorème 14.

Soit I un intervalle de \mathbb{R} . Soient $f,g:I\to\mathbb{R}$. Soit $a\in\overline{I}$. Ce tableau donne la valeur de $\lim_{x\to a} (f(x)+g(x))$.

$\lim_{x \to a} f(x)$ $\lim_{x \to a} g(x)$	$-\infty$	ℓ'	+∞
$-\infty$	$-\infty$	$-\infty$	Forme Ind.
ℓ	$-\infty$	$\ell + \ell'$	$+\infty$
$+\infty$	Forme Ind.	$+\infty$	$+\infty$

Démonstration: Il faut la définition d'une limite.

Théorème 15.

Soit I un intervalle de \mathbb{R} . Soient $f,g:I\to\mathbb{R}$. Soit $a\in\overline{I}$. Ce tableau donne la valeur de $\lim_{x\to a} \left(f(x)\times g(x)\right)$ selon les valeurs des limites de f et de g.

$\lim_{x \to a} f(x)$	$-\infty$	$\ell' < 0$	0	$\ell' > 0$	+∞
$-\infty$	$+\infty$	$+\infty$	Forme Ind.	$-\infty$	$-\infty$
$\ell < 0$	$-\infty$	$\ell \times \ell'$	0	$\ell \times \ell'$	$-\infty$
0	Forme Ind.	0	0	0	Forme Ind.
$\ell > 0$	$-\infty$	$\ell \times \ell'$	0	$\ell \times \ell'$	$+\infty$
$+\infty$	$-\infty$	$-\infty$	Forme Ind.	$+\infty$	$+\infty$

Démonstration: Il faut la définition d'une limite.

Théorème 16.

Soit I un intervalle de \mathbb{R} . Soient $f,g:I\to\mathbb{R}$. Soit $a\in\overline{I}$.

Ce tableau donne la valeur de $\lim_{x\to a} \frac{f(x)}{g(x)}$

$\lim_{x \to a} f(x)$ $\lim_{x \to a} g(x)$	$-\infty$	$\ell' < 0$	0-	0+	$\ell' > 0$	$+\infty$
$-\infty$	F.I.	$+\infty$	$+\infty$	$-\infty$	$-\infty$	F.I.
$\ell < 0$	0+	$\frac{\ell}{\ell'}$	$+\infty$	$-\infty$	$\frac{\ell}{\ell'}$	0-
0-	0+	0+	F.I.	F.I.	0-	0-
0+	0+	0-	F.I.	F.I.	0+	0+
$\ell > 0$	0-	$\frac{\ell}{\ell'}$	$-\infty$	$+\infty$	$\frac{\ell}{\ell'}$	0+
$+\infty$	F.I.	$-\infty$	$-\infty$	$+\infty$	$+\infty$	F.I.

 $\bf D\acute{e}monstration:$ Il faut la définition d'une limite.

Théorème 17.

Soit I un intervalle de \mathbb{R} . Soit $a \in \overline{I}$. Soient $f, g : I \to \mathbb{R}$ telles que , au voisinage de $a, f(x) \leq g(x)$.

- 1. Si $\lim_{x\to a} f(x) = +\infty$ alors g admet une limite en a et $\lim_{x\to a} g(x) = +\infty$.
- 2. Si $\lim_{x\to a} g(x) = -\infty$ alors f admet une limite en a et $\lim_{x\to a} f(x) = -\infty$.

Théorème 18.

Soit I un intervalle de \mathbb{R} . Soient $f,g:I\to\mathbb{R}$. Soit $a\in\overline{I}$. On suppose que

- 1. Au voisinage de $a, f(x) \le h(x) \le g(x)$.
- 2. Les fonctions f et g admettent des limites **finies** en a et $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = \ell \in \mathbb{R}$.

Alors, la fonction h admet une limite en a et $\lim_{x\to a} h(x) = \ell$.

2.2 Asymptote à la courbe C_f

Définition 19.

