Exercice 1 Montrer que tout polynôme de degré impair admet une racine réelle sur \mathbb{R} .

Correction Soit P un polynôme de degré impair.

On a donc $\lim_{x \to -\infty} P(x) = -\infty$ et $\lim_{x \to +\infty} P(x) = +\infty$.

En particulier : $\exists A < 0$ tel que $\forall x \leq A, P(x) \leq -2$. Donc, P(A) < 0.

De même, $\exists B > 0$ tel que $\forall x \geq B, P(x) \geq 2$. Donc, P(B) > 0.

Le polynôme P est continue sur [A, B] donc, par le théorème des valeurs intermédiaires, $\exists c \in [A, B]$ tel que P(c) = 0.

Donc, P admet une racine réelle.

Exercice 2 Soit la fonction f définie sur]0,1[par $\forall x \in]0,1[$, $f(x)=\frac{1}{x}+\frac{1}{x-1}$.

- 1. Montrer que f est bijective de]0,1[dans un intervalle J à préciser. On note f^{-1} sa bijection réciproque.
- 2. Déterminer $\lim_{n \to +\infty} f^{-1}\left(\frac{1}{2^n}\right)$.

Correction

- 1. On va montrer que la fonction f est une fonction continue et strictement monotone sur]0;1[.
 - (a) Continuité: La fonction f est la somme de deux fonctions continue sur]0;1[comme quotient de fonctions continues avec un dénominateur qui ne s'annule pas.
 - (b) Stricte monotonie: La fonction f est dérivable sur]0;1[et $\forall x \in]0;1[$, $f'(x)=\frac{-2x^2+2x-1}{(x(x-1))^2}$.

Ce trinôme n'a pas de racines réelles donc la fonction f est strictement décroissante sur]0;1[.

La fonction f est donc une bijection de]0;1[dans $f(]0;1[)=]\lim_{x\to 1^-}f(x);\lim_{x\to 0^+}f(x)]=]-\infty;+\infty[$

2. On n'a pas besoin de l'expression de f^{-1} pour déterminer la limite, seulement de la continuité de f^{-1} . Or, la fonction f est continue sur]0;1[donc la bijection réciproque f^{-1} est continue sur \mathbb{R} .

En particulier, $\lim_{y\to 0} f^{-1}(y) = f^{-1}(0)$.

Par composition de limite, $\lim_{n\to+\infty} f^{-1}\left(\frac{1}{2^n}\right) = f^{-1}(0)$.

On résout l'équation f(x) = 0 d'inconnue $x \in]0;1[$.

$$f(x) = 0 \Leftrightarrow \frac{1}{x} + \frac{1}{x - 1} = 0 \Leftrightarrow \frac{2x - 1}{x(x - 1)} = 0 \Leftrightarrow x = \frac{1}{2}$$

D'où
$$\lim_{n \to +\infty} f^{-1}\left(\frac{1}{2^n}\right) = \frac{1}{2}$$
.

Exercice 3 Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue en 0 telle que

$$\forall x \in \mathbb{R}, \ f(2x) = f(x).$$

- 1. Montrer que $\forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ f(x) = f\left(\frac{x}{2^n}\right)$.
- 2. En déduire que f est constante sur \mathbb{R} .

Correction

1. On va le démontrer par récurrence en posant $\forall n \in \mathbb{N}, \ P(n) : "\forall x \in \mathbb{R}, \ f(x) = f\left(\frac{x}{2^n}\right)$."

I: Soit
$$x \in \mathbb{R}$$
. $f(x) = f\left(\frac{x}{1}\right) = f\left(\frac{x}{2^0}\right)$. La propriété est vraie au rang 0.

 \mathbf{H} : Supposons qu'il existe un entier $n\geq 0$ tel que P(n) soit vraie.

Soit
$$x \in \mathbb{R}$$
. $f\left(\frac{x}{2^{n+1}}\right) = f\left(\frac{\frac{x}{2}}{2^n}\right) = f\left(\frac{x}{2}\right)$ par hypothèse de récurrence appliquée à $\frac{x}{2}$.

