Exercice 1 Soit $\mathcal{D}: x + 3y - 4 = 0$ et $\mathcal{C}: x^2 + y^2 + 4y - 16 = 0$.

- 1. Donner un point et un vecteur directeur de \mathcal{D} . <u>Correction</u> A(4,0) et B(1,1) sont des points de \mathcal{D} . Donc, $\overrightarrow{u} = \overrightarrow{AB} = (-3,1)$ est un vecteur directeur de \mathcal{D} .
- 2. Déterminer le centre et le rayon de C. Correction Soit $(x, y) \in \mathbb{R}^2$.

$$x^{2} + y^{2} + 4y - 16 = 0 \Leftrightarrow x^{2} + (y+2)^{2} - 4 - 16 = 0 \Leftrightarrow x^{2} + (y+2)^{2} = 20$$

Donc, C est le cercle de centre C(0, -2) et de rayon $\sqrt{20} = 2\sqrt{5}$.

3. Etudier $\mathcal{D} \cap \mathcal{C}$.

Correction Soit $M(x,y) \in \mathcal{D}$. Donc, x = 4 - 3y.

$$M \in \mathcal{C} \Leftrightarrow (4-3y)^2 + y^2 + 4y - 16 = 0 \Leftrightarrow -20y + 10y^2 = 0 \Leftrightarrow 10y(y-2) = 0$$

Donc $\mathcal{D} \cap \mathcal{C} = \{(4,0), (-2,2)\}.$

Exercice 2

1. Soit $\mathcal{D}: \left\{ \begin{array}{l} x=2t-1 \\ y=-t+1 \end{array} \right.$, $t\in\mathbb{R}$. Déterminer une équation cartésienne de \mathcal{D} .

Correction \mathcal{D} est la droite passant par A(-1,1) et de vecteur directeur $\overrightarrow{u}=(2,-1)$. Donc,

$$M(x,y) \in \mathcal{D} \Leftrightarrow \overrightarrow{AM} \text{ et } \overrightarrow{u} \text{ sont colinéaires}$$

$$\Leftrightarrow \begin{vmatrix} x+1 & 2 \\ y-1 & -1 \end{vmatrix} = 0$$

$$\Leftrightarrow -x-1-2y+2=0$$

Une équation cartésienne de \mathcal{D} est x + 2y - 1 = 0.

2. Soit $\mathcal{D}': y = 7x - 1$. Déterminer une représentation paramétrique de la droite \mathcal{D}' . Correction A(0, -1) et B(1, 6) sont des points de \mathcal{D}' donc $\overrightarrow{AB} = (1, 7)$ est un vecteur directeur de \mathcal{D}' .

D'où
$$\mathcal{D}'$$
:
$$\begin{cases} x = t \\ y = 7t - 1 \end{cases}, t \in \mathbb{R}.$$

Exercice 3 Soit $a \in \mathbb{R}^*$. On considère les deux points A(a,0) et B(0,1). On considère la droite \mathcal{D} passant par A et B et le cercle \mathcal{C} contenant A, B et O. Les tangentes à \mathcal{C} en A et O se coupent en un point D.

1. Déterminer une équation de la droite (AB).

Correction $\overrightarrow{AB} = (-a, 1)$ est un vecteur directeur de \mathcal{D} .

$$M(x,y) \in \mathcal{D} \Leftrightarrow \begin{vmatrix} x-a & -a \\ y & 1 \end{vmatrix} = 0$$

 $\Leftrightarrow x-a+ay=0$

Donc $\mathcal{D}: x + ay - a = 0$.

2. Donner une équation du cercle \mathcal{C} passant par l'origine, A et B.

<u>Correction</u> On cherche le centre $C(x_C, y_C)$ et le rayon R du cercle \mathcal{C} . Il y a deux méthodes possibles.

