Corrigé du devoir maison n° 2

Ensembles, Étude de fonctions et trigonométrie.

Exercice 1 - Calculs.

1. Cette inéquation est définie sur $D = \mathbb{R} \setminus \{\frac{3}{2}\}$. On la résout sur D:

$$\frac{x+1}{2x-3} \geqslant 1 \iff \frac{x+1}{2x-3} - 1 \geqslant 0$$

$$\iff \frac{x+1 - (2x-3)}{2x-3} \geqslant 0$$

$$\iff \frac{-x+4}{2x-3} \geqslant 0$$

On fait un tableau de signe :

x	$-\infty$		$\frac{3}{2}$		4		$+\infty$
-x+4		+		+	0	_	
2x-3		_	0	+		+	
$\frac{-x+4}{2x-3}$		_		+	0	_	

On en déduit que l'ensemble des solutions est $]\frac{3}{2},4]$

2. (a) Soit $x \in \mathbb{R}_+^*$. $-1 \le \sin(x) \le 1$. Donc, $\frac{-1}{x} \le \frac{\sin(x)}{x} \le \frac{1}{x}$.

Or, $\lim_{x \to +\infty} \frac{-1}{x} = \lim_{x \to +\infty} \frac{1}{x} = 0$. Par le théorème d'encadrement,

(b) Soit $x \in \mathbb{R}_{+}^{*}$. $x\mathbf{e}^{x} - x^{2} + 3 = x\mathbf{e}^{x} \left(1 - \frac{x}{\mathbf{e}^{x}} + \frac{3}{x\mathbf{e}^{x}}\right)$.

Or, par croissance comparée, $\lim_{x \to +\infty} \frac{x}{\mathbf{e}^x} = 0$ et $\lim_{x \to +\infty} x \mathbf{e}^x = +\infty$.

Donc, par quotient, somme puis produit, $\lim_{x \to +\infty} (x \mathbf{e}^x - x^2 + 3) = +\infty$.

(c) $\lim_{x \to +\infty} \ln(1+x) - \sqrt{x}$.

Au voisinage de $+\infty$, $\ln(1+x) - \sqrt{x} = \ln(x(1+1/x)) - \sqrt{x} = -\sqrt{x}(1 - \frac{\ln x}{\sqrt{x}} - \frac{\ln(1+1/x)}{\sqrt{x}})$.

Or $\lim_{x\to +\infty} \frac{\ln x}{\sqrt{x}} = 0$ par croissance comparée, et $\lim_{x\to +\infty} \frac{\ln(1+1/x)}{\sqrt{x}} = 0$ par quotient des limites.

Donc $\lim_{x \to +\infty} 1 - \frac{\ln x}{\sqrt{x}} - \frac{\ln(1+1/x)}{\sqrt{x}} = 1.$

Puisque $\lim_{x \to +\infty} -\sqrt{x} = -\infty$, on en déduit par produit des limites : $\lim_{x \to +\infty} \ln(1+x) - \sqrt{x} = -\infty$

$$\lim_{x \to +\infty} \ln(1+x) - \sqrt{x} = -\infty$$

(d) Au voisinage de $+\infty$, $\frac{x+1}{\mathbf{e}^x+1} = \frac{x(1+1/x)}{e^x(1+e^{-x})}$ Or $\lim_{x\to +\infty} 1+1/x=1$, $\lim_{x\to +\infty} 1+e^{-x}=1$, et $\lim_{x\to +\infty} \frac{x}{e^x}=0$ par croissances comparées. Donc par produit et quotient des limites, $\lim_{x\to +\infty} \frac{x+1}{\mathbf{e}^x+1}=0$.

3. Posons, pour tout $x \in \mathbb{R}$, $f(x) = e^x - (1+x)$. La fonction f est définie et dérivable sur \mathbb{R} (somme de fonctions dérivables sur \mathbb{R}) et

 $\forall x \in \mathbb{R}, \ f'(x) = e^x - 1.$

Donc $\forall x \in \mathbb{R}, \ f'(x) = 0 \Longleftrightarrow e^x = 1 \Longleftrightarrow x = 0$

Et $\forall x \in \mathbb{R}, \ f'(x) > 0 \Longleftrightarrow e^x > 1 \Longleftrightarrow x > 0.$

Avec de plus, $f(0) = e^0 - 1 = 0$. On peut donc dresser le tableau de variation de f:

x	$-\infty$		0		$+\infty$
f'(x)		_	0	+	
f		¥	0	7	

On déduit de ce tableau de variations que $\forall x \in \mathbb{R}, f(x) \ge 0$, c'est-à-dire : $\forall x \in \mathbb{R}, x+1 \le e^x$

4. Ensemble de définition

Soit $x \in \mathbb{R}$.