Or,
$$f\left(\frac{x}{2}\right) = f\left(2 \times \frac{x}{2}\right) = f(x)$$
 par hypothèse sur f donc on a bien $f\left(\frac{x}{2^{n+1}}\right) = f(x)$.

C: Par le principe de récurrence,
$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ f(x) = f\left(\frac{x}{2^n}\right)$$
.

2. Soit $x \in \mathbb{R}$. On s'intéresse à la suite $\left(f\left(\frac{x}{2^n}\right)\right)_{n \in \mathbb{N}}$. Cette suite est une suite constante égale à f(x) par la question précédente.

De plus,
$$\lim_{n\to+\infty}\frac{x}{2^n}=0$$
 et la fonction f est continue en 0. Donc, $\lim_{n\to+\infty}f\left(\frac{x}{2^n}\right)=f(0)$.

Par unicité de la limite, f(x) = f(0). Ceci est vrai pour tous les réels donc la fonction f est constante sur \mathbb{R}

Exercice $\underline{4}$ [*] Soit f une fonction continue et périodique sur \mathbb{R} . Montrer que f est bornée sur \mathbb{R} .

Correction Notons T une période de f. On a donc $f(\mathbb{R}) = f([0;T])$.

La fonction f est continue sur le segment [0,T] donc elle y est bornée.

 $\exists M \in \mathbb{R}, \ \forall x \in [0, T], \ |f(x)| \le M.$

Donc, $\exists M \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ |f(x)| \leq M$. Donc, f est bornée sur \mathbb{R}

Exercice 5 Soit f la fonction définie sur $]0, +\infty[$ par $f(x) = -x^2 + x \ln x + 2$.

- 1. Justifier que f est continue sur \mathbb{R}_+^* . Est-elle prolongeable par continuité en 0?
- 2. Dresser le tableau de variation de f (on pourra calculer les dérivées f' et f''). Préciser les limites en 0 et $+\infty$.
- 3. Montrer que f réalise une bijection de $]0,+\infty[$ sur un intervalle que l'on précisera.
- 4. Dresser le tableau de variations de la bijection réciproque f^{-1} . Indiquer les limites.
- 5. Soit $k \in \mathbb{N}$. Justifier qu'il existe un unique réel strictement positif x_k tel que $f(x_k) = -k$. Exprimer x_k à l'aide de la fonction f^{-1} .
- 6. Montrer que la suite $(x_k)_{k\in\mathbb{N}}$ est strictement croissante et déterminer sa limite.
- 7. Déterminer un équivalent de x_k en $+\infty$.

Correction

1. La fonction f est une somme de produit de fonctions continues sur \mathbb{R}_+^* donc f est continue sur \mathbb{R}_+^*

Par croissance comparée, $\lim_{x\to 0^+} x \ln(x) = 0$ donc $\lim_{x\to 0^+} f(x) = 2$.

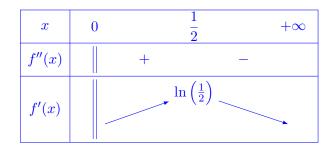
Donc, fbox f est prolongeable par continuité en 0 en posant f(0) = 2.

2. La fonction f est une somme de produit de fonctions deux fois dérivables sur \mathbb{R}_+^* donc f est deux fois dérivable sur \mathbb{R}_+^* et

$$\forall x \in \mathbb{R}_+^*, \ f'(x) = -2x + \ln(x) + x \cdot \frac{1}{x} = -2x + \ln(x) + 1 \text{ et } f''(x) = -2 + \frac{1}{x}$$

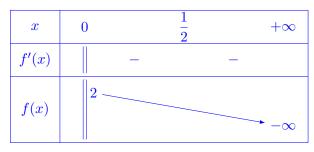
On étudie le signe de f''. $\forall x > 0$, $f''(x) \ge 0 \Leftrightarrow x \le \frac{1}{2}$.

