Corrigé du devoir surveillé du samedi 25 septembre 2021

Exercice 1:

- 1. Soit $n \in \mathbb{N}$ fixé.
 - (a) $\exists k \in \mathbb{Z}, n = 2k$
 - (b) $\forall k \in \mathbb{Z}, \ n \neq 8k$.
- 2. Soit $n \in \mathbb{N}^*$. On suppose n impair.

$$\Rightarrow \exists k \in \mathbb{Z}, \ n = 2k + 1.$$

$$\Rightarrow \exists k \in \mathbb{Z}, \ n^2 - 1 = (2k + 1)^2 - 1 = 4k^2 + 4k + 1 - 1 = 4k(k + 1).$$

$$\Rightarrow \exists \ \tilde{k} \in \mathbb{Z}, \ n^2 - 1 = 4.2\tilde{k} = \tilde{k}.$$

Donc, 8 divise $n^2 - 1$.

3. La réciproque de l'implication est : n est pair $\Rightarrow n^2-1$ n'est pas divisible par 8.

Soit n un entier pair. $\exists k \in \mathbb{Z}, \ n = 2k$.

$$\Rightarrow n^2 - 1 = 4k^2 - 1 = 4k^2 - 2 + 1 = 2(2k^2 - 1) + 1.$$

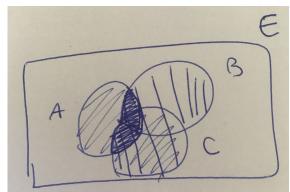
$$\Rightarrow \exists K \in \mathbb{Z}, \ n^2 - 1 = 2K + 1.$$

Donc, $n^2 - 1$ est impair. En particulier, il n'est pas divisible par 8.

Donc, la réciproque est vraie.

Exercice 2:

1.



- 2. (a) On peut écrire $14 = \sqrt{14}^2 0^2$ donc $14 \in A$.
 - (b) On peut écrire $-25 = 0^2 5^2$ donc $-25 \in A$.
 - (c) On peut aussi montrer que $A = \mathbb{R}$ par double inclusion.
 - Soit $a \in A$. Par définition, $a \in \mathbb{R}$ donc $A \subset \mathbb{R}$.
 - Soit $x \in \mathbb{R}$. Si $x \ge 0$, on peut écrire $x = (\sqrt{x})^2 0^2$ donc $x \in A$. Si x < 0, on peut écrire $x = 0^2 (\sqrt{-x})^2$ donc $x \in A$. Donc, $\forall x \in \mathbb{R}, x \in A$. Donc, $\mathbb{R} \subset A$.

Par double inclusion, $\mathbb{R} = A$.

Exercice 3:

- 1. Questions préliminaires :
 - (a) Soit $a \in \mathbb{R}$. La contraposée de P est

"
$$\exists n \in \mathbb{N}^*, \sin\left(\frac{a}{2^n}\right) = 0 \Rightarrow \sin(a) = 0$$
"

On raisonne par contraposée donc on suppose qu'il existe un entier $n \in \mathbb{N}^*$ tel que $\sin\left(\frac{a}{2^n}\right) = 0$. $\Rightarrow \exists k \in \mathbb{Z}, \quad \frac{a}{2^n} = k\pi \Rightarrow a = 2^n k\pi \Rightarrow \sin(a) = 0$.

(b)
$$\forall x \in \mathbb{R}$$
, $\sin(2x) = 2\sin(x)\cos(x)$.
Si on l'applique à $x = \frac{a}{2^{n+1}}$, on obtient $\sin\left(\frac{a}{2^n}\right) = 2\sin\left(\frac{a}{2^{n+1}}\right)\cos\left(\frac{a}{2^{n+1}}\right)$.

2. Soit $a \in \mathbb{R}$ fixé tel que $\sin(a) \neq 0$. On raisonne par récurrence.

$$\forall n \in \mathbb{N}^*, \ P(n) : "\cos\left(\frac{a}{2}\right) \times \cos\left(\frac{a}{2^2}\right) \times \dots \times \cos\left(\frac{a}{2^n}\right) = \frac{\sin(a)}{2^n \sin\left(\frac{a}{2^n}\right)},$$

• <u>Initialisation</u>: Pour n = 1. $\sin(a) = 2\sin\left(\frac{a}{2}\right)\cos\left(\frac{a}{2}\right) \Rightarrow \cos\left(\frac{a}{2}\right) = \frac{\sin(a)}{2\sin\left(\frac{a}{2}\right)}$.

Donc, P(1) est vraie.

• Hérédité : Supposons qu'il existe $n \in \mathbb{N}^*$ tel que P(n) soit vraie.

