$\underline{Chapitre~07}~-~Nombres~complexes~~{}_{\scriptscriptstyle{(prof)}}$

Table des matières

1	Nombres complexes	2
	1.1 Affixe et image dans la plan complexe	2
	1.2 Partie réelle et partie imaginaire d'un nombre complexe	3
2	Opérations sur les complexes	4
	2.1 Conjugaison d'un nombre complexe	4
	2.2 Module d'un nombre complexe	
3	Formes trigonométriques et exponentielles	7
	3.1 Les nombres complexes de module 1	7
	3.2 Arguments et forme trigonométrique	
4	Equations complexes du second degré	11
	4.1 Equations du second degré à coefficients réels	11
	4.2 Relation coefficients—racines	
	4.3 Racine carrée d'un complexe.	

1 Nombres complexes

Définition 1.

Soit **i** tel que $\mathbf{i}^2 = -1$.

On appelle ensemble des nombres complexes, noté \mathbb{C} , l'ensemble

$$\mathbb{C} = \left\{ x + \mathbf{i}y, \ (x, y) \in \mathbb{R}^2 \right\}$$

On dit que z est donné sous forme algébrique.

Le réel x est appelé la partie réelle de z. On le note Re(z).

Le réel y est appelé la partie imaginaire de z. On le note Im(z).

Exemple 2. Règles de calcul.

- Distributivité : $\mathbf{i}(2 \mathbf{i}) = 2\mathbf{i} \mathbf{i}^2 = 1 + 2\mathbf{i}$
- Factorisation: $2\mathbf{i} + 2 \sqrt{3}\mathbf{i} = 2 + \mathbf{i}(2 \sqrt{3})$
- Identités remarquables : $(2 \mathbf{i})(2 + \mathbf{i}) = 2^2 \mathbf{i}^2 = 5$

Exemple 3. Résolution d'équation.

Déterminer les complexes
$$z$$
 tels que $z = 3z + \mathbf{i} + 3$. $z = 3z + \mathbf{i} + 3 \Leftrightarrow -2z = \mathbf{i} + 3 \Leftrightarrow z = \frac{-3}{2} - \mathbf{i}\frac{1}{2}$.

Exemple 4. Donner l'écriture algébrique des complexes suivants.

1.
$$z = \frac{1}{2 + i}$$

1. $z = \frac{1}{2+\mathbf{i}}$. On multiplie par *la partie conjuguée*

$$\frac{1}{2+\mathbf{i}} = \frac{2-\mathbf{i}}{(2+\mathbf{i})(2-\mathbf{i})} = \frac{2-\mathbf{i}}{4-\mathbf{i}^2} = \frac{2-\mathbf{i}}{5} = \frac{2}{5} - \mathbf{i}\frac{1}{5}$$

2.
$$z = \frac{3+2i}{2+i}$$

2. $z = \frac{3+2\mathbf{i}}{2+\mathbf{i}}$. On multiplie par la partie conjuguée

$$\frac{3+2\mathbf{i}}{2+\mathbf{i}} = \frac{(3+2\mathbf{i})(2-\mathbf{i})}{(2+\mathbf{i})(2-\mathbf{i})} = \frac{6-3\mathbf{i}+4\mathbf{i}-2\mathbf{i}^2}{4-\mathbf{i}^2} = \frac{8+\mathbf{i}}{5} = \frac{8}{5} + \mathbf{i}\frac{1}{5}$$

1.1 Affixe et image dans la plan complexe

On munit le plan \mathcal{P} d'un repère orthonormé direct $(0, \overrightarrow{u}, \overrightarrow{v})$.

Définition 5.

- Soit $z = x + \mathbf{i}y \in \mathbb{C}$. On appelle image de z le point M(x, y) du plan \mathcal{P} .
- Soit A(x,y) un point du plan \mathcal{P} . On appelle <u>affixe de A</u> et on note z_A le complexe $z_A = x + \mathbf{i}y$.
- Soient A et B deux points du plan \mathcal{P} . <u>L'affixe du vecteur \overrightarrow{AB} </u> est le complexe $z_B - z_A$.

Exemple 6. Placer, dans le plan, les images des complexes $z = 3 + \mathbf{i}$, $z = 2\mathbf{i}$ et $z = \frac{1}{1 - \mathbf{i}}$.

$$\frac{1}{1-\mathbf{i}} = \frac{1+\mathbf{i}}{(1-\mathbf{i})(1+\mathbf{i})} = \frac{1+\mathbf{i}}{1-\mathbf{i}^2} = \frac{1}{2} + \mathbf{i}\frac{1}{2}.$$



1.2 Partie réelle et partie imaginaire d'un nombre complexe

Définition 7.

Soit $z \in \mathbb{C}$.