Donc, f' est croissante sur $\left]0, \frac{1}{2}\right]$ et décroissante sur $\left[\frac{1}{2}, +\infty\right[$.



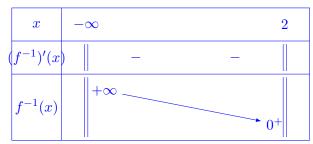
De plus, $f'\left(\frac{1}{2}\right) = \ln\left(\frac{1}{2}\right) < 0$ donc f' est négative sur \mathbb{R}_+^* .

Donc, |f| est strictement décroissante sur \mathbb{R}_+^* .



De plus, $f(x) \underset{x \to +\infty}{\sim} -x^2$ donc $\lim_{x \to +\infty} f(x) = -\infty$.

- 3. La fonction f est continue et strictement décroissante sur \mathbb{R}_+^* donc elle réalise une bijection de $]0, +\infty[$ dans $f(\mathbb{R}_+^*) = \lim_{x \to -\infty} f(x), \lim_{x \to 0^+} f(x) =]-\infty, 2[.$
- 4. La bijection réciproque f^{-1} est définie sur $]-\infty, 2[$, à valeurs dans \mathbb{R}_+^* et elle a la même monotonie que f.



- 5. Soit $k \in \mathbb{N}$. $-k \in f(\mathbb{R}_+^*)$ et f est bijective donc -k admet un unique antécédent dans \mathbb{R}_+^* par fDonc, il existe un unique réel strictement positif x_k tel que $f(x_k) = -k$. On a $x_k = f^{-1}(-k)$.
- 6. Soit $k \in \mathbb{N}$.

 $-(k+1)<-k \text{ donc } f^{-1}(-(k+1))>f^{-1}(-k) \text{ car } f^{-1} \text{ est décroissante sur }]-\infty,2[.$

Donc, $x_{k+1} > x_k$.

Donc, la suite $(x_k)_{k\in\mathbb{N}}$ est strictement croissante.

 $\lim_{k \to +\infty} -k = -\infty \text{ et } \lim_{x \to -\infty} f^{-1}(x) = +\infty \text{ donc, par composition, } \lim_{k \to +\infty} x_k = \lim_{k \to +\infty} f^{-1}(-k) = +\infty$ 7. On sait que $f(x) \underset{x \to +\infty}{\sim} -x^2$. Or, $\lim_{k \to +\infty} x_k = +\infty$ donc, par substitution, $f(x_k) \underset{k \to +\infty}{\sim} -x_k^2$.

Finalement, $-k \underset{k \to +\infty}{\sim} -x_k^2$. Donc, $x_k \underset{k \to +\infty}{\sim} \sqrt{k}$.

Exercice 6

- 1. Soit h la fonction définie sur \mathbb{R}^* par $h(x) = \arctan\left(\frac{1}{x}\right)$.
 - (a) Est-elle prolongeable par continuité en 0 à gauche?
 - (b) Est-elle prolongeable par continuité à droite en 0?

- (c) Est-elle prolongeable par continuité en 0?
- 2. * Résoudre $\arctan(x) + \arctan(2x) = \frac{\pi}{4}$.

 Indication: Sur le bon ensemble, $\tan(a+b) = \frac{\tan(a) + \tan(b)}{1 \tan(a) + \cot(b)}$.

Correction

1. On calcule les limites à gauche et à droite de 0. $\lim_{x \to \frac{\pi}{2}^-} \tan(x) = +\infty \text{ donc } \lim_{x \to +\infty} \arctan(x) = \frac{\pi}{2}. \text{ Donc, } \lim_{x \to 0^+} h(x) = \frac{\pi}{2}.$ $\lim_{x \to -\frac{\pi}{2}^+} \tan(x) = -\infty \text{ donc } \lim_{x \to -\infty} \arctan(x) = -\frac{\pi}{2}. \text{ Donc, } \lim_{x \to 0^-} h(x) = -\frac{\pi}{2}.$

