

Corrigé du devoir surveillé n° 2

- 5 octobre 2024-

Exercice 1. - Calculs

1. Soit f la fonction définie sur \mathbb{R}_+^* par $\forall x \in \mathbb{R}_+^*$, $f(x) = \ln(x) - 2\sqrt{x}$. La fonction f est dérivable sur \mathbb{R}_+^* comme somme de fonctions dérivables et

 $\forall x \in \mathbb{R}_+^*, \ f'(x) = \frac{1}{x} - \frac{2}{2\sqrt{x}} = \frac{1 - \sqrt{x}}{x}.$

Or, $\forall x \in \mathbb{R}_+^*$, $1 - \sqrt{x} > 0 \Leftrightarrow x > 1$. Donc, f' est positive sur [0,1] et négative sur $[1,+\infty[$.

Donc, f est croissante sur [0,1] et décroissante sur $[1,+\infty[$.

On en déduit que f est majorée par sa valeur en $1: \forall x \in \mathbb{R}_+^*$, $\ln(x) - 2\sqrt{x} < -2$ donc, en particulier,

$$\forall x \in \mathbb{R}_+^*, \ \ln(x) < 2\sqrt{x}$$

2. (E): $2\sin^2 x - 5\sin x + 2 = 0$.

Posons $X = \sin(x)$. Alors $(E) \iff 2X^2 - 5X + 2 = 0$. C'est une équation du second degré en X. En calculant son discriminant, on trouve que cette équation a deux racines réelles qui sont 2 et $\frac{1}{2}$. Ainsi,

$$2\sin^2 x - 5\sin x + 2 = 0 \iff \sin x = \frac{1}{2} \text{ ou } \sin x = 2$$

$$\iff \sin x = \frac{1}{2} \text{ car } \sin x = 2 \text{ n'a pas de solution}$$

$$\iff \sin x = \sin \frac{\pi}{6}$$

$$\iff x = \frac{\pi}{6} + 2k\pi \text{ ou } x = \frac{5\pi}{6} + 2k\pi, \ k \in \mathbb{Z}$$

Donc l'ensemble des solutions de cette équation est $\bigcup_{k\in\mathbb{Z}} \left\{ \frac{\pi}{6} + 2k\pi, \frac{5\pi}{6} + 2k\pi \right\}$

- 3. (a) Soit $x \in \mathbb{R}$. On sait que $0 \le (\sin(x))^2 \le 1$. Donc, par somme, $x \le f(x) \le x + 1$
 - (b) $\lim_{x \to +\infty} x = +\infty$. Par comparaison (minoration) de fonctions, $\lim_{x \to +\infty} f(x) = +\infty$

 $\lim_{x \to -\infty} (x+1) = +\infty$. Par comparaison (majoration) de fonctions, $\lim_{x \to -\infty} f(x) = -\infty$

(c) Soit $x \in \mathbb{R}$. $\frac{f(x)}{x} = 1 + \frac{(\sin(x))^2}{x}$.

On sait que $0 \le (\sin(x))^2 \le 1$. Donc, par quotient puis somme,

De plus, $\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right) = 1$. Par le théorème d'encadrement, $\lim_{x \to +\infty} \frac{f(x)}{x} = 1$.

Exercice 2.

- 1. On pose $f: x \mapsto \ln(1+x) x$.
 - (a) Soit $x \in \mathbb{R}$.

$$f(x)$$
 existe \iff $1+x>0$
 \iff $x>-1$

Donc l'ensemble de définition de f est $]-1,+\infty[$

- (b) f est la somme de deux fonctions dérivables sur \mathcal{D} donc f est dérivable sur \mathcal{D} . $\forall x \in \mathcal{D}, \ f'(x) = \frac{1}{1+x} 1 = \frac{-x}{1+x}.$
- (c) Signe de f': f'(x) est du signe de -x car $\forall x \in \mathcal{D}, 1+x>0$. Ainsi, f est strictement croissante sur]-1,0] et strictement décroissante sur $[0,+\infty[$.
 - Limite en -1: $\lim_{x \to -1} (1+x) = 0$ et $\lim_{y \to 0} \ln(y) = -\infty$ donc par composition des limites, $\lim_{x \to -1} \ln(1+x) = -\infty$.

Ainsi, par somme des limites, $\lim_{x \to -1} f(x) = -\infty$.

Donc la droite d'équation x = -1 est asymptote verticale à la courbe.

