Exercice 1. Soit $n \in \mathbb{N}^*$.

- 1. Exprimez à l'aide des symboles Σ et \prod les quantités suivantes.
 - (a) 3+4+5+6+7+8+9+10
 - (b) Soit $a \in \mathbb{R}$. $1 + a^2 + a^4 + \dots + a^{2n}$.
 - (c) $2 \times 4 \times 6 \times \cdots \times (2n-2) \times 2n$
 - (d) $1 \times 3 \times 5 \times \cdots \times (2n-1) \times (2n+1)$
- 2. Ecrire les sommes et produits suivants en extension.

 - (a) $\sum_{k=1}^{12} 2k$. (b) $\sum_{k=1}^{2n} 2^k$. (c) $\sum_{k=1}^{n} k(k-1)$. (d) $\prod_{k=1}^{n} 1$.

Exercice 2. Soit $n \in \mathbb{N}^*$. Calculez les quantités suivantes.

- 1. $\sum_{k=1}^{n} (2k-1)$ 3. $\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{2^k}$ 5. $\sum_{k=1}^{n} k(k+1)$.

Exercice 3.

1. Démontrer qu'il existe deux réels a et b tels que

$$\forall k \in \mathbb{N}^*, \quad \frac{1}{k(k+1)} = \frac{a}{k} + \frac{b}{k+1}.$$

2. En déduire l'expression simplifiée de $\sum_{k=1}^{n} \frac{1}{k(k+1)}$.

Exercice 4. Soit $(q, n) \in \mathbb{R} \times \mathbb{N}^*$. Calculez les sommes et les produits suivants.

- 1. $\sum_{k=1}^{n} q^k (1-q)$ 3. $\sum_{k=1}^{n} k \times k!$
- 2. $\prod_{k=2}^{n} \frac{k-1}{k}$ 4. $\prod_{k=2}^{n} \left(1 \frac{1}{k^2}\right)$

Exercice 5. Soit $n \in \mathbb{N}^*$.

- 1. Exprimez de deux façons la somme suivante. $S = \sum_{k=1}^{n} \left[(k+1)^4 k^4 \right]$.
- 2. En déduire la valeur de $\sum_{k=1}^{n} k^3$.

Exercice 6. Soit $(x, n) \in \mathbb{R} \times \mathbb{N}^*$.

- 1. A l'aide de formule de trigonométrie, exprimer cos(x) comme un quotient de sinus.
- 2. Calculez $\prod_{k=1}^{n} \cos\left(\frac{x}{2^k}\right)$.

Exercice 7. Résoudre l'équation suivante.

$$\binom{n}{1} + \binom{n}{2} + \binom{n}{3} = 5n.$$

Exercice 8. Soit $n \in \mathbb{N}^*$. Calculez les sommes suivantes.

$$1. \sum_{i=0}^{n} \binom{n}{i}$$

1.
$$\sum_{i=0}^{n} \binom{n}{i}$$
 3.
$$\sum_{i=1}^{n} \binom{n}{i} 3^{i-1}$$
.

2.
$$\sum_{k=0}^{n} (-1)^k \binom{n}{k}$$
 4. $\sum_{i=0}^{n-1} \frac{\binom{n}{i}}{2^i}$

4.
$$\sum_{i=0}^{n-1} \frac{\binom{n}{i}}{2^i}$$

Exercice 9. Soit n un entier naturel non nul.

- 1. Calculez $\sum_{k=1}^{n} \binom{n-1}{k-1}$.
- 2. Soit $1 \le k \le n$. Démontrez que $k \binom{n}{k} = n \binom{n-1}{k-1}$.
- 3. En déduire la valeur de $\sum_{k=1}^{n} k \binom{n}{k}$.
- 4. [*] Calculer $\sum_{k=0}^{n} \frac{1}{k+1} \binom{n}{k}$.

Exercice 10.

- 1. Quel est le coefficient devant a^4b^2 dans le développement de $(a-b)^6$?
- 2. Quel est le coefficient de $a^4b^2c^3$ dans $(a-b+2c)^9$?

Exercice 11. Soit $n \in \mathbb{N}^*$. Ecrire les sommes doubles suivantes sous forme de deux sommes puis les calculer.

$$1. \sum_{\substack{1 \leq i \leq n \\ 1 \leq i \leq n}} 1$$

4.
$$\sum_{ij}$$
 ij

1.
$$\sum_{\substack{1 \le i \le n \\ 1 \le j \le n}} 1$$
2.
$$\sum_{\substack{1 \le i \le n \\ 1 \le j \le n}} j$$
3.
$$\sum_{\substack{1 \le i \le n \\ 1 \le j \le n}} (ij)$$
5.
$$\sum_{\substack{1 \le i \le n \\ 1 \le j \le n}} (i+j)^2$$

5.
$$\sum_{i=1}^{n} (i+j)$$

$$3. \sum_{1 \le i \le j \le n}$$

$$\begin{array}{c}
1 \leq i \leq n \\
1 \leq j \leq n
\end{array}$$

Exercice 12. [*] Soit $n \in \mathbb{N}^*$.

On définit $P = \sum_{0 \le 2k \le n} \binom{n}{2k}$ et $I = \sum_{0 \le 2k+1 \le n} \binom{n}{2k+1}$.

- 1. Calculer P + I et P I.
- 2. En déduire I et P.

Exercice 13. [*] Soit $(a, b, n) \in \mathbb{R}^2 \times \mathbb{N}$. On pose $A_n = (a-b)^{2n} + (a+b)^{2n}$.

- 1. Calculez A_n .
- 2. En déduire que le réel $s_n = (1 \sqrt{2})^{2n} + (1 + \sqrt{2})^{2n}$ est un entier naturel pair.