On utilise le même formule de trigonométrie : $\cos\left(\frac{a}{2^{n+1}}\right) = \frac{\sin\left(\frac{a}{2^n}\right)}{2\sin\left(\frac{a}{2^{n+1}}\right)}$

$$\cos\left(\frac{a}{2}\right) \times \cos\left(\frac{a}{2^{2}}\right) \times \dots \times \cos\left(\frac{a}{2^{n+1}}\right) = \left(\cos\left(\frac{a}{2}\right) \times \cos\left(\frac{a}{2^{2}}\right) \times \dots \times \cos\left(\frac{a}{2^{n}}\right)\right) \times \cos\left(\frac{a}{2^{n+1}}\right)$$

$$= \frac{\sin(a)}{2^{n} \sin\left(\frac{a}{2^{n}}\right)} \times \cos\left(\frac{a}{2^{n+1}}\right)$$

$$= \frac{\sin(a)}{2^{n} \sin\left(\frac{a}{2^{n}}\right)} \times \frac{\sin\left(\frac{a}{2^{n}}\right)}{2 \sin\left(\frac{a}{2^{n+1}}\right)}$$

$$= \frac{\sin(a)}{2^{n+1} \sin\left(\frac{a}{2^{n+1}}\right)}$$

• Conclusion : Par le principe de récurrence,

$$\forall n \in \mathbb{N}^*, \cos\left(\frac{a}{2}\right) \times \cos\left(\frac{a}{2^2}\right) \times \dots \times \cos\left(\frac{a}{2^n}\right) = \frac{\sin(a)}{2^n \sin\left(\frac{a}{2^n}\right)}$$

Exercice 4:

- 1. $\sqrt[3]{1} = \mathbf{1} \operatorname{car} \mathbf{1}^3 = 1$, $\sqrt[3]{-1} = -1 \operatorname{car} (-1)^3 = -1$, $\sqrt[3]{27} = 3 \operatorname{car} 3^3 = 27$, $\sqrt[3]{-27} = -3 \operatorname{car} (-3)^3 = 27$.
- 2. (a) $\alpha^3 + \beta^3 = 2 + \sqrt{5} + 2 \sqrt{5} = 4$ et $\alpha\beta = \sqrt[3]{(2 + \sqrt{5})(2 \sqrt{5})} = \sqrt[3]{2^2 5} = \sqrt[3]{-1} = -1$. Donc $\alpha^3 + \beta^3 = 4$ et $\alpha\beta = -1$.
 - (b) D'après la formule du binôme, $(\alpha + \beta)^3 = \alpha^3 + 3\alpha^2\beta + 3\alpha\beta^2 + \beta^3$
 - (c) On en déduit : $(\alpha + \beta)^3 = \alpha^3 + \beta^3 + 3\alpha\beta(\alpha + \beta) = 4 3(\alpha + \beta)$. Donc $(\alpha + \beta)^3 = 4 3(\alpha + \beta)$.
- 3. (a) Calculons $P(u): P(u) = P(\alpha + \beta) = (\alpha + \beta)^3 + 3(\alpha + \beta) 4 = 0$ d'après la question précédente. Donc u est racine de P.
 - (b) On constate que P(1) = 0. Donc 1 est racine évidente de P
 - (c) Puisque 1 est racine de P et que P est de degré 3, il existe $(a, b, c) \in \mathbb{R}^3$ tels que $\forall x \in \mathbb{R}, \ P(x) = (x-1)(ax^2 + bx + c)$.

Développons le produit $(x-1)(ax^2+bx+c)$: $(x-1)(ax^2+bx+c)=ax^3+(b-a)x^2+(c-b)x-c$. Ainsi :

$$\forall x \in \mathbb{R}, \ x^3 + 3x - 4 = (x - 1)(ax^2 + bx + c) \iff \forall x \in \mathbb{R}, \ x^3 + 3x - 4 = ax^3 + (b - a)x^2 + (c - b)x^2 + (c -$$

Donc
$$\forall x \in \mathbb{R}, \ P(x) = (x-1)(x^2+x+4)$$

(d) Résolvons l'équation $\mathcal{E}: P(x) = 0$, d'inconnue $x \in \mathbb{R}$:

$$P(x)=0\iff (x-1)(x^2+x+4)=0$$
 d'après la question précédente
$$\iff x-1=0 \text{ ou } x^2+x+4=0 (\mathcal{E}')$$

$$\iff x=1$$

En effet, l'équation \mathcal{E}' est une équation du second degré de discriminant -15 < 0 donc elle n'a pas de solution réelle.

Ainsi, l'ensemble des solutions de l'équation P(x) = 0 est $\{1\}$

- (e) Nous avons vu que u est une racine de P. Or P a une unique racine réelle qui est 1. Puisque u est un nombre réel, on en déduit que u est l'unique racine de P. Donc u = 1.
- 4. (a) Développons : $\forall x \in \mathbb{R}, \ Q(x) = x^2 (\alpha + \beta)x + \alpha\beta$. Or nous savons (d'après les questions précédentes) que $\alpha + \beta = u = 1$ et que $\alpha\beta = -1$. $\boxed{\text{Donc } \forall x \in \mathbb{R}, \ Q(x) = x^2 - x - 1}.$
 - (b) D'après la définition de Q ($Q(x) = (x \alpha)(x \beta)$), les racines de Q sont α et β . Donc α et β sont les racines de l'équation $x^2 x 1 = 0$.
 - (c) Le discriminant du trinôme x^2-x-1 vaut 5:Q a donc deux racines qui sont $\frac{1+\sqrt{5}}{2}$ et $\frac{1-\sqrt{5}}{2}$. Or $\alpha>0>\beta$. On en déduit $\alpha=\frac{1+\sqrt{5}}{2}$ et $\beta=\frac{1-\sqrt{5}}{2}$. Remarque : On peut vérifier par exemple que $\alpha^3=\frac{1+3\sqrt{5}+15+5\sqrt{5}}{8}=2+\sqrt{5}$