 \bullet Limite en $+\infty$: nous devons factoriser car nous sommes en présence d'une forme indéterminée de la

$$\forall x \in \mathbb{R}_+^*, \ f(x) = -x \left(1 - \frac{\ln(1+x)}{x} \right).$$

Or,
$$\forall x \in \mathbb{R}_{+}^{*}, \frac{\ln(1+x)}{x} = \frac{\ln(x)(1+\frac{1}{x})}{x} = \frac{\ln(x)(1+\frac{1}{x})}{x} = \frac{\ln(x)(1+\frac{1}{x})}{x} = \frac{\ln(x)}{x} + \frac{\ln(1+\frac{1}{x})}{x}$$

Or,
$$\forall x \in \mathbb{R}_+^*$$
, $\frac{\ln(1+x)}{x} = \frac{\ln\left(x\left(1+\frac{1}{x}\right)\right)}{x} = \frac{\ln(x) + \ln\left(1+\frac{1}{x}\right)}{x} = \frac{\ln(x)}{x} + \frac{\ln\left(1+\frac{1}{x}\right)}{x}$.

Or $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$ par croissances comparées et $\lim_{x \to +\infty} \frac{\ln\left(1+\frac{1}{x}\right)}{x} = 0$ par quotient de limites.

Donc, par somme des limites, $\lim_{x \to +\infty} 1 - \frac{\ln(1+x)}{x} = 1$.

Puis, par produit des limites, $\lim_{x \to +\infty} f(x) = -\infty$

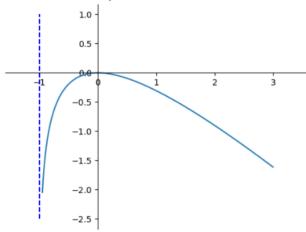
 \bullet Nous constatons que f présente un maximum en x=0 donc il est intéressant de connaître sa valeur en 0. On trouve : f(0) = 0.

On en déduit le tableau de variations suivant.

x	-1		0		$+\infty$
f'(x)		+		_	
			0		
f		7		×	
	$-\infty$				$-\infty$

(d) On déduit de l'étude précédente le graphe de f.

courbe représentative de la fonction f



- 2. D'après le tableau de variations, f admet un maximum en x=0 et f(0)=0 donc $\forall x\in\mathcal{D},\ \ln(1+x)-x\leqslant 0$. On en déduit : $| \forall x \in \mathcal{D}, \ln(1+x) \leq x$
- 3. Soit $k \in \mathbb{N}^*$ fixé quelconque.

Solve
$$k \in \mathbb{N}$$
 interpretable $\frac{1}{k} > 0$ donc $\frac{1}{k} \in]-1, +\infty[$. On peut donc appliquer l'inégalité précédente à $\frac{1}{k}$: $\ln\left(1+\frac{1}{k}\right) \leqslant \frac{1}{k}$. Or $\ln\left(1+\frac{1}{k}\right) = \ln\left(\frac{k+1}{k}\right) = \ln(k+1) - \ln(k)$. Ainsi, $\ln(k+1) - \ln(k) \leqslant \frac{1}{k}$.

Or
$$\ln\left(1+\frac{1}{k}\right) = \ln\left(\frac{k+1}{k}\right) = \ln(k+1) - \ln(k)$$
. Ainsi, $\ln(k+1) - \ln(k) \leqslant \frac{1}{k}$.

Exercice 3 - Trigonométrie.

1. Questions préliminaires

(a)
$$\left(\frac{\sqrt{2}+\sqrt{6}}{4}\right)^2 = \frac{2+6+2\sqrt{12}}{4^2} = \frac{8+2\times2\sqrt{3}}{4^2} = \frac{2+\sqrt{3}}{4}$$
. Donc, puisque $\frac{\sqrt{2}+\sqrt{6}}{4} > 0$:

$$\sqrt{\frac{2+\sqrt{3}}{4}} = \frac{\sqrt{2}+\sqrt{6}}{4}$$

De même,
$$\left(\frac{\sqrt{6} - \sqrt{2}}{4}\right)^2 = \frac{2 - \sqrt{3}}{4}$$
 et $\frac{\sqrt{6} - \sqrt{2}}{4} > 0$, donc $\sqrt{\frac{2 - \sqrt{3}}{4}} = \frac{\sqrt{6} - \sqrt{2}}{4}$

