Devoir Surveillé n°2

Samedi 4 octobre 2025

1.1 & 1.2

Fonctions usuelles, trigonométrie –

Exercice 1 - Raisonnements.

- 1. Traduire avec des quantificateurs la phrase suivante. Entre deux nombres réels distincts, on peut toujours trouver un nombre rationnel.
- 2. Montrer que

 $\forall \in \mathbb{R}, \ a^2 \text{ n'est pas un multiple de } 16 \Longrightarrow \frac{a}{2} \text{ n'est pas un entier pair.}$

3. Soit *x* un irrationnel positif. Montrer que \sqrt{x} est aussi un irrationnel.

Exercice 2 - Ensembles.

Soit E un ensemble. Soient A, B et C trois parties de E. *Les 2 questions sont indépendantes*.

- 1. Montrer que $\overline{A \cup \overline{B}} = \overline{A} \cap B$.
- 2. Montrer que $(A \cap C) \cup (\overline{A} \cap C) = C$.

Exercice 3 - Une équation polynomiale.

Soit la fonction polynomiale définie sur \mathbb{R} par :

$$\forall x \in \mathbb{R}, \ P(x) = x^4 + 2x^3 - x^2 + 2x + 1$$

On considère l'équation (E) : P(x) = 0. Le but de cet exercice est de résoudre cette équation d'inconnue $x \in \mathbb{R}$.

- 1. Montrer que 0 n'est pas solution de (E).
- 2. Soit $\alpha \in \mathbb{R}^*$. Montrer que si α est solution de (E), alors $\frac{1}{\alpha}$ est aussi solution de (E).
- 3. Soit $x \in \mathbb{R}^*$. Montrer que :

$$P(x) = 0 \iff x^2 + 2x - 1 + \frac{2}{x} + \frac{1}{x^2} = 0 (E')$$

4. Déterminer trois réels *a*, *b*, et *c* tels que :

$$\forall x \in \mathbb{R}^*, (E') \iff a\left(x + \frac{1}{x}\right)^2 + b\left(x + \frac{1}{x}\right) + c = 0.$$

- 5. Résoudre $y^2 + 2y 3 = 0$
- 6. Déduire des questions précédentes l'ensemble des solutions de (E') puis celui de (E).
- 7. Vérifier que le résultat obtenu est cohérent avec le résultat de la question 2.

Exercice 4 - Calcul de $\cos\frac{\pi}{10}$ avec les polynômes de Tchebitchev.

Considérons la suite de fonctions polynomiales définie de la manière suivante :

$$\begin{aligned} \forall x \in \mathbb{R}, \quad & \mathbf{T}_0(x) = 1, \\ & \mathbf{T}_1(x) = x \\ & \forall n \in \mathbb{N}^*, \mathbf{T}_{n+1}(x) = 2x\mathbf{T}_n(x) - \mathbf{T}_{n-1}(x) \end{aligned}$$

- 1. Soit $x \in \mathbb{R}$. Déterminer $T_n(x)$ pour $n \in \{2, 3, 4, 5\}$.
- 2. (a) Pour tout $\theta \in \mathbb{R}$, pour tout $n \in \mathbb{N}$, exprimer $\cos((n+1)\theta) + \cos((n-1)\theta)$ en fonction de $\cos(\theta)$ et $\cos(n\theta)$.
 - (b) Soit $\theta \in \mathbb{R}$ fixé. Déduire de la question précédente que,

pour tout
$$n \in \mathbb{N}$$
, $T_n(\cos(\theta)) = \cos(n\theta)$.

Toute récurrence sera particulièrement soignée.

- (c) Calculer $T_n(-1)$ et $T_n(1)$ en fonction de $n \in \mathbb{N}$. On pourra utiliser le résultat de la question précédente.
- 3. (a) Résoudre l'équation suivante, d'inconnue $\theta \in \mathbb{R}$:

$$cos(5\theta) = 0$$

- (b) Représenter les solutions sur le cercle trigonométrique.
- (c) Montrer que $\cos \frac{\pi}{10} > \frac{\sqrt{3}}{2}$.
- (d) En considérant la fonction polynomiale T_5 et la relation établie à la question 2b, montrer que $\cos\frac{\pi}{10}$ est une solution de l'équation (E) : $16x^4 20x^2 + 5 = 0$ (dans cette question, on ne demande pas de résoudre l'équation (E)).
- (e) Résoudre l'équation (E) (on pourra poser $y = x^2$).
- (f) Classer les racines de l'équation (E) dans l'ordre croissant : $x_1 < x_2 < x_3 < x_4$ et montrer que $x_3 < \frac{\sqrt{3}}{2}$ (on pourra commencer par montrer que $x_3^2 < \frac{3}{4}$).
- (g) En déduire la valeur exacte de $\cos \frac{\pi}{10}$.