• Méthode 1 : C est équidistant de A, B et O.

$$||AC|| = ||BC|| = ||OC|| \Leftrightarrow (x_C - a)^2 + y_C^2 = x_C^2 + (y_C - 1)^2 = x_C^2 + y_C^2$$

$$\Leftrightarrow \begin{cases} -2ax_C + a^2 = 0 \\ -2y_C + 1 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x_C = \frac{a}{2} \\ y_C = \frac{1}{2} \end{cases}$$

Donc,
$$C\left(\frac{a}{2},\frac{1}{2}\right)$$
.
Puis, $R=||OC||=\sqrt{x_C^2+y_C^2}=\frac{\sqrt{a^2+1}}{2}$

• **Méthode 2 :** On remarque que \overrightarrow{OA} et \overrightarrow{OB} sont orthogonaux : $\overrightarrow{OA}.\overrightarrow{OB} = a.0 + 0.1 = 0$. Donc, [AB] est le diamètre du cercle C.

Donc,
$$C$$
 est le centre du segment $[AB]$: $x_C = \frac{a+0}{2} = \frac{a}{2}$ et $y_C = \frac{0+1}{2} = \frac{1}{2}$.
Puis, $R = \frac{||\overrightarrow{AB}||}{2} = \frac{\sqrt{(-a)^2 + 1}}{2} = \frac{\sqrt{a^2 + 1}}{2}$.

3. Déterminer une équation de la tangente à $\mathcal C$ passant par O et de la tangente à $\mathcal C$ passant par A.

Correction $\overrightarrow{OC} = \left(\frac{a}{2}, \frac{1}{2}\right)$ est un vecteur normal à la droite tangente à \mathcal{C} passant par O. On la note \mathcal{D}_O .

$$M(x,y) \in \mathcal{D}_O \Leftrightarrow \overrightarrow{OM}.\overrightarrow{OC} = 0$$

 $\Leftrightarrow x\frac{a}{2} + y\frac{1}{2} = 0$

Donc, $\mathcal{D}_O: ax + y = 0$. $\overrightarrow{AC} = \left(-\frac{a}{2}, \frac{1}{2}\right)$ est un vecteur normal à la droite tangente à \mathcal{C} passant par A. On la note \mathcal{D}_A .

$$M(x,y) \in \mathcal{D}_A \Leftrightarrow \overrightarrow{AM}.\overrightarrow{AC} = 0$$

 $\Leftrightarrow (x-a)\frac{-a}{2} + y\frac{1}{2} = 0$

Donc,
$$\mathcal{D}_A : ax - y - a^2 = 0$$
.

4. Déterminer les coordonnées de D. Quelle courbe décrit D? <u>Correction</u> D est le point d'intersection de \mathcal{D}_O et de \mathcal{D}_A .

$$\begin{cases} ax_D + y_D = 0 \\ ax_D - y_D - a^2 = 0 \end{cases} \Leftrightarrow \begin{cases} x_D = -\frac{y_D}{a} \\ 2y_D + a^2 = 0 \end{cases} \Leftrightarrow \begin{cases} x_D = \frac{a}{2} \\ y_D = -\frac{a^2}{2} \end{cases}$$

On remarque que $y_D = -2x_D^2$ donc D parcourt une parabole.

Exercice 4 Soient A et B deux points du plan.

1. Déterminer l'ensemble des points M tel que $\overrightarrow{AM}.\overrightarrow{BM}=0$.

<u>Correction</u> Notons $A(x_A, y_A)$ et $B(x_B, y_B)$ les points fixés. Soit $M(x, y) \in \mathbb{R}^2$.