(b) D'après une formule de trigonométrie, $\left|\cos^2\theta = \frac{1+\cos(2\theta)}{2}\right|$

$$\cos^2\theta = \frac{1 + \cos(2\theta)}{2}$$

(c) Appliquons la formule précédente avec $\theta = \frac{\pi}{12}$. Sachant que $\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$, on obtient :

$$\cos^{2} \frac{\pi}{12} = \frac{1 + \frac{\sqrt{3}}{2}}{2} \\ = \frac{2 + \sqrt{3}}{4}$$

On en déduit deux valeurs possibles pour $\cos \frac{\pi}{12} : \cos \frac{\pi}{12} = \sqrt{\frac{2+\sqrt{3}}{4}}$ ou $\cos \frac{\pi}{12} = -\sqrt{\frac{2+\sqrt{3}}{4}}$.

Or $\cos \frac{\pi}{12} > 0$ car $\frac{\pi}{12} \in \left[0, \frac{\pi}{2}\right]$, intervalle sur lequel le cosinus est strictement positif.

Donc
$$\cos \frac{\pi}{12} = \sqrt{\frac{2+\sqrt{3}}{4}}$$
. Ainsi, d'après la première question, $\cos \left(\frac{\pi}{12}\right) = \frac{\sqrt{2}+\sqrt{6}}{4}$

Pour calculer $\sin \frac{\pi}{12}$, on utilise la formule de trigonométrie :

$$\sin^2 \frac{\pi}{12} + \cos^2 \frac{\pi}{12} = 1. \text{ Donc } \sin^2 \frac{\pi}{12} = 1 - \frac{1 + \frac{\sqrt{3}}{2}}{2} = \frac{2 - \sqrt{3}}{4}. \text{ Or } \sin \frac{\pi}{12} > 0 \text{ car } \frac{\pi}{12} \in \left] 0, \frac{\pi}{2} \right[. \text{ On en déduit } : \sin \frac{\pi}{12} = \sqrt{\frac{2 - \sqrt{3}}{4}}. \text{ D'où, d'après la première question } : \left[\sin \left(\frac{\pi}{12} \right) = \frac{\sqrt{6} - \sqrt{2}}{4} \right].$$

(d)
$$\frac{17\pi}{12} = 2\pi - \frac{7\pi}{12} \operatorname{donc} \cos\left(\frac{17\pi}{12}\right) = \cos\left(-\frac{7\pi}{12}\right) = \cos\left(\frac{7\pi}{12}\right) = \cos\left(\frac{\pi}{2} + \frac{\pi}{12}\right) = -\sin\left(\frac{\pi}{12}\right).$$
Ainsi, $\cos\left(\frac{17\pi}{12}\right) = -\frac{\sqrt{6} - \sqrt{2}}{4}$

2. Soit $\theta \in \mathbb{R}$ fixé quelconque.

 $\cos(3\theta) = \cos(2\theta + \theta) = \cos 2\theta \cos \theta - \sin 2\theta \sin \theta$. Or $\cos 2\theta = 2\cos^2 \theta - 1$ et $\sin 2\theta = 2\sin \theta \cos \theta$. Donc $\cos(3\theta) = (2\cos^2 \theta - 1)\cos \theta - 2\sin^2 \theta \cos \theta$. Puis, avec $\sin^2 \theta = 1 - \cos^2 \theta$:

$$\cos(3\theta) = 2\cos^3\theta - \cos\theta - 2\cos\theta(1 - \cos^2\theta). \text{ D'où } \cos 3\theta = 4\cos^3(\theta) - 3\cos(\theta)$$

3. (a) Tout réel x appartenant à [-1,1] peut s'écrire $x = \cos \theta$, avec $\theta \in \mathbb{R}$. Soit $x \in [-1,1]$. Il existe $\theta \in \mathbb{R}$ tel que $x = \cos \theta$. Ainsi : x est solution de $8x^3 - 6x - \sqrt{2} = 0$ si, et seulement si, $8\cos^3 \theta - 6\cos(\theta) - \sqrt{2} = 0$.

$$8\cos^{3}\theta - 6\cos(\theta) - \sqrt{2} = 0 \iff 2\left(4\cos^{2}\theta - 3\cos(\theta)\right) - \sqrt{2} = 0$$

