Exercice 1 Pour $n \in \mathbb{N}^*$, on pose $H_n = \sum_{k=1}^n \frac{1}{k}$. C'est la suite harmonique.

- 1. Montrer que la suite H est croissante.
- 2. Montrer que $\forall n \in \mathbb{N}^*, \ H_{2n} H_n \ge \frac{1}{2}$.
- 3. En déduire que la suite n'est pas convergente et que $\lim_{n\to+\infty} H_n = +\infty$.

Exercice 2 [*] Pour tout $n \in \mathbb{N}^*$, on pose $S_n = \sum_{k=1}^n \frac{(-1)^k}{k}$.

- 1. Montrer que les suites $(S_{2n})_{n\in\mathbb{N}^*}$ et $(S_{2n+1})_{n\in\mathbb{N}}$ sont adjacentes.
- 2. Que peut-on en conclure?

Exercice 3 Déterminer des équivalents pour les suites proposées.

- 1. $\forall n \in \mathbb{N}, \ u_n = 2n^2 + 3n 6.$
- 2. $\forall n \in \mathbb{N}, \ u_n = 4n^3 + 2n + \cos(n)$
- 3. $\forall n \in \mathbb{N}^*, \ u_n = 3 + \frac{1}{n}$
- 4. $\forall n \in \mathbb{N}^*, \ u_n = \frac{3}{n^2} + \frac{5}{n^3}.$
- 5. $\forall n \in \mathbb{N}, \ u_n = \sqrt{n^2 + 2n + 10}$
- 6. $\forall n \in \mathbb{N}, \ u_n = (n^2 + n + 1)^3$
- 7. $\forall n \in \mathbb{N}^*, \ u_n = \left(1 + \frac{1}{n}\right)^{202}$
- 8. $\forall n \in \mathbb{N}^*, \ u_n = \left(1 + \frac{1}{n}\right)^n$
- 9. $\forall n \in \mathbb{N}^*, \ u_n = n \sin\left(\frac{2}{n^2}\right)$
- 10. $\forall n \in \mathbb{N}, \ u_n = \ln\left(\frac{n^2 + 1}{n^2 + 2}\right)$
- 11. $\forall n \in \mathbb{N}^*, \ u_n = \frac{\sin\left(\frac{1}{n}\right)}{e^{\frac{3}{n^2}-1}}$

12.
$$\forall n \in \mathbb{N}^*, \ u_n = \left(1 + \frac{2}{n}\right)^n$$

 $\underline{\textbf{Exercice}}~\underline{4}$ Déterminer des équivalents pour les suites proposées et en déduire leur limite .

- 1. $\forall n \in \mathbb{N}^*, \ u_n = \frac{n^3 + n\sin(n^{10} + n^7)}{n + \ln n}$
- 2. $\forall n \in \mathbb{N}, \ u_n = n^2(\ln n)^4 n^3(\ln n)^2 + (-1)^n n^2 e^{-n}$
- 3. $\forall n \in \mathbb{N}^*, \ u_n = \frac{n + \sqrt{n \ln n}}{\sqrt{n+2}}$
- 4. $\forall n \in \mathbb{N}, \ u_n = \ln(2n^{15}) + 15n^2$
- 5. $\forall n \in \mathbb{N}, \ u_n = \ln\left(\frac{n^2 + 3n + 6}{n^2 + 1}\right)$
- 6. $\forall n \in \mathbb{N}, \ u_n = \ln(3n^{10} + 1)$
- 7. $\forall n \in \mathbb{N}, \ n \ge 2, \ u_n = \ln\left(\sqrt{\frac{n+1}{n-1}}\right)$
- 8. $\forall n \in \mathbb{N}^*, \ u_n = n^2 \ln \left(1 + \sin \left(\frac{1}{n} \right) \right)$
- 9. $\forall n \in \mathbb{N}^*, \ u_n = \exp(\sqrt{n+1} \sqrt{n-1}) 1$
- 10. $\forall n \in \mathbb{N}, \ u_n = \frac{\ln(n^3 + 1)}{n^2 n + 2}$
- 11. $\forall n \in \mathbb{N}^*, \ u_n = \frac{n^3 + n + 1}{n + \sqrt{n}}e^{-n}$
- 12. $\forall n \in \mathbb{N}, \ u_n = \frac{n^3 + 5n + 2}{3^n + 3(-1)^n}$
- 13. $\forall n \in \mathbb{N}, \ u_n = 3^{2n} + 2^{3n}$
- 14. $\forall n \in \mathbb{N}, \ u_n = \mathbf{e}^n + \mathbf{e}^{2n} \sqrt{\mathbf{e}^n}$
- 15. $\forall n \in \mathbb{N}, \ u_n = \frac{\mathbf{e}^n \mathbf{e}^{-n}}{\mathbf{e}^n + \mathbf{e}^{-n}}$
- 16. $\forall n \in \mathbb{N}^*, \ u_n = \ln(2 \mathbf{e}^{\frac{1}{n}})$
- 17. $\forall n \in \mathbb{N}^*, \ u_n = \ln\left(\frac{2n^2 + 1}{n^2 + n + 1}\right)$