Lorsque la partie réelle de z est nulle, on dit que z est un <u>imaginaire pur</u> : $z \in i\mathbb{R}$. Lorsque la partie imaginaire de z est nulle, on dit que z est un <u>réel</u> : $z \in \mathbb{R}$.

Remarque 8. La partie réelle et la partie imaginaire d'un complexe sont des réels.

Théorème 9 (Linéarité des parties réelles et imaginaires).

Soit $(z, z') \in \mathbb{C}^2$. Soit $\lambda \in \mathbb{R}$.

- 1. Re(z + z') = Re(z) + Re(z')
- 2. Im(z + z') = Im(z) + Im(z').
- 3. $\operatorname{Re}(\lambda.z) = \lambda.\operatorname{Re}(z)$
- 4. $\operatorname{Im}(\lambda.z) = \lambda.\operatorname{Im}(z)$

Démonstration: Soit $(z, z') \in \mathbb{C}^2$. $\exists (x, y, x', y') \in \mathbb{R}^4$ tel que $z = x + \mathbf{i}y$ et $z = x' + \mathbf{i}y'$.

1. $z + z' = x + \mathbf{i}y + x' + \mathbf{i}y' = x + x' + \mathbf{i}(y + y')$.

Par identification, $\operatorname{Re}(z+z') = x + x' = \operatorname{Re}(z) + \operatorname{Re}(z')$ et $\operatorname{Im}(z+z') = x + x' = \operatorname{Im}(z) + \operatorname{Im}(z')$.

2. Soit $\lambda \in \mathbb{R}$.

 $\lambda.z = \lambda(x + \mathbf{i}y) = \lambda.x + \mathbf{i}\lambda.y.$

Par identification, $\operatorname{Re}(\lambda.z) = \lambda.x = \lambda.\operatorname{Re}(z)$ et $\operatorname{Im}(\lambda.z) = \lambda.y = \lambda.\operatorname{Im}(z)$.

Théorème 10.

Il y a unicité de la forme algébrique.

$$\forall (z, z') \in \mathbb{C}^2, \quad z = z' \Leftrightarrow \left\{ \begin{array}{l} \operatorname{Re}(z) = \operatorname{Re}(z') \\ \operatorname{Im}(z) = \operatorname{Im}(z') \end{array} \right.$$

Remarque 11. Une équation avec des complexes donne donc deux équations avec des réels.

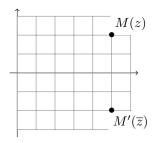
2 Opérations sur les complexes

2.1 Conjugaison d'un nombre complexe

Définition 12.

Soit $z = x + \mathbf{i}y \in \mathbb{C}$.

On appelle conjugué de z et on note \overline{z} le complexe défini par $\overline{z} = x - \mathbf{i}y$.



Exemple 13. Résoudre dans \mathbb{C} l'équation $z = 3\overline{z} + \mathbf{i}$.

Soit $z \in \mathbb{C}$. Il existe deux réels x et y tels que $z = x + \mathbf{i}y$.

$$z = 3\overline{z} + \mathbf{i} \Leftrightarrow x + \mathbf{i}y = 3(x - \mathbf{i}y) + \mathbf{i} \Leftrightarrow \left\{ \begin{array}{l} x = 3x \\ y = -3y + 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = 0 \\ y = \frac{1}{4} \end{array} \right. \Leftrightarrow z = \frac{\mathbf{i}}{4}.$$

Théorème 14.

Soit $(z, z') \in \mathbb{C}^2$.

$$1. \ \overline{\overline{z}} = z.$$

2.
$$\overline{z+z'} = \overline{z} + \overline{z'}$$
 et $\overline{z-z'} = \overline{z} - \overline{z'}$

3. Soit
$$\lambda \in \mathbb{R}$$
. $\overline{\lambda z} = \lambda . \overline{z}$.

4.
$$\overline{z}\overline{z'} = \overline{z}\overline{z'}$$
.

5. Si
$$z' \neq 0$$
, $\overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}}$.

Démonstration: Soit $(z, z') \in \mathbb{C}^2$. $\exists (x, y, x', y') \in \mathbb{R}^4$ tel que $z = x + \mathbf{i}y$ et $z = x' + \mathbf{i}y'$.

1.
$$\overline{\overline{z}} = \overline{x - \mathbf{i}y} = x - \mathbf{i}(-y) = x + \mathbf{i}y = z$$
.

2.
$$\overline{z+z'} = \overline{x+x'+\mathbf{i}(y+y')} = x+x'-\mathbf{i}(y+y') = x-\mathbf{i}y+x'-\mathbf{i}y' = \overline{z}+\overline{z'}$$
.