$$x \in \mathcal{D} \iff 2 - x^2 > 0$$
$$\iff -\sqrt{2} < x < \sqrt{2}$$

Donc $\mathcal{D} =]-\sqrt{2},\sqrt{2}[.$

Dérivabilité:

f est la composée de $x\mapsto 2-x^2$, dérivable sur \mathcal{D} , à valeurs dans \mathbb{R}_+^* , par ln, dérivable sur \mathbb{R}_+^* . Donc f est dérivable sur \mathcal{D} .

$$\forall x \in \mathcal{D}, \ f'(x) = \frac{-2x}{2 - x^2}.$$

Signe de f':

Puisque $2-x^2>0$ sur \mathcal{D} , $2-x^2$ est du signe de -2x. On en déduit le tableau de variation de f:

x	$-\sqrt{2}$		0		$\sqrt{2}$
f'(x)		+	0	_	
			ln(2)		
f		7		V	
	$ -\infty $				$-\infty$

(On calcule les limites en $\sqrt{2}$ et en $-\sqrt{2}$ par composition des limites).

Exercice 2. Ensembles

On raisonne par double implication.

 \Leftarrow On suppose que A = B.

Donc, $A \cup B = A$ et $A \cap B = A$. D'où $A \cup B = A \cap B$.

 \Rightarrow On suppose que $A \cup B = A \cap B$.

On raisonne par double inclusion pour montrer que A = B.

- \subset Soit $x \in A$.
 - $\Rightarrow x \in A \cup B \text{ car } A \subset A \cup B.$
 - $\Rightarrow x \in A \cap B \text{ car } A \cap B = A \cup B.$
 - $\Rightarrow x \in B$.

Donc, $A \subset B$.

 \supset Par symétrie de l'hypothèse, on obtient la symétrie du résultat, $B \subset A$.

Finalement, A = B

Donc, on a bien montré que $A \cup B = A \cap B \Leftrightarrow A = B$

Exercice 3 - Fonction tangente hyperbolique.

- 1. $\forall x \in \mathbb{R}, e^x > 0$ et $e^{-x} > 0$ donc $e^x + e^{-x} > 0$. Donc the st définie sur \mathbb{R}
- 2. th est définie sur \mathbb{R} .

th est define sur
$$\mathbb{R}$$
.
 $\forall x \in \mathbb{R}, \ (-x) = \frac{\mathbf{e}^{-x} - \mathbf{e}^{-(-x)}}{\mathbf{e}^{-x} + \mathbf{e}^{-(-x)}} = \frac{\mathbf{e}^{-x} - \mathbf{e}^{x}}{\mathbf{e}^{-x} + \mathbf{e}^{x}} = \frac{-(\mathbf{e}^{x} - \mathbf{e}^{-x})}{\mathbf{e}^{x} + \mathbf{e}^{-x}} = -(x).$

Donc est impaire . On en déduit que sa courbe représentative admet le point O (origine du repère) pour centre de symétrie.

3. est le quotient de deux fonctions dérivables sur \mathbb{R} , le dénominateur ne s'annulant pas, donc est dérivable

sur
$$\mathbb{R}$$
.

$$\forall x \in \mathbb{R}, \quad '(x) = \frac{(e^x + e^{-x})(e^x + e^{-x}) - (e^x - e^{-x})(e^x - e^{-x})}{(e^x + e^{-x})^2}$$

$$= \frac{(e^x + e^{-x})^2 - (e^x - e^{-x})^2}{(e^x + e^{-x})^2}$$

$$= \frac{e^{2x} + 2 + e^{-2x} - (e^{2x} - 2 + e^{-2x})}{(e^x + e^{-x})^2}$$

Donc
$$\forall x \in \mathbb{R}, \text{ th}'(x) = \frac{4}{(\mathbf{e}^x + \mathbf{e}^{-x})^2}$$

4. Limite en
$$+\infty$$
:
$$\forall x \in \mathbb{R}, \ (x) = \frac{e^x(1 - e^{-2x})}{e^x(1 + e^{-2x})} = \frac{1 - e^{-2x}}{1 + e^{-2x}}.$$

Or
$$\lim_{x \to +\infty} e^{-2x} = 0$$
 donc par somme et quotient des limites, $\lim_{x \to +\infty} (x) = 1$

On en déduit que la droite d'équation y=1 est asymptote horizontale à la courbe en $+\infty$

Limite en $-\infty$:

Puisque la fonction est impaire, on déduit de la limite précédente que

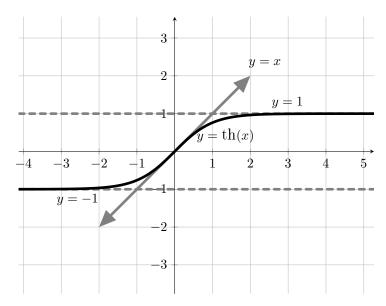
la droite d'équation y=-1 est asymptote horizontale à la courbe en $-\infty$

