

Corrigé du devoir surveillé n° 5

— 25 janvier 2025—

Exercice 1 – Calculs.

- 1. Soit $P = X^4 4X + 3$.
 - (a) P(1) = 0 donc 1 est une racine de P. $P' = 4\mathbf{X}^3 - 4$ donc P'(1) = 0. Donc, 1 est une racine multiple de P
 - (b) 1 est une racine multiple de P donc il existe un polynôme Q tel que $P(\mathbf{X}) = (\mathbf{X} 1)^2 Q$.
 - $\deg(Q) = \deg(P) 2 = 2 \operatorname{donc} \exists (a, b, c) \in \mathbb{R}^3 \text{ tel que } Q(\mathbf{X}) = a\mathbf{X}^2 + b\mathbf{X} + c.$
 - En identifiant les coefficients dominant et constant, on peut en déduire que a=1 et c=3.
 - $P(\mathbf{X}) = (\mathbf{X} 1)^2(\mathbf{X}^2 + b\mathbf{X} + 3) = \mathbf{X}^4 + (b 6)\mathbf{X} + 3$. Par identification, b - 6 = -4 donc b = 2.

On en déduit que $P(\mathbf{X}) = (\mathbf{X} - 1)^2(\mathbf{X}^2 + 2\mathbf{X} + 3)$.

On factorise ensuite le polynôme Q. $\Delta = 4 - 12 = -8 = (2\sqrt{2}i)^2 < 0$.

Q admet deux racines complexes conjuguées $z_1 = \frac{-2 - 2\sqrt{2}\mathbf{i}}{2} = -1 - \sqrt{2}\mathbf{i}$ et $z_2 = -1 + \sqrt{2}\mathbf{i}$.

Donc, dans
$$\mathbb{C}[\mathbf{X}]$$
, $P(\mathbf{X}) = (\mathbf{X} - 1)^2(\mathbf{X} + 1 + \sqrt{2}\mathbf{i})(\mathbf{X} + 1 - \sqrt{2}\mathbf{i})$

Dans
$$\mathbb{R}[\mathbf{X}], P(\mathbf{X}) = (\mathbf{X} - 1)^2 (\mathbf{X}^2 + 2\mathbf{X} + 3)$$

2. Soit $(P_n)_{n\in\mathbb{N}}$ une suite de polynômes définie par

$$P_0(\mathbf{X}) = 1 \text{ et } \forall n \in \mathbb{N}, \ P_{n+1}(\mathbf{X}) = (2n+1)\mathbf{X}P_n(\mathbf{X}) - (\mathbf{X}^2 + 1)P'_n(\mathbf{X})$$

(a)
$$P_1 = \mathbf{X}P_0 - (\mathbf{X}^2 + 1)P_0' \operatorname{donc} \boxed{P_1 = \mathbf{X}}.$$

 $P_2 = 3\mathbf{X}P_1 - (\mathbf{X}^2 + 1)P_1' = 3\mathbf{X}^2 - (\mathbf{X}^2 + 1) \operatorname{donc} \boxed{P_2 = 2\mathbf{X}^2 - 1}.$
 $P_3 = 5\mathbf{X}P_2 - (\mathbf{X}^2 + 1)P_2' = 5\mathbf{X}(2\mathbf{X}^2 - 1) - (\mathbf{X}^2 + 1)4\mathbf{X} \operatorname{donc} \boxed{P_2 = 6\mathbf{X}^3 - 9\mathbf{X}}.$

- (b) Soit $n \in \mathbb{N}$. On conjecture que $\deg(P_n) = n$ et que le coefficient dominant de P_n est n!
- (c) On raisonne par récurrence en posant

 $\forall n \in \mathbb{N}, H(n) : "\deg(P_n) = n \text{ le coefficient dominant de } P_n \text{ est } n!".$

• Initialisation.

Pour n = 0: $P_0 = 1$. Donc, $deg(P_0) = 0$ et son coefficient dominant est 1 = 0!. Donc, H(0) est vraie.

• <u>Hérédité</u>.

Soit $n \in \mathbb{N}$ tel que H(n) soit vraie.