Soit $f: D_f \to \mathbb{R}$. Soit $a \notin D_f$.

On dit que la droite d'équation x = a est une asymptote verticale pour la fonction f lorsque

$$\lim_{\substack{x \to a \\ x < a}} f(x) = \pm \infty \text{ ou } \lim_{\substack{x \to a \\ x > a}} f(x) = \pm \infty$$

On dit que la droite d'équation y = b est une asymptote horizontale pour la fonction f lorsque

$$\lim_{x \to +\infty} f(x) = b$$
 ou $\lim_{x \to -\infty} f(x) = b$

Exemple 20. Etudier les différentes asymptotes de la fonction $f: x \mapsto \frac{x+3}{2x+4}$. On commence par l'ensemble de définition : $D_f = \mathbb{R} \setminus \{-2\}$.

• $\underline{\operatorname{En} - \infty \text{ et en } + \infty}$.

$$\overline{\forall x \in \mathbb{R}, \ x \neq -2, \ f(x) = \frac{x(1+\frac{3}{x})}{2x(1+\frac{2}{x})}} = \frac{1}{2} \cdot \frac{1+\frac{3}{x}}{1+\frac{2}{x}}. \text{ Donc, } \lim_{x \to \pm \infty} f(x) = \frac{1}{2}.$$

La droite d'équation $y = \frac{1}{2}$ est une tangente horizontale.

 \bullet En -2^- .

$$\lim_{x \to -2^{-}} (2x+4) = 0 - \text{ et } -2 + 3 > 0 \text{ donc } \lim_{x \to -2^{-}} f(x) = -\infty.$$

• En -2^+ .

$$\overline{\lim_{x \to -2^+} (2x+4)} = 0^+ \text{ et } -2 + 3 > 0 \text{ donc } \lim_{x \to -2^+} f(x) = +\infty.$$

La droite d'équation x = -2 est une tangente verticale.

3 Dérivée et variations d'une fonction

3.1 Justifier la dérivabilité

Théorème 21.

- 1. Les fonction usuelles sont dérivables sur leur ensemble de définition : polynômes, fractions rationnelles, sinus, cosinus, tangente, exponentielle et logarithme.
- 2. Les fonctions valeur absolue, partie entière ou racine carrée ne sont pas dérivables sur tout leur ensemble de définition.

 ${\bf D\acute{e}monstration}$: On a besoin de la définition de la dérivabilité.

On le démontrera plus tard.

3.2 Fonctions dérivées usuelles

2.

Fonction f	Dérivable sur	Fonction f'	Fonction f	Dérivable sur	Fonction f'
$x \mapsto \lambda$	\mathbb{R}	0	$x \mapsto \sqrt{x}$	ℝ*	$\frac{1}{2\sqrt{x}}$
$x \mapsto \lambda x$	\mathbb{R}	λ	$x \mapsto \mathbf{e}^x$	\mathbb{R}	\mathbf{e}^x
$x \mapsto x^2$	\mathbb{R}	2x	$x \mapsto \cos(x)$	\mathbb{R}	$-\sin(x)$
$x\mapsto x^n, n\in\mathbb{N}^*$	\mathbb{R}	nx^{n-1}	$x \mapsto \sin(x)$	\mathbb{R}	$\cos(x)$
$x\mapsto \frac{1}{x}$	\mathbb{R}^*	$\frac{-1}{x^2}$	$x \mapsto \ln(x)$	ℝ*,	$\frac{1}{x}$

Démonstration : On a besoin de la définition de la dérivabilité et de la dérivée. On le démontrera plus tard.

3.3 Dérivée et sens de variation d'une fonction

Théorème 23.

Soit $f:D_f\to\mathbb{R}$. Soit $I\subset D_f$ tel que f soit dérivable sur I.