$$\overrightarrow{AM}.\overrightarrow{BM} = 0 \Leftrightarrow (x - x_A)(x - x_B) + (y - y_A)(y - y_B) = 0$$

$$\Leftrightarrow x^2 - (x_A + x_B)x + x_A x_B + y^2 - (y_A + y_B)y + y_A y_B = 0$$

$$\Leftrightarrow \left(x - \frac{x_A + x_B}{2}\right)^2 - \frac{(x_A + x_B)^2}{4} + x_A x_B + \left(y - \frac{y_A + y_B}{2}\right)^2 - \frac{(y_A + y_B)^2}{4} + y_A y_B = 0$$

$$\Leftrightarrow \left(x - \frac{x_A + x_B}{2}\right)^2 + \left(y - \frac{y_A + y_B}{2}\right)^2 = \frac{(x_A + x_B)^2}{4} - x_A x_B + \frac{(y_A + y_B)^2}{4} - y_A y_B$$

$$\Leftrightarrow \left(x - \frac{x_A + x_B}{2}\right)^2 + \left(y - \frac{y_A + y_B}{2}\right)^2 = \frac{(x_A - x_B)^2}{4} + \frac{(y_A - y_B)^2}{4}$$

$$\Leftrightarrow \left(x - \frac{x_A + x_B}{2}\right)^2 + \left(y - \frac{y_A + y_B}{2}\right)^2 = \left(\frac{||AB||}{2}\right)^2$$

On reconnait le cercle de centre $C\left(\frac{x_A+x_B}{2},\frac{y_A+y_B}{2}\right)$ et de rayon $R=\frac{||AB||}{2}$.

Le centre est le milieu du segment [AB] et le diamètre est ||AB||.

2. A quel résultat de géométrie cela correspond-il? Correction On retrouve le théorème de Pythagore.

Exercice 5 Soient A(0,3,-1), B(1,1,0) et C(1,-1,2).

1. Justifier que ces trois points permettent de définir un unique plan \mathcal{P} .

<u>Correction</u> On va regarder si ces points permettent de définir des vecteurs non colinéaires.

On a $\overrightarrow{AB} = (1, -2, 1)$ et $\overrightarrow{AC} = (1, -4, 3)$. Soit $(\lambda_1, \lambda_2) \in \mathbb{R}^2$.

$$\lambda_{1}\overrightarrow{AB} + \lambda_{2}\overrightarrow{AC} = \overrightarrow{0} \iff \begin{cases} \lambda_{1} + \lambda_{2} = 0 \\ -2\lambda_{1} - 4\lambda_{2} = 0 \\ \lambda_{1} + 3\lambda_{2} = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_{1} + \lambda_{2} = 0 \\ \lambda_{1} + 3\lambda_{2} = 0 \\ -2\lambda_{2} = 0 \\ 2\lambda_{2} = 0 \end{cases}$$

La seule solution du système est (0,0) donc les deux vecteurs ne sont pas colinéaires. Les points A, B et C définissent bien un unique plan dont \overrightarrow{AB} et \overrightarrow{AC} sont des vecteurs directeurs.

2. Donner une représentation paramétrique de \mathcal{P} .

Correction Le plan passe par A(0,3,-1) et a pour vecteurs directeurs \overrightarrow{AB} et \overrightarrow{AC} donc

$$\mathcal{P}: \left\{ \begin{array}{l} x = t + t' \\ y = -2t - 4t' + 3 , (t, t') \in \mathbb{R}^2. \\ z = t + 3t' - 1 \end{array} \right.$$

3. Donner une équation cartésienne de \mathcal{P} .

<u>Correction</u> On cherche un vecteur normal au plan. Donc, on cherche $\overrightarrow{n} = (a, b, c)$ tel que $\langle \overleftarrow{AB}, \overrightarrow{n} \rangle = \langle \overleftarrow{AC}, \overrightarrow{n} \rangle = 0$.

$$\begin{cases} < \overleftarrow{AB}, \overrightarrow{n} >= 0 \\ < \overleftarrow{AC}, \overrightarrow{n} >= 0 \end{cases} \iff \begin{cases} a - 2b + c = 0 \\ a - 4b + 3c = 0 \end{cases}$$
$$\iff \begin{cases} a - 2b + c = 0 \\ -2b + 2c = 0 \end{cases}$$
$$\iff \begin{cases} a = b \\ b = c \end{cases}$$

On peut prendre $\overrightarrow{n} = (1, 1, 1)$.