3. Soit
$$\lambda \in \mathbb{R}$$
.

$$\overline{\lambda.z} = \overline{\lambda.x + \mathbf{i}y} = \lambda.x - \mathbf{i}\lambda.y = \lambda\overline{z}.$$

4.
$$zz' = (x + \mathbf{i}y)(x' + \mathbf{i}y') = xx' - yy' + \mathbf{i}(xy' + x'y) \Rightarrow \overline{zz'} = xx' - yy' - \mathbf{i}(xy' + x'y).$$

 $\overline{z}.\overline{z'} = (x - \mathbf{i}y)(x' - \mathbf{i}y') = xx' - yy' + \mathbf{i}(-xy' - x'y) = \overline{zz'}.$

5. On suppose
$$z' \neq 0$$
.

$$\frac{z}{z'} = \frac{(x + iy)(x' - iy')}{(x' + iy')(x' - iy')} = \frac{xx' + yy' + i(-xy' + x'y)}{(x')^2 + (y')^2} \Rightarrow \overline{\left(\frac{z}{z'}\right)} = \frac{xx' + yy' - i(-xy' + x'y)}{(x')^2 + (y')^2}.$$

$$\frac{\overline{z}}{\overline{z'}} = \frac{(x - iy)(x' + iy')}{(x' - iy')(x' + iy')} = \frac{xx' + yy' + i(xy' - yx')}{(x')^2 + (y')^2} = \frac{xx' + yy' - i(-xy' + yx')}{(x')^2 + (y')^2} = \overline{\left(\frac{z}{z'}\right)}.$$

Théorème 15.

Soit $z \in \mathbb{C}$.

1.
$$\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$$
 et $\operatorname{Im}(z) = \frac{z - \overline{z}}{2\mathbf{i}}$.

- $2. \ z \in \mathbb{R} \Leftrightarrow z = \overline{z}.$
- 3. $z \in \mathbf{i} \mathbb{R} \Leftrightarrow z = -\overline{z}$.
- 4. $z\overline{z} = \operatorname{Re}(z)^2 + \operatorname{Im}(z)^2 \operatorname{donc} z\overline{z} \in \mathbb{R}_+$.

Démonstration : Soit $z \in \mathbb{C}$. $\exists (x,y) \in \mathbb{R}^2$ tel que z = x + iy.

1.
$$z + \overline{z} = x + \mathbf{i}y + x - \mathbf{i}y = 2x \Rightarrow x = \frac{z + \overline{z}}{2}$$
.
 $z - \overline{z} = x + \mathbf{i}y - x + \mathbf{i}y = 2\mathbf{i}y \Rightarrow y = \frac{z - \overline{z}}{2\mathbf{i}}$.

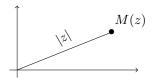
- $2. \ z \in \mathbb{R} \Leftrightarrow y = 0 \Leftrightarrow z = \overline{z}.$
- 3. $z \in \mathbf{i} \mathbb{R} \Leftrightarrow x = 0 \Leftrightarrow z = -\overline{z}$.
- 4. $z.\overline{z} = (x + iy)(x iy) = x^2 (iy)^2 = x^2 + y^2$.

2.2 Module d'un nombre complexe

Définition 16.

Soit $z = x + \mathbf{i}y \in \mathbb{C}$.

On appelle module de z et on note |z|, le réel défini par $|z| = \sqrt{x^2 + y^2}$.



- Si M est le point d'affixe z alors |z| représente la longueur $||\overrightarrow{OM}||$.
- Si A est le point d'affixe a alors |z a| représente la longueur $||\overrightarrow{AM}||$.

Exemple 17. Calculer le module de $z = 2 + i\sqrt{2}$ et de z = 1 - i.

$$|2 + i\sqrt{2}| = \sqrt{2^2 + (\sqrt{2})^2} = \sqrt{8} = 2\sqrt{2}.$$

 $|1 - i| = \sqrt{1^2 + (-1)^2} = \sqrt{2}.$

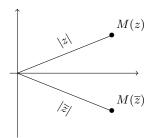
Théorème 18.

Soit $z \in \mathbb{C}$.

- $1. \ |\overline{z}| = |z|$
- $2. |z|^2 = z\overline{z}.$
- 3. $|\operatorname{Re}(z)| \le |z|$ et $|\operatorname{Im}(z)| \le |z|$

Démonstration : Soit $z \in \mathbb{C}$. $\exists (x,y) \in \mathbb{R}^2$ tel que $z = x + \mathbf{i}y$.

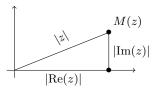
1.
$$|\overline{z}| = |x - \mathbf{i}y| = \sqrt{x^2 + (-y)^2} = \sqrt{x^2 + y^2} = |z|$$
.



2.
$$z.\overline{z} = \text{Re}(z)^2 + \text{Im}(z)^2 = |z|^2$$
.