Les limites à gauche et à droite ne sont pas les mêmes donc h n'est pas prolongeable par continuité en 0

2. Cette équation est définie sur \mathbb{R} car la fonction arctangente est définie sur \mathbb{R} . Pour tout $x \in \mathbb{R}$,

$$(E): \arctan(x) + \arctan(2x) = \frac{\pi}{4} \iff \begin{cases} \arctan(x) + \arctan(2x) \in]0, \frac{\pi}{2}[, \\ \tan(\arctan(x) + \arctan(2x)) = \tan\frac{\pi}{4} = 1 \end{cases}$$

$$(E) \iff \begin{cases} \arctan(x) + \arctan(2x) \in]0, \frac{\pi}{2}[, \\ \frac{\tan(\arctan(x)) + \tan(\arctan(2x))}{1 - \tan(\arctan(x)) \tan(\arctan(2x))} = 1 \end{cases} \iff \begin{cases} \arctan(x) + \arctan(2x) \in]0, \frac{\pi}{2}[, \\ \frac{x + 2x}{1 - 2x^2} = 1 \end{cases}$$

$$\iff \begin{cases} \arctan(x) + \arctan(2x) \in]0, \frac{\pi}{2}[, \\ 3x = 1 - 2x^2 \\ 1 - 2x^2 \neq 0 \end{cases} \iff \begin{cases} \arctan(x) + \arctan(2x) \in]0, \frac{\pi}{2}[, \\ 2x^2 + 3x - 1 = 0(\text{trinôme}) \\ x \neq \frac{1}{\sqrt{2}} \text{ et } x \neq \frac{-1}{\sqrt{2}} \end{cases}$$

On résout le trinôme. On trouve deux racines rélles $\frac{-3+\sqrt{17}}{4}$ et $\frac{-3-\sqrt{17}}{4}$. Ces deux racines étant différentes de $\frac{1}{\sqrt{2}}$ et $\frac{-1}{\sqrt{2}}$, on obtient :

(E)
$$\iff$$

$$\begin{cases} \arctan(x) + \arctan(2x) \in]0, \frac{\pi}{2}[, \\ x = \frac{-3 + \sqrt{17}}{4} \text{ ou } x = \frac{-3 - \sqrt{17}}{4} \end{cases}$$

Or: $\frac{-3-\sqrt{17}}{4} < 0 \text{ et la fonction arctangente est négative sur } \mathbb{R}_-, \text{ donc si } x = \frac{-3-\sqrt{17}}{4}, \text{ alors }$ $\arctan(x) + \arctan(2x) \le 0, \text{ n'appartient donc pas à l'ensemble }]0, \frac{\pi}{2} [\text{. Donc } \frac{-3-\sqrt{17}}{4} \text{ n'est pas solution de } (E).$

• $\sqrt{16} < \sqrt{17} < \sqrt{25}$ donc $4 < \sqrt{17} < 5$, donc $\frac{1}{4} < \frac{-3+\sqrt{17}}{4} < \frac{1}{2}$. En particulier, on a : $0 < \frac{-3+\sqrt{17}}{4} < 1$ et $0 < 2\frac{-3+\sqrt{17}}{4} < 1$. Donc, puisque la fonction arctangente est strictement croissante sur \mathbb{R} , et puisque $\arctan(0) = 0$ et $\arctan(1) = \frac{\pi}{4}$,

si $x = \frac{-3 + \sqrt{17}}{4}$, on a $0 < \arctan(x) < \frac{\pi}{4}$ et $0 < \arctan(2x) < \frac{\pi}{4}$, donc $\arctan(x) + \arctan(2x) \in]0, \frac{\pi}{2}[$. Ainsi,

$$(E) \iff x = \frac{-3 + \sqrt{17}}{4}$$

L'ensemble des solutions de (E) est donc le singleton : $S = \left\{ \frac{-3 + \sqrt{17}}{4} \right\}$