Par hypothèse de récurrence, il existe deux polynômes Q_n tel que $P_n = n!X^n + Q_n$ et $\deg(Q_n) \le n - 1$. Donc, $P_{n+1} = (2n+1)\mathbf{X}P_n(\mathbf{X}) - (\mathbf{X}^2+1)P_n'(\mathbf{X}) = (2n+1)(n!\mathbf{X}^{n+1} + \mathbf{X}Q_n) - (\mathbf{X}^2+1)(n.n!\mathbf{X}^{n-1} + Q_n')$ $= ((2n+1)n! - n.n!)\mathbf{X}^{n+1} + (2n+1)\mathbf{X}Q_n - \mathbf{X}^2Q_n' - n.n!\mathbf{X}^{n-1} - Q_n'$ $= (n+1)n!\mathbf{X}^{n+1} + Q$ avec $\deg(Q) \le \max(\deg(\mathbf{X}Q_n), \deg(\mathbf{X}^2Q_n'), \deg(Q_n'))$. Donc, $P_{n+1} = (n+1)n!\mathbf{X}^{n+1} + Q$ avec $\deg(Q) \le n$.

Donc, $deg(P_{n+1}) = n+1$ et son coefficient dominant est (n+1)!. Donc H(n+1) est vraie.

• Conclusion.

Par le principe de récurrence, $\forall n \in \mathbb{N}$, $\deg(P_n) = n$ et le coefficient dominant de P_n est n!.

Exercice 2 – Géométrie.

Pour tout $n \in \mathbb{N}$, on note \mathcal{P}_n l'ensemble des points $M(x,y,z) \in \mathbb{R}^3$ tels que

$$(x+y+z+1) + n(x-5y+4z-2) = 0$$

On note également \mathcal{P}_{∞} l'ensemble défini par

$$\left\{ \begin{array}{lll} x & = & 1+s-t \\ y & = & -1+s+3t \\ z & = & -1+s+4t \end{array} \right., (s,t) \in \mathbb{R}^2$$

- 1. Soient $\overrightarrow{u_1} = (1, 1, 1)$ et $\overrightarrow{u_2} = (-1, 3, 4)$. Ces 2 vecteurs ne sont pas colinéaires donc on reconnait une représentation paramétrique du plan passant par $A_{\infty}(1,-1,-1)$ et de vecteurs directeurs $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$.
- 2. On va chercher un vecteur $\overrightarrow{n}_{\infty} = (a, b, c)$ normal au plan \mathcal{P}_{∞} .

$$\left\{ \begin{array}{lll} <\overrightarrow{n}_{\infty},\overrightarrow{u_1}>&=&0\\ <\overrightarrow{n}_{\infty},\overrightarrow{u_2}>&=&0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{lll} a+b+c&=&0\\ -a+3b+4c&=&0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{lll} a+b+c&=&0\\ 4b+5c&=&0 \end{array} \right.$$

On peut prendre $\overrightarrow{n}_{\infty}=(1,-5,4).$ On en déduit une équation cartésienne de \mathcal{P}_{∞}

$$M(x,y,z) \in \mathcal{P}_{\infty} \iff \langle \overrightarrow{A_{\infty}M}, \overrightarrow{n}_{\infty} \rangle = 0$$

$$\iff \langle \begin{pmatrix} x-1\\y+1\\z+1 \end{pmatrix}, \begin{pmatrix} 1\\-5\\4 \end{pmatrix} \rangle = 0$$

$$\iff x-1-5(y+1)+4(z+1)=0$$

Une équation cartésienne de \mathcal{P}_{∞} est | x - 5y + 4z - 2 = 0 |

3. \mathcal{P}_0 est un plan dont $\overrightarrow{n_0} = (1, 1, 1)$ est un vecteur normal. $\overrightarrow{n_0}$ et $\overrightarrow{n_\infty}$ ne sont pas colinéaires donc les plans \mathcal{P}_0 et \mathcal{P}_∞ ne sont pas parallèles. Leur intersection est donc une droite dont un système d'équations cartésiennes est

$$\left\{ \begin{array}{rcl} x + y + z + 1 & = & 0 \\ x - 5y + 4z - 2 & = & 0 \end{array} \right.$$

On en déduit une représentation paramétrique

$$\begin{cases} x+y+z+1 &= 0 \\ x-5y+4z-2 &= 0 \end{cases} \iff \begin{cases} x+y+t+1 &= 0 \\ -6y+3t-3 &= 0 \\ z=t \end{cases}$$