- 1. f est constante sur I si, et seulement si, $\forall x \in I$, f'(x) = 0.
- 2. f est croissante sur I si, et seulement si, $\forall x \in I, f'(x) \geq 0$.
- 3. f est décroissante sur I si, et seulement si, $\forall x \in I, f'(x) \leq 0$.

Démonstration : On a besoin de la définition de la dérivée comme limite de taux d'accroissement et du théorème des accroissements finis.

On le démontrera plus tard.

Exemple 24. Montrer que $\forall x \in \mathbb{R}_+$, $\ln(1+x) \leq x$.

On va étudier la fonction $f: x \mapsto \ln(1+x) - x$ et dresser son tableau de variation pour obtenir son signe. La fonction f est dérivable sur \mathbb{R}_+ comme somme de fonctions dérivables sur \mathbb{R}_+ et

$$\forall x \in \mathbb{R}_+, \ f'(x) = \frac{1}{x+1} - 1 = \frac{-x}{x+1} \le 0$$

La fonction est donc décroissante sur \mathbb{R}_+ . De plus, f(0) = 0 donc

$$\forall x \in \mathbb{R}_+, f(x) \le f(0) \Rightarrow \ln(1+x) - x \le 0 \Rightarrow \ln(1+x) \le x$$

Opérations sur les fonctions dérivables 3.4

Théorème 25.

Soient f et g deux fonctions dérivables sur un même intervalle I.

- 1. La fonction f + g est dérivable sur I et (f + g)' = f' + g'.
- 2. La fonction fg est dérivable sur I et (fg)' = f'g + fg'.
- 3. Si g ne s'annule pas, la fonction $\frac{1}{a}$ est dérivable sur I et $\left(\frac{1}{a}\right)' = \frac{-g'}{a^2}$.
- 4. Si g ne s'annule pas, la fonction $\frac{f}{g}$ est dérivable sur I et $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2}$.

Démonstration: On a besoin de la définition de la dérivabilité. On le démontrera plus tard.

Exemple 26. Justifier que la fonction tangente est dérivable sur $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$ et déterminer sa dérivée. La fonction tangente est le quotient de deux fonctions dérivables sur $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$ avec un dénominateur qui ne s'annule pas donc la fonction tangente est dérivable sur $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ et

$$\forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \tan'(x) = \frac{\sin'(x)\cos(x) - \sin(x)\cos'(x)}{\cos^2(x)} = \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)} = \frac{1}{\cos^2(x)}$$

3.5 Dérivation d'une composé de fonctions

Définition 27.

Soient I un intervalle de \mathbb{R} . Soit f définie sur I à valeurs dans J. Soit $q: J \to \mathbb{R}$. On appelle composé de f par g la fonction notée $g \circ f$ et définie par

$$g \circ f : \left\{ \begin{array}{l} I \to \mathbb{R} \\ x \mapsto g(f(x)) \end{array} \right.$$

Exemple 28. Soient f et g les fonctions définies par $\forall x \in \mathbb{R}, \ f(x) = x^2 - 1$ et $\forall x \in \mathbb{R} \setminus \{-1\}, \ g(x) = \frac{x}{x+1}$. Déterminer $f \circ g$ et $g \circ f$.

• Pour $f \circ q$.

La fonction g est définie sur $\mathbb{R}\setminus\{-1\}$ à valeurs dans \mathbb{R} .

La fonction f est à définie sur \mathbb{R} .

Donc la fonction
$$f \circ g$$
 est définie sur $\mathbb{R} \setminus \{-1\}$ et $\forall x \in \mathbb{R} \setminus \{-1\}$, $(f \circ g)(x) = \left(\frac{x}{x+1}\right)^2 - 1 = \frac{x^2 - (x+1)^2}{(x+1)^2} = \frac{-(2x+1)}{(x+1)^2}$.

• Pour $g \circ f$.

La fonction f est définie sur \mathbb{R} à valeurs dans $[-1, +\infty[$ et la fonction g est définie sur $\mathbb{R}\setminus\{-1\}$. Pour ne pas atteindre la valeur -1 avec f, on doit retirer 0 de l'ensemble de définition.