5. Nous avons calculé la dérivée de th à la question 3. D'après l'expression obtenue, $\forall x \in \mathbb{R}, '(x) > 0$ donc la fonction the est strictement croissante sur R. On résume les résultats obtenus dans le tableau de variations suivant:

x	$-\infty$		$+\infty$
'(x)		+	
			1
		7	
	-1		

On constate d'après ce tableau de variations que $\forall x \in \mathbb{R}, -1 < (x) < 1, donc$ est bornée

- 6. Puisque est dérivable sur R, sa courbe représentative admet une tangente en tout point. En particulier, la tangente au point d'abscisse x = 0 a pour équation y = (0) + th'(0)x. Puisque (0) = 0 et (0) = 0 $\frac{4}{(e^0+e^0)^2}=1$, on en déduit l'équation de la tangente au point d'abscisse x=0 : y=x
- 7. On déduit de notre étude l'allure de la courbe représentative de th :



Exercice 4 - Trigonométrie.

1. (a) On suppose que $(\sqrt{6}+\sqrt{2})^2\leqslant 4^2$. On applique la fonction racine carrée, croissante sur \mathbb{R}_+ , d'où : $\sqrt{(\sqrt{6} + \sqrt{2})^2} \leqslant \sqrt{4^2}.$

Or les nombres $\sqrt{6} + \sqrt{2}$ et 4 sont positifs, donc $\sqrt{(\sqrt{6} + \sqrt{2})^2} = \sqrt{6} + \sqrt{2}$ et $\sqrt{4^2} = 4$. Donc $\sqrt{6} + \sqrt{2} \leqslant 4$.

Réciproquement, on suppose que $\sqrt{6} + \sqrt{2} \leqslant 4$. Ces nombres étant positifs, on peut appliquer la fonction carré, croissante sur \mathbb{R}_+ . D'où $(\sqrt{6} + \sqrt{2})^2 \leqslant 4^2$.

Ainsi, on a prouvé que :

$$(\sqrt{6} + \sqrt{2})^2 \leqslant 4^2 \Longleftrightarrow \sqrt{6} + \sqrt{2} \leqslant 4$$

(b) D'après la question précédente, il suffit de montrer que $(\sqrt{6}+\sqrt{2})^2\leqslant 4^2$. Or $(\sqrt{6} + \sqrt{2})^2 = 6 + 2 + 2\sqrt{6}\sqrt{2} = 8 + 2\sqrt{12} = 8 + 4\sqrt{3}$.

Puisque $3 \le 4$, en appliquant la fonction racine carrée, croissante sur \mathbb{R}_+ , on obtient $\sqrt{3} \le 2$. Donc $8+4\sqrt{3} \le 8+4\times 2$.

Ainsi, $(\sqrt{6} + \sqrt{2})^2 \le 16$.

Puisque $(\sqrt{6}+\sqrt{2})^2\leqslant 4^2$, on en déduit, d'après la question précédente, que $\sqrt{6}+\sqrt{2}\leqslant 4$

(c) Nous avons montré que $\sqrt{6} + \sqrt{2} \leqslant 4$. De plus ces nombres sont positifs. Donc, en divisant par 4 > 0 on obtient : $0 \leqslant \frac{\sqrt{6} + \sqrt{2}}{4} \leqslant 1$.

Puisque $\frac{\sqrt{6}+\sqrt{2}}{4} \in [-1,1]$, on en déduit qu'il existe un réel α tel que $\cos(\alpha) = \frac{\sqrt{6}+\sqrt{2}}{4}$.

De plus, puisque ce nombre est positif, on peut choisir α dans $\left[0, \frac{\pi}{2}\right]$.

Plus précisément, $\alpha = \operatorname{Arccos}\left(\frac{\sqrt{6} + \sqrt{2}}{4}\right)$.

2. Nous savons que $\cos(2\alpha) = 2\cos^2(\alpha) - 1$

Donc, d'après la question précédente, $\cos(2\alpha) = 2\left(\frac{\sqrt{6}+\sqrt{2}}{4}\right)^2 - 1 = 2 \cdot \frac{2+\sqrt{3}}{4} - 1 = \frac{\sqrt{3}}{2}$.

Ainsi, $\cos(2\alpha) = \frac{\sqrt{3}}{2} = \cos\left(\frac{\pi}{6}\right)$

On en déduit qu'il existe $k \in \mathbb{Z}$ tel que $2\alpha = \frac{\pi}{6} + 2k\pi$ ou $2\alpha = -\frac{\pi}{6} + 2k\pi$. Donc $\alpha = \frac{\pi}{12} + k\pi$ ou $\alpha = -\frac{\pi}{12} + k\pi$.

