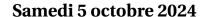
Devoir Surveillé n°2



Ensembles, Étude de fonctions et trigonométrie.

La clarté et la précision seront prises en compte dans l'appréciation de la copie.

Les conclusions des questions, devront être soulignés ou encadrés .

N'oubliez jamais que c'est la conclusion explicite d'un raisonnement qui doit achever la réponse à une question ou une sous-question.

L'usage de la calculatrice n'est pas autorisé.

Le sujet comporte 2 pages.

Exercice 1 – Calculs.

- 1. Montrer que $\forall x \in \mathbb{R}_+^*$, $\ln(x) < 2\sqrt{x}$.
- 2. Soit $f: x \mapsto (1-x)^{1-x}$. Déterminer l'ensemble de définition, l'ensemble de dérivabilité et la dérivée de f.

Exercice 2 – Étude de fonction.

Soit f la fonction définie par $\forall x \in \mathbb{R}$, $f(x) = x + (\sin(x))^2$.

- 1. (a) Montrer que $\forall x \in \mathbb{R}, x \le f(x) \le x + 1$.
 - (b) En déduire les limites de f en $-\infty$ et en $+\infty$.
 - (c) Déterminer $\lim_{x \to +\infty} \frac{(\sin(x))^2}{x}$. En déduire $\lim_{x \to +\infty} \frac{f(x)}{x}$.
- 2. (a) Montrer que $\forall x \in \mathbb{R}, f(x+\pi) = f(x) + \pi$.
 - (b) Tracer le tableau de variations de f sur $[0,\pi]$.
 - (c) Tracer le graphe de f sur $[0, \pi]$. Comment obtient-on le graphe sur \mathbb{R} ?
- 3. Déterminer les points où la courbe de *f* admet une tangente horizontale.
- 4. Tracer le graphe de f sur \mathbb{R} .

Exercice 3 – Équation et trigonométrie.

- 1. (a) Soit $\theta \in \mathbb{R}$, exprimer $\cos^2(\theta)$ en fonction de $\cos(2\theta)$. On démontrera la formule.
 - (b) Montrer que : $\cos\left(\frac{\pi}{8}\right) = \frac{\sqrt{2+\sqrt{2}}}{2}$ et $\cos\left(\frac{3\pi}{8}\right) = \frac{\sqrt{2-\sqrt{2}}}{2}$.
 - (c) En déduire les valeurs de $\sin\left(\frac{3\pi}{8}\right)$ et $\sin\left(\frac{\pi}{8}\right)$.
- 2. Montrer que $\forall \theta \in \mathbb{R}$, $\cos(3\theta) = 4\cos^3(\theta) 3\cos(\theta)$.
- 3. On veut résoudre l'équation :

$$8x^3 - 6x - \sqrt{2 - \sqrt{2}} = 0.$$

On admet que cette équation admet au plus trois solutions.

- (a) Rechercher les solutions de cette équation sur [-1,1], en posant $x = \cos(\theta)$. On exprimera les solutions sous forme de cosinus.
- (b) En déduire l'ensemble des solutions de (E). On exprimera les solutions avec des racines.

Exercice 2 – Étude de fonction bis.

Soit
$$f: x \mapsto \frac{\ln(x^2 - 1)}{x}$$
 et $g: x \mapsto 2(x + 1) - x \ln(x)$.

- 1. Etude de f.
 - (a) Déterminer l'ensemble de définition de f.
 - (b) Justifier que f est dérivable sur D_f et calculer sa dérivée. On l'exprimera en fonction de g.
- 2. Etude de g.
 - (a) Déterminer l'ensemble de définition de g.
 - (b) Déterminer $\lim_{x\to 0^+} g(x)$.
 - (c) Déterminer $\lim_{x \to +\infty} g(x)$.
 - (d) Justifier que g est dérivable sur D_g et calculer sa dérivée.
 - (e) En déduire le tableau de variation de g sur D_g .
 - (f) Justifier que l'équation g(x) = 0 admet une unique solution. On la note α . On ne cherchera pas à déterminer sa valeur .
 - (g) En déduire le signe de g(x) selon la valeur de x.
- 3. En déduire le tableau de variation de f.