Prénom:

Interrogation $n^{\circ}4$: Sommes **B**

Nom:

1. Soit $n \in \mathbb{N}$. Rappeler les formules suivantes.

	100
$A_{\mathbf{j}}$	5

$$\sum_{k=0}^{n} k^2 = \frac{\bigcap \left(p+\Lambda\right) \left(2 \bigcap + \Lambda\right)}{6}$$

$$\sum_{k=0}^{n} \frac{1}{2} = \frac{2}{2}$$

$$\sum_{k=0}^{n} 5^k = \frac{1 - 5^{n+1}}{1 - 5}$$

 \wedge 2. Soit $n \in \mathbb{N}^*$. Déterminer une autre expression de $\sum_{k=1}^{n} (k+3)^2$.

3. Soit $n \in \mathbb{N}$. Soit $k \in \mathbb{N}$. Donner, selon la valeur de k par rapport à n, le valeur de $\binom{n}{k}$.

2 4. Citer les 8 premières lignes du triangle de Pascal.

5. Exercices

15 (a) Calculer la somme suivante. $S = \sum_{k=1}^{n} k(k+1)$.

15 (b) Calculer le produit suivant. $P = \prod_{k=1}^{n} ke^{k}$.

15 (c) Soit $n \in \mathbb{N}^*$. Déterminer $\prod_{k=1}^n \left(1 + \frac{1}{k}\right)$.

2)
$$\sum_{k=1}^{n} (k+3)^3 = \sum_{k=4}^{n+3} k^3$$

$$(5) @ S = \sum_{k=1}^{2} \frac{1}{k} + \sum_{k=1}^{2} k$$

$$= \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2}$$

$$= \frac{n(n+1)(2n+1)}{2} + \frac{n(n+1)(n+2)}{3}$$

$$= \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)(n+2)}{3}$$

$$= \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)(n+2)}{3}$$

$$= \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)(n+2)}{3}$$

$$= \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)(2n+1)}{3}$$

Prénom:

Interrogation $n^{\circ}4$: Sommes **A**

Nom:

1. Soit $n \in \mathbb{N}$. Rappeler les formules suivantes.

15	$\sum_{k=0}^{n} k = \frac{n(p+1)}{2}$	$\sum_{k=0}^{n} 2 = 2 \left(\text{ STA} \right)$	$\sum_{k=0}^{n} \frac{1}{3^k} = \frac{1 - (1/3)^{n+1}}{1 - 1/3}$
----	---------------------------------------	---	--

- 3. Soit $n \in \mathbb{N}$. Soit $k \in \mathbb{N}$. Donner, selon la valeur de k par rapport à n, le valeur de $\binom{n}{k}$.
- 4. Soit $(a,b) \in \mathbb{R}^2$. Soit $n \in \mathbb{N}^*$. Citer la formule du binôme de Newton.
 - 5. Exercices

(a) Calculer la somme suivante.
$$S = \sum_{k=1}^{n} (2k-1)$$
.

(b) Calculer le produit suivant. $P = \prod_{k=1}^{n} ke^{k}$.

$$\bigwedge$$
 (c) Soit $n \in \mathbb{N}^*$. Déterminer $\sum_{k=2}^n \ln\left(\frac{k+1}{k}\right)$.

2)
$$\sum_{k=4}^{2} (k-3)^{2} = \sum_{k=1}^{3} k^{2}$$

5) @
$$S = 2\sum_{k=1}^{\infty} k - \sum_{k=1}^{\infty} 1$$

$$= n(n+1) - n$$

$$= n + \sum_{k=1}^{\infty} n(n+1) - \sum_{k=1}$$