Une représentation paramétrique de
$$\mathcal{D}$$
 est
$$\begin{cases} x = \frac{-1}{2} - \frac{3}{2}t \\ y = \frac{-1}{2} + \frac{1}{2}t \\ z = t \end{cases}, t \in \mathbb{R}$$

4. Soit $n \in \mathbb{N}$. L'équation qui permet de décrire \mathcal{P}_n peut se réécrire (1+n)x + (1-5n)y + (1+4n)z + 1 - 2n = 0. Le vecteur $\overrightarrow{n_n} = (1 + n, 1 - 5n, 1 + 4n)$ est non nul donc

 \mathcal{P}_n est le plan passant par $A_n\left(0,0,\frac{2n-1}{1+4n}\right)$ et de vecteur normal $\overrightarrow{n_n}$.

5. Soit $n \in \mathbb{N}$. Soit $M(x, y, z) \in \mathcal{D}$.

 $M \in \mathcal{P}_0 \cap \mathcal{P}_{\infty} \text{ donc } x - 5y + 4z - 2 = 0 \text{ et } x + y + z + 1 = 0.$

En particulier, $x + y + z + 1 + n(x - 5y + 4z - 2) = 0 + n \cdot 0 = 0$.

Donc $M \in \mathcal{P}_n$.

Donc, $\mathcal{D} \subset \mathcal{P}_n$.

Donc, $\forall n \in \mathbb{N}, \ \mathcal{D} \subset \mathcal{P}_n$

6. H(x, y, z), le projeté orthogonal de A sur \mathcal{P}_{∞} , est l'unique solution du système (S): $\begin{cases} H \in \mathcal{P}_{\infty} \\ < \overrightarrow{AH}, \overrightarrow{u_1} >= 0 \\ < \overrightarrow{AH}, \overrightarrow{u_2} >= 0 \end{cases}$.

$$(S) \Longleftrightarrow \left\{ \begin{array}{l} x - 5y + 4z - 2 = 0 \\ (x - 1) + (y - 2) + (z - 3) = 0 \\ -(x - 1) + 3(y - 2) + 4(z - 3) = 0 \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{l} x - 5y + 4z - 2 = 0 \\ x + y + z - 6 = 0 \\ -x + 3y + 4z - 17 = 0 \end{array} \right.$$

$$H$$
 est donc l'unique solution du système
$$\left\{ \begin{array}{l} x-5y+4z-2=0 \\ x+y+z-6=0 \\ -x+3y+4z-17=0 \end{array} \right.$$

Exercice 3 – Polynômes.

1. (a) On pose P=0. Alors $\forall x \in \mathbb{C}$, P(x-1)=P(x)=0. Donc $\forall x \in \mathbb{C}$, $x\underbrace{P(x-1)}_{=0}=(x-2)\underbrace{P(x)}_{=0}$.

Donc le polynôme nul est solution de (E)

(b) $P = \lambda X^n (X - 1)^p \text{ donc } P(X - 1) = \lambda (X - 1)^n (X - 2)^p$.

```
XP(X-1) = (X-2)P(X) \iff \lambda X(X-1)^n(X-2)^p = \lambda X^n(X-1)^p(X-2) \\ \iff X(X-1)^n(X-2)^p = X^n(X-1)^p(X-2) \text{ (on a simplifié par } \lambda \neq 0) \\ \iff n=1 \text{ et } n=p \text{ et } p=1 \text{ d'après le résultat admis} \\ \iff n=p=1
```

Ainsi, $\lambda X^n(X-1)^p$ est solution de (E) si, et seulement si, n=p=1.

(c) La réponse précédente ne permet pas d'en déduire l'ensemble des solutions de (E) car on n'a cherché que des solutions ayant une certaine forme. On appelle S l'ensemble des solutions de (E). On peut seulement affirmer que l'ensemble :

$$\{\lambda X(X-1), \ \lambda \in \mathbb{C}\} \subset \mathcal{S}$$

- 2. (a) i. On suppose que $\alpha \neq 0$. D'après la relation vérifiée par P, $\alpha P(\alpha 1) = (\alpha 2)P(\alpha)$. Or $P(\alpha) = 0$ donc $\alpha P(\alpha 1) = 0$. Puisque $\alpha \neq 0$, on en déduit $P(\alpha 1) = 0$, donc $\alpha 1$ est racine de P.