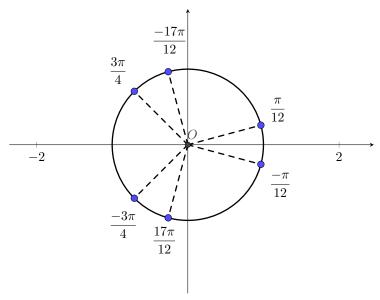
$$\iff 2\cos(3\theta) = \sqrt{2} \iff \cos(3\theta) = \frac{\sqrt{2}}{2}$$

$$\iff \cos(3\theta) = \cos\left(\frac{\pi}{4}\right)$$

$$\iff \exists \ k \in \mathbb{Z} \text{ tel que } \theta = \frac{\pi}{4} + 2k\pi \text{ ou } 3\theta = -\frac{\pi}{4} + 2k\pi$$

$$\iff \exists \ k \in \mathbb{Z} \text{ tel que } \theta = \frac{\pi}{12} + \frac{2k\pi}{3} \text{ ou } \theta = -\frac{\pi}{12} + \frac{2k\pi}{3}$$

On représente alors les valeurs possibles pour θ sur le cercle trigonométrique (*) :



Ainsi, on peut affirmer que:

$$8x^3 - 6x - \sqrt{2} = 0 \iff x = \cos\left(\frac{\pi}{12}\right) \text{ ou } x = \cos\left(\frac{3\pi}{4}\right) \text{ ou } x = \cos\left(\frac{17\pi}{12}\right).$$

Remarque (*). Comme le cosinus est une fonction paire, il n'est pas nécessaire de considérer les autres angles.

Ainsi, sur [-1,1], l'ensemble de solutions est

$$\mathcal{S}_{[-1,1]} = \left\{ \cos\left(\frac{\pi}{12}\right), \cos\left(\frac{3\pi}{4}\right), \cos\left(\frac{7\pi}{12}\right) \right\}.$$

(b) Dans la question précédente, on a trouvé trois expressions pour les solutions. Il faut s'assurer que ces trois expressions sont bien différentes deux à deux.

$$\frac{17\pi}{12} = -\frac{7\pi}{12} + 2\pi \text{ donc } \cos\frac{17\pi}{12} = \cos\left(-\frac{7\pi}{12}\right) = \cos\left(\frac{7\pi}{12}\right).$$

Or $0 < \frac{\pi}{12} < \frac{7\pi}{12} < \frac{3\pi}{4} < \pi$ et la fonction cosinus est strictement décroissante sur $[0, \pi]$,

donc
$$\cos\left(\frac{\pi}{12}\right) > \cos\left(\frac{7\pi}{12}\right) > \cos\left(\frac{9\pi}{12}\right)$$
. Ainsi, $\cos\left(\frac{\pi}{12}\right) > \cos\left(\frac{17\pi}{12}\right) > \cos\left(\frac{3\pi}{4}\right)$. Donc les trois solutions obtenues à la question précédentes sont deux à deux distinctes. Donc cette équation possède au-moins

trois solutions.

Or on a admis qu'elle possède au-plus 3 solutions. On en déduit que l'équation possède exactement 3 solutions, qui sont celles obtenues à la question précédente. On a calculé les valeurs des cosinus au début de

l'exercice. D'où l'ensemble des solutions de l'équation : $\mathcal{S} = \left\{ \frac{\sqrt{6} + \sqrt{2}}{4}, -\frac{\sqrt{6} - \sqrt{2}}{4}, -\frac{\sqrt{2}}{2} \right\}$

Exercice 4.

- 1. Première méthode.
 - (a) Soit $(a, b) \in \mathbb{R}^2$.

$$(a+b)^4 = (a+b)^3 \cdot (a+b)$$

= $(a^3 + 3a^2b + 3ab^2 + b^3)(a+b)$
= $a^4 + 3a^3b + 3a^2b^2 + ab^3 + a^3b + 3a^2b^2 + 3ab^3 + b^4$

Donc,
$$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$

(b) Soit
$$x \in \left[0, \frac{\pi}{2}\right]$$
. $\sqrt{\cos(x)} + \sqrt{\sin(x)} \ge 0$. Donc,