18.
$$\forall n \in \mathbb{N}, \ u_n = \frac{\sqrt{1 + \mathbf{e}^{-n}} - 1}{\mathbf{e}^{-2n}}$$

19.
$$\forall n \in \mathbb{N}^*, \ u_n = (2n)^{\frac{1}{n}} - 1$$

$$20. \ \forall n \in \mathbb{N}^*, \ u_n = \sqrt{\mathbf{e}^{\frac{1}{n}}} - 1$$

Exercice 5 Soit u la suite définie par $u_0 = 0$ et $\forall n \mathbb{N}$, $u_{n+1} = \frac{1 + u_n}{2 + u_n}$.

- 1. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie et que $\forall n\in\mathbb{N},\ 0\leq u_n\leq \frac{-1+\sqrt{5}}{2}.$
- 2. Etudier la monotonie de la suite u.
- 3. En déduire que la suite converge et déterminer sa limite.
- 4. Que se passe-t-il si $u_0 = 1$?

Exercice 6 Pour $n \in \mathbb{N}^*$, on note $f_n : x \in \mathbb{R}_+ \mapsto x^n + x^{n-1} + \dots + x - 1$.

- 1. Soit $n \in \mathbb{N}^*$.
 - (a) Montrer que f_n est une bijection de \mathbb{R}_+ dans un intervalle à préciser.
 - (b) En déduire que l'équation $f_n(x) = 0$ admet une unique solution. On la note x_n .
- 2. Déterminer x_1 et x_2 .
- 3. Montrer que $\forall n \in \mathbb{N}, \ x_n \ge \frac{1}{2}$.
- 4. Soit $n \in \mathbb{N}^*$. Comparer $f_n(x_n)$ et $f_n(x_{n+1})$. En déduire que la suite $(x_n)_{n \in \mathbb{N}}$ est décroissante.
- 5. En déduire que la suite $(x_n)_{n\in\mathbb{N}}$ converge.

Exercice 7 On considère la suite définie par

$$u_0 = 1 \text{ et } \forall n \in \mathbb{N}, \ u_{n+1} = \frac{3}{1 + 3u_n}.$$

. On pose : $f: x \mapsto \frac{3}{1+3x}$.

- 1. Tracer le graphe de f sur \mathbb{R}_+ et construire les premiers termes de la suite.
- 2. On pose I = [0,3]. Montrer que I est stable par f (c'est à dire que $f(I) \subset I$, ou encore $\forall x \in I, f(x) \in I$.)
- 3. Montrer que pour tout entier $n \in \mathbb{N}$, u_n existe et $0 \le u_n \le 3$.
- 4. Déterminer les points fixes de $f \circ f$ sur \mathbb{R}_+ (c'est à dire les réels x vérifiant $f \circ f(x) = x$).
- 5. Montrer que les suites (u_{2n}) et (u_{2n+1}) sont monotones, de monotonies contraires.
- 6. Montrer que les suites (u_{2n}) et (u_{2n+1}) sont convergentes.
- 7. En déduire la convergence de la suite (u_n) .