 Ainsi, Si $\alpha \neq 0$, alors $\alpha 1$ est une racine de P.
 - ii. On suppose que P est non-nul. Montrons par l'absurde que P n'a pas de racine dans $]-\infty,0[$. On suppose que P a une racine $\alpha\in]-\infty,0[$. $\alpha\neq 0$ donc d'après la question 2(a)i, $\alpha-1$ est aussi racine, et $\alpha-1\neq 0$ (car $\alpha-1<-1$). Donc $\alpha-2$ est racine de P, et $\alpha-2\neq 0$. Etc. On montre ainsi, par récurrence immédiate que tous les $\alpha-n$ sont racines, pour $n\in\mathbb{N}$.

On obtient une infinité de racines de P. Donc P est le polynôme nul. Contradiction car on a supposé que $P \neq 0$. On en déduit que si P n'est pas le polynôme nul, P n'a pas de racine dans $]-\infty,0[$.

iii. On suppose que $\alpha \neq 1$. D'après la relation vérifiée par P appliquée à $\alpha+1$, $(\alpha+1)P(\alpha)=(\alpha-1)P(\alpha+1)$. Or $P(\alpha)=0$ donc $(\alpha-1)P(\alpha+1)=0$. Puisque $\alpha \neq 1$, on en déduit $\alpha-1 \neq 0$, d'où $P(\alpha+1)=0$. Donc $\alpha+1$ est une racine de P.

Ainsi, Si $\alpha \neq 1$, alors $\alpha + 1$ est une racine de P.

iv. On suppose que P est non-nul. Montrons par l'absurde que P n'a pas de racine dans $]1,+\infty[$. On suppose que P admet une racine α appartenant à $]1,+\infty[$.

 $\alpha > 1$ donc $\alpha \neq 1$. Donc $\alpha + 1$ est racine de P.

Puis $1 < \alpha + 1$ donc $\alpha + 1 \neq 1$. Donc, d'après le résultat de la question 2(a)iii, $\alpha + 2$ est racine de P. De même, $\alpha + 2 \neq 1$ car $1 < \alpha + 2$ donc $\alpha + 3$ est racine de P, etc. On peut montrer que pour tout $n \in \mathbb{N}$, $\alpha + n$ est racine de P.

Donc P admet une infinité de racines. Donc P=0. Contradiction car on a supposé que P était non-nul. On en déduit que si P n'est pas le polynôme nul, il n'a pas de racine dans $]1, +\infty[$.

(b) P n'est pas le polynôme nul donc d'après les questions précédentes, il n'a aucune racine dans $]-\infty,0[\cup]1,+\infty[$.

Montrons que P n'a pas de racine dans]0,1[. On suppose que P admet une racine α appartenant à]0,1[. Alors $\alpha-1$ est racine de P d'après la question 2(a)i, et $\alpha-1 \in]-\infty,0[$. On obtient une contradiction car P est non-nul (il n'a pas de racine dans cet ensemble). Ainsi, P n'a pas de racine dans]0,1[.

Montrons que P n'a pas de racine dans $\mathbb{C} \setminus \mathbb{R}$. On suppose que P admet une racine α appartenant à $\mathbb{C} \setminus \mathbb{R}$. Alors, on montre de proche en proche que $\alpha-1$, $\alpha-2$... et pour tout $n \in \mathbb{N}$, $\alpha-n$ sont racines de P (tous ces nombres complexes non-réels sont différent de 0 donc on applique de proche en proche le résultat obtenu à la question 2(a)i). Donc P admet une infinité de racines, donc P=0. Contradiction, donc P n'a pas de racine dans $\mathbb{C} \setminus \mathbb{R}$.

Conclusion : en regroupant tous les résultats obtenus, on constate que si $P \neq 0$, les seules racines de P sont 0 et 1.

- (c) On en déduit que si P vérifie l'équation (E), alors soit il est nul, soit ses seules racines sont 0 et 1. Ainsi, si P vérifie (E), il est de la forme $\lambda X^n(X-1)^p$, avec $\lambda \in \mathbb{C}, n, p \in \mathbb{N}$.
- 3. On vient de montrer que :
 - Si P vérifie (E) alors il est de la forme $\lambda X^n(X-1)^p$, avec $\lambda \in \mathbb{C}$, $n, p \in \mathbb{N}$.
 - Un polynôme de la forme $\lambda X^n(X-1)^p$ ($\lambda \in \mathbb{C}$, $n, p \in \mathbb{N}$) vérifie (E) ssi $\lambda = 0$ ou [$\lambda \neq 0$ et n = p = 1].