$$\begin{split} (E) &\Leftrightarrow \left(\sqrt{\cos(x)} + \sqrt{\sin(x)}\right)^4 = 1 \\ &\Leftrightarrow \sqrt{\cos(x)}^4 + 4\sqrt{\cos(x)}^3\sqrt{\sin(x)} + 6\sqrt{\cos(x)}^2\sqrt{\sin(x)}^2 + 4\sqrt{\cos(x)}\sqrt{\sin(x)}^3 + \sqrt{\sin(x)}^4 = 1 \\ &\Leftrightarrow \cos(x)^2 + 4\cos(x)\sqrt{\cos(x)}\sqrt{\sin(x)} + 6\cos(x)\sin(x) + 4\sqrt{\cos(x)}\sqrt{\sin(x)}\sin(x) + \sin(x)^2 = 1 \\ &\Leftrightarrow 4\cos(x)\sqrt{\cos(x)}\sqrt{\sin(x)} + 6\cos(x)\sin(x) + 4\sqrt{\cos(x)}\sqrt{\sin(x)}\sin(x) = 0 \\ &\Leftrightarrow 2\sqrt{\cos(x)\sin(x)}\left(2\cos(x) + 3\sqrt{\cos(x)\sin(x)} + 2\sin(x)\right) = 0 \end{split}$$

En divisant par 2, on obtient que l'équation (E) est équivalente à l'équation (E')

(c) • Si
$$x = 0$$
, $2\cos(0) + 3\sqrt{\cos(0)\sin(0)} + 2\sin(0) = 2 > 0$.

• Si
$$x = \frac{\pi}{2}$$
, $2\cos\left(\frac{\pi}{2}\right) + 3\sqrt{\cos\left(\frac{\pi}{2}\right)\sin\left(\frac{\pi}{2}\right)} + 2\sin\left(\frac{\pi}{2}\right) = 2 > 0$.

•
$$\sin x \in \left]0, \frac{\pi}{2}\right[, 2\cos(x) > 0, \sqrt{\sin(x)} > 0, \sqrt{\cos(x)} > 0 \text{ et } \sin(x) > 0.$$

Par somme de réels strictement positifs, $2\cos(x) + 3\sqrt{\cos(x)\sin(x)} + 2\sin(x) > 0$

Finalement,
$$\forall x \in \left[0, \frac{\pi}{2}\right], \ 2\cos(x) + 3\sqrt{\cos(x)\sin(x)} + 2\sin(x) > 0.$$

(d) Soit $x \in \left[0, \frac{\pi}{2}\right]$. On raisonne par équivalence.

$$\begin{aligned} (E) &\Leftrightarrow & \sqrt{\cos(x)\sin(x)} \left(2\cos(x) + 3\sqrt{\cos(x)\sin(x)} + 2\sin(x) \right) = 0 \\ &\Leftrightarrow & \sqrt{\cos(x)\sin(x)} = 0 \\ &\Leftrightarrow & \cos(x) = 0 \text{ ou } \sin(x) = 0 \\ &\Leftrightarrow & x = 0 \text{ ou } x = \frac{\pi}{2} \end{aligned}$$

Donc,
$$S = \left\{0, \frac{\pi}{2}\right\}$$

2. Deuxième méthode.

- (a) Soit $a \in]0,1[$. $a^2 \sqrt{a} = a^2 a^{1/2}$. Or, la fonction $x \mapsto a^x$ est décroissante sur \mathbb{R}_+ car $a \in]0,1[$. Donc, $a^2 a^{1/2} < 0$. Donc, $a^2 < \sqrt{a}$.
- $\begin{array}{l} \text{(b) Soit } x \in \left]0, \frac{\pi}{2} \right[. \ 1 > \cos(x) > 0 \ \text{et } 1 > \sqrt{\sin(x)} > 0. \\ \text{Par la question précédente, } \sqrt{\cos(x)} > (\cos(x))^2 \ \text{et } \sqrt{\sin(x)} > (\sin(x))^2. \\ \text{Par somme d'inégalités, } \sqrt{\cos(x)} + \sqrt{\sin(x)} > (\cos(x))^2 + (\sin(x))^2. \\ \text{Donc, } \sqrt{\cos(x)} + \sqrt{\sin(x)} > 1 \end{array} \right].$
- (c) D'après la question précédente, l'équation (E) n'a pas de solution dans $\left]0, \frac{\pi}{2}\right[$. Il reste à vérifier pour 0 et $\frac{\pi}{2}$.

• Pour
$$x = 0$$
, $\sqrt{\cos(0)} + \sqrt{\sin(0)} = 1$.

• Pour
$$x = \frac{\pi}{2}$$
, $\sqrt{\cos\left(\frac{\pi}{2}\right)} + \sqrt{\sin\left(\frac{\pi}{2}\right)} = 1$.

Donc,
$$S = \left\{0, \frac{\pi}{2}\right\}$$