La plan \mathcal{P} passe par A(0,3,-1) et a pour vecteur normal \overrightarrow{n} donc

$$M(x, y, z) \in \mathcal{P} \Leftrightarrow \overrightarrow{AM}. \overrightarrow{n} = 0$$

 $\Leftrightarrow x + (y - 3) + (z + 1) = 0$

donc une équation cartésienne de \mathcal{P} est x + y + z - 2 = 0.

Exercice 6 On considère les points A(1,0,0), B(0,1,0) et C(0,0,1).

1. Déterminer une équation cartésienne du plan \mathcal{P} passant par A, B, C. Correction Les vecteurs $\overrightarrow{AB} = (-1, 1, 0)$ et $\overrightarrow{AC} = (-1, 0, 1)$ sont non colinéaires et forment des vecteurs directeurs du plan \mathcal{P} .

Le vecteur $\overrightarrow{n} = \overrightarrow{AB} \wedge \overrightarrow{AC} = (1, 1, 1)$ est un vecteur normal à \mathcal{P} .

$$M(x, y, z) \in \mathcal{P} \Leftrightarrow \overrightarrow{AM}.\overrightarrow{n} = 0$$

 $\Leftrightarrow (x - 1) + y + z = 0$

Donc P: x + y + z - 1 = 0.

2. Déterminer le projeté orthogonal du point O (origine du repère) sur \mathcal{P} . <u>Correction</u> Soit H(x, y, z) le projeté orthogonal de O sur \mathcal{P} . On a donc

- $\overrightarrow{OH}.\overrightarrow{AB} = 0 \Rightarrow \begin{cases} x + y + z = 1 \\ -x + y = 0 \\ -x + z = 0 \end{cases} \Rightarrow x = y = z = \frac{1}{3}.$
- 3. En déduire la distance de 0 à \mathcal{F}

Correction Par définition, $d(O, \mathcal{P}) = ||OH|| = \sqrt{3 \cdot \frac{1}{\alpha}} = \frac{\sqrt{3}}{3}$

Exercice 7 Soit A(1,0,1), B(0,1,2), $\vec{u} = (-1,1,1)$ et $\vec{v} = (1,0,0)$. Soit \mathcal{D} la droite passant par A et de vecteur directeur \overrightarrow{u} . Soit \mathcal{D}' la droite passant par B et de vecteur directeur \overrightarrow{v} .

- 1. Combien y a-t-il de droites orthogonales à \mathcal{D} et à \mathcal{D}' ?
- 2. Déterminer celle qui passe par C(0,2,4). On la notera Δ .

Correction

- 1. Il y en a une infinité.
- 2. On va déterminer un vecteur directeur de Δ . C'est donc un vecteur orthogonal à \mathcal{D} et à \mathcal{D}' . On cherche $\overrightarrow{n} = (a, b, c)$ tel que $<\overleftarrow{u},\overrightarrow{n}>=<\overleftarrow{v},\overrightarrow{n}>=0.$

$$\begin{cases} < \overleftarrow{u}, \overrightarrow{n} >= 0 \\ < \overleftarrow{v}, \overrightarrow{n} >= 0 \end{cases} \iff \begin{cases} -a+b+c=0 \\ a=0 \end{cases}$$

$$\iff \begin{cases} a=0 \\ -a+b+c=0 \end{cases}$$

$$\iff \begin{cases} a=0 \\ b+c=0 \end{cases}$$

On peut prendre $\overrightarrow{n} = (0, 1, -1)$.

Une représentation paramétrique de Δ est donc $\begin{cases} x = 0 \\ t = 2 + t \\ z - 4 - t \end{cases}$, $t \in \mathbb{R}$.