On en déduit l'ensemble des polynômes de $\mathbb{C}[X]$ qui vérifient l'équation (E): $\{\lambda X(X-1),\ \lambda\in\mathbb{C}\}$

Exercice 4 – Matrices.

1.

```
def u(n):
    u,v,w=4,5,5
    for i in range(n):
        u,v,w=v,w,5*w-8*v+4*u
    return u
def question_b(n):
    s=0
    for i in range(n+1):
        s=s+u(i)
    return s

def question_c(n):
    n=2
    while u(n)>=-1000:
    n=n+1
    return n
```

- 2. (a) On pose $M = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -8 & 5 \end{pmatrix}$ et on vérifie que $\forall n \in \mathbb{N}, \ X_{n+1} = MX_n$.
 - (b) Un raisonnement par récurrence donne : $\forall n \in \mathbb{N}, X_n = M^n X_0$.
- 3. On vérifie que

$$P\begin{pmatrix} 4 & -4 & 1 \\ -5 & 7 & -2 \\ 2 & -3 & 1 \end{pmatrix} = \begin{pmatrix} 4 & -4 & 1 \\ -5 & 7 & -2 \\ 2 & -3 & 1 \end{pmatrix} P = I_3,$$

ce qui prouve que P est inversible, d'inverse $P^{-1}=\begin{pmatrix} 4 & -4 & 1 \\ -5 & 7 & -2 \\ 2 & -3 & 1 \end{pmatrix}$.

- 4. (a) Après calculs, on obtient $MP = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 4 & 8 \\ 1 & 8 & 20 \end{pmatrix}$ et $T = P^{-1}MP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$
 - (b) Posons $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ et $N = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. Alors, T = D + N.

On vérifie que les matrices D et N commutent, ce qui permet d'appliquer la formule du binôme. Pour $n \in \mathbb{N}$, $T^n = (D+N)^n = \sum_{k=0}^n \binom{n}{k} N^k D^{n-k}$. Or $N^2 = 0_3$ donc pour tout entier $k \ge 2$, $N^k = 0_3$.

Ainsi, pour tout $n \in \mathbb{N}^*$, $T^n = \sum_{k=0}^{1} {n \choose k} N^k D^{n-k} = D^n + nD^{n-1}N$.

Par ailleurs, puisque D est une matrice diagonale, on peut exprimer aisément ses puissances :

$$\forall m \in \mathbb{N}, \ D^m = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^m & 0 \\ 0 & 0 & 2^m \end{pmatrix}$$

On obtient ainsi : $\forall n \in \mathbb{N}^*$, $T^n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & n2^{n-1} \\ 0 & 0 & 2^n \end{pmatrix}$ et on vérifie que cette formule est encore valable pour n = 0. Ainsi, elle est valable pour tout $n \in \mathbb{N}$.

- 5. (a) On part de l'égalité $T = P^{-1}MP$. En multipliant à gauche par P, et à droite par P^{-1} les deux membres de cette égalité, on obtient $M = PTP^{-1}$.
 - (b) On montre par récurrence que $\forall n \in \mathbb{N}, M^n = PT^nP^{-1}$.
- 6. Nous savons que pour tout $n \in \mathbb{N}$, $X_n = M^n X_0$. Donc d'après la formule précédente, $X_n = PT^n P^{-1} X_0$.

Calculons ce produit en commençant par calculer : $P^{-1}X_0 = \begin{pmatrix} 1 \\ 5 \\ -2 \end{pmatrix}$.

Puis:

$$T^{n}(P^{-1}X_{0}) = \begin{pmatrix} 1\\ (5-n)2^{n}\\ 2^{n+1} \end{pmatrix}.$$

Enfin, il nous suffit de connaître la première ligne de la matrice colonne $P(T^nP^{-1}X_0)$, qui nous donnera u_n . On obtient :

$$\forall n \in \mathbb{N}, \ u_n = 1 + (3 - n)2^n.$$