Puisque $\alpha \in \left[0, \frac{\pi}{2}\right]$, la seule valeur possible de α est $\alpha = \frac{\pi}{12}$

3. Nous savons que $\cos^2(\alpha) + \sin^2(\alpha) = 1$.

Donc $\sin^2(\alpha) = 1 - \cos^2(\alpha) = \frac{2 - \sqrt{3}}{4}$.

Donc $\sin(\alpha) = \sqrt{\frac{2 - \sqrt{3}}{4}}$ ou $\sin \alpha = -\sqrt{\frac{2 - \sqrt{3}}{4}}$.

Or $\alpha \in \left[0, \frac{\pi}{2}\right]$ donc $\sin(\alpha) \ge 0$. Donc $\sin(\alpha) = \sqrt{\frac{2 - \sqrt{3}}{4}}$.

Or $\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)^2 = \frac{6+2-2\sqrt{12}}{16} = \frac{8-4\sqrt{3}}{16} = \frac{2-\sqrt{3}}{4}$.

Puisque $\frac{\sqrt{6}-\sqrt{2}}{4}>0$, on en déduit que $\sqrt{\frac{2-\sqrt{3}}{4}}=\frac{\sqrt{6}-\sqrt{2}}{4}$. Donc $\sin(\alpha)=\frac{\sqrt{6}-\sqrt{2}}{4}$

4. On reconnaît dans cette équation une expression du type $a\cos(x) + b\sin(x)$, avec $(a,b) \in \mathbb{R}^2 \setminus \{(0,0)\}$. On va factoriser par $\sqrt{a^2 + b^2}$, ici $\sqrt{(\sqrt{6} + \sqrt{2})^2 + (\sqrt{6} - \sqrt{2})^2} = \sqrt{8 + 8} = 4$.

$$(\sqrt{6} + \sqrt{2})\cos x + (\sqrt{6} - \sqrt{2})\sin x = 2 \iff \frac{(\sqrt{6} + \sqrt{2})}{4}\cos x + \frac{(\sqrt{6} - \sqrt{2})}{4}\sin x = \frac{2}{4}$$

$$\iff \cos(\alpha)\cos(x) + \sin(\alpha)\sin(x) = \frac{1}{2}$$

$$\iff \cos(x - \alpha) = \cos\left(\frac{\pi}{3}\right)$$

$$\iff \exists k \in \mathbb{K} : x - \frac{\pi}{12} = \frac{\pi}{3} + 2k\pi \text{ ou } x - \frac{\pi}{12} = -\frac{\pi}{3} + 2k\pi$$

$$\iff \exists k \in \mathbb{K} : x - \frac{\pi}{12} = \frac{\pi}{3} + 2k\pi \text{ ou } x - \frac{\pi}{12} = -\frac{\pi}{3} + 2k\pi$$

$$\iff \exists k \in \mathbb{K} : x = \frac{5\pi}{12} + 2k\pi \text{ ou } x = -\frac{3\pi}{12} + 2k\pi$$

L'ensemble des solutions est donc

$$S = \left\{ \frac{5\pi}{12} + 2k\pi, -\frac{\pi}{4} + 2k\pi, \ k \in \mathbb{Z} \right\}$$

4

Exercice 5 - Trigonométrie bis

1.
$$D_{\tan} = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z} \right\}.$$

2. Soit
$$x \in \left] -\frac{\pi}{4}, \frac{\pi}{4} \right[$$
.

$$\tan(2x) = \frac{\sin(2x)}{\cos(2x)} = \frac{2\sin(x)\cos(x)}{\cos^2(x) - \sin^2(x)} = \frac{2\frac{\sin(x)}{\cos(x)}}{1 - \frac{\sin^2(x)}{\cos^2(x)}}.$$
 (on a factorisé par $\cos^2(x)$.

Donc,
$$\tan(2x) = \frac{2\tan(x)}{1-\tan^2(x)}$$

3. On pose
$$x = \frac{\pi}{8}$$
 dans l'équation précédente.
$$\tan\left(2\frac{\pi}{8}\right) = \frac{2\tan\left(\frac{\pi}{8}\right)}{1-\tan^2\left(\frac{\pi}{8}\right)} \Rightarrow 1-\tan^2\left(\frac{\pi}{8}\right) = 2\tan\left(\frac{\pi}{8}\right).$$

On en déduit que $\tan^2\left(\frac{\pi}{8}\right)$ est solution de l'équation $X^2 + 2X - 1 = 0$

4. Les solutions de cette équation sont
$$X_1 = -1 + \sqrt{2}$$
 et $X_2 = -1 - \sqrt{2}$.

4. Les solutions de cette équation sont
$$X_1 = -1 + \sqrt{2}$$
 et $X_2 = -1 - \sqrt{2}$. Or, $\tan\left(\frac{\pi}{8}\right)$ est positif donc $\tan\left(\frac{\pi}{8}\right) = \sqrt{2} - 1$.