Donc, $g\circ f$ est défini sur \mathbb{R}^* et

$$\forall x \in \mathbb{R}^*, \ (g \circ f)(x) = \frac{x^2 - 1}{x^2}.$$

Théorème 29.

Soient $f: I \to J$ dérivable sur I et $g: J \to \mathbb{R}$ dérivable sur J. La fonction $g \circ f$ est dérivable sur I et $(g \circ f)' = f' \times g' \circ f$.

Démonstration : On a besoin de la définition de la dérivabilité.

On le démontrera plus tard.

Exemple 30. Calculer la dérivée de la fonction $x \mapsto \cos\left(\frac{1}{x}\right)$ définie sur \mathbb{R}^* .

On reconnait une composée avec la fonction f définie par $\forall x \in \mathbb{R}^*, \ f(x) = \frac{1}{x}$ et la fonction g définie par $\forall x \in \mathbb{R}, \ g(x) = \cos(x)$.

Puisque la fonction g est définie sur \mathbb{R} , il n'y a aucune restriction et $g \circ f$ est définie sur \mathbb{R}^* .

Par le théorème précédent, elle est dérivable sur \mathbb{R}^* et $\forall x \in \mathbb{R}^*$, $(g \circ f)'(x) = \frac{-1}{x^2} \times -\sin\left(\frac{1}{x}\right) = \frac{1}{x^2}\sin\left(\frac{1}{x}\right)$.

Exemple 31. Déterminer la dérivée de $x \mapsto \ln(2x)$.

On reconnait une composée avec la fonction f définie par $\forall x \in \mathbb{R}, f(x) = 2x$ et la fonction g définie par $\forall x \in \mathbb{R}_+^*, g(x) = \ln(x)$.

La fonction f doit être à valeurs strictement positives donc on la restreint à \mathbb{R}_+^* .

Finalement, $g \circ f$ est définie sur \mathbb{R}_+^* .

Par le théorème précédent, elle est dérivable sur \mathbb{R}_+^* et $\forall x \in \mathbb{R}_+^*$, $(g \circ f)'(x) = 2 \times \frac{1}{2x} = \frac{1}{x}$.

Théorème 32.

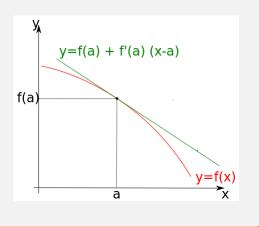
Soit u une fonction dérivable sur I.

Fonction	Fonction dérivée
$x \mapsto (u(x))^2, n \in \mathbb{N}^*$	$x \mapsto 2u'(x).u(x)$
$x \mapsto (u(x))^n, n \in \mathbb{N}^*$	$x \mapsto nu'(x).(u(x))^{n-1}$
$x \mapsto \frac{1}{u(x)}$	$x \mapsto \frac{-u'(x)}{(u(x))^2}$
$x \mapsto \sqrt{u(x)}$	$x \mapsto \frac{u'(x)}{2\sqrt{u(x)}}$
$x \mapsto \mathbf{e}^{u(x)}$	$x \mapsto u'(x).\mathbf{e}^{u(x)}$
$x \mapsto \ln(u(x))$	$x \mapsto \frac{u'(x)}{u(x)}$
$\sin(u)$	$x \mapsto u'(x).\cos(u(x)).$

3.6 Equation de la tangente

Théorème 33.

Soit $f: D_f \to \mathbb{R}$. Soit $a \in D_f$. Si f est dérivable en a alors la droite d'équation y = f(a) + f'(a)(x - a) est tangente à la courbe C_f au point (a, f(a)).



Remarque 34. L'étude du signe de la fonction $x \to f(x) - (f(a) + f'(a)(x - a))$ permet ensuite de déterminer la position de la courbe par rapport à sa tangente.