3. Soit
$$M$$
 le point d'affixe z .

Le segment [OM] est l'hypoténuse d'un triangle rectangle de côtés de mesures |Re(z)|, |Im(z)| et |z|.



Remarque 19. Le cercle de centre A(a) et de rayon r est l'ensemble des points M d'affixe z tel que |z-a|=r.

Exemple 20. Déterminer l'ensemble des complexes z tels que $|z-1| \le 2$.

Notons A le point d'affixe 1. Alors, |z-1| représente la longueur $||\overrightarrow{AM}||$. $|z-1| \le 4$ si, et seulement si, M appartient au disque de centre A(1,0) et de rayon 4.

Théorème 21.

Soit $(z, z') \in \mathbb{C}^2$.

1.
$$|zz'| = |z||z'|$$
.

2. Si
$$z' \neq 0$$
, $\left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}$.

3. Si
$$z \neq 0$$
, $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$.

Démonstration: Soit $(z, z') \in \mathbb{C}^2$. $\exists (x, y, x', y') \in \mathbb{R}^4$ tel que $z = x + \mathbf{i}y$ et $z = x' + \mathbf{i}y'$.

1.
$$z.z' = (x + iy)(x' + iy') = xx' - yy' + i(xy' + x'y) \Rightarrow |z.z'|^2 = (xx' - yy')^2 + (xy' + x'y)^2.$$

 $= (xx')^2 + (yy')^2 + (xy')^2 + (x'y)^2.$
 $(|z||z'|)^2 = |z|^2.|z'|^2 = (x^2 + y^2)((x')^2 + (y')^2) = x^2(x')^2 + x^2(y')^2 + y^2(x')^2 + y^2(y')^2 = |z.z'|^2.$
Donc, $|z.z'| = |z||z'|.$

2. On fait pareil.

3. Supposons
$$z$$
 non nul. $\frac{1}{z} = \frac{\overline{z}}{z.\overline{z}} = \frac{\overline{z}}{|z|^2}$.

Théorème 22 (Inégalité triangulaire).

Soit $(z, z') \in \mathbb{C}^2$.

$$|z + z'| \le |z| + |z'|$$
 et $|z - z'| \le |z| + |z'|$

Démonstration: Soit $(z, z') \in \mathbb{C}^2$.

$$|z + z'|^2 = (z + z')(\overline{z + z'})$$

$$= z\overline{z} + z\overline{z'} + z'\overline{z} + z'\overline{z'}$$

$$= |z|^2 + z\overline{z'} + z'\overline{z} + |z'|^2$$

$$= |z|^2 + z\overline{z'} + \overline{z\overline{z'}} + |z'|^2$$

$$= |z|^2 + 2\operatorname{Re}(z\overline{z'}) + |z'|^2$$

Or, $\operatorname{Re}(z\overline{z'}) \leq |z\overline{z'}|$ donc $\operatorname{Re}(z\overline{z'}) \leq |z||\overline{z'}|$.

$$|z + z'|^{2} \leq |z|^{2} + 2|z||\overline{z'}| + |z'|^{2}$$

$$\leq |z|^{2} + 2|z||z'| + |z'|^{2}$$

$$\leq (|z| + |z'|)^{2}$$

Enfin, puisque |z+z'| et |z|+|z'| sont positifs, on en déduit que $|z+z'| \le |z|+|z'|$.

$$|z - z'| \le |z| + |-z'| \Rightarrow |z - z'| \le |z| + |z'|$$

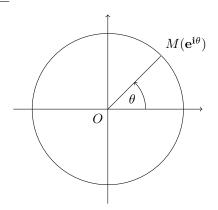
3 Formes trigonométriques et exponentielles

3.1 Les nombres complexes de module 1

$ig({ m D\'efinition} \,\, { m 23.} ig)$

Soit $\theta \in \mathbb{R}$.

On appelle exponentielle (de) $\mathbf{i}\theta$ et on note $\mathbf{e}^{\mathbf{i}\theta}$ le complexe défini par $\mathbf{e}^{\mathbf{i}\theta} = \cos(\theta) + \mathbf{i}\sin(\theta)$.



Exemple 24. $e^{i\frac{\pi}{2}} = i$, $e^{i\pi} = -1$.

Exemple 25. Déterminer $e^{i\frac{\pi}{3}}$ et $e^{-i\frac{\pi}{6}}$.

$$\mathbf{e}^{\mathbf{i}\frac{\pi}{3}} = \cos\left(\frac{\pi}{3}\right) + \mathbf{i}\sin\left(\frac{\pi}{3}\right) = \frac{1}{2} + \mathbf{i}\frac{\sqrt{3}}{2}.$$

$$\mathbf{e}^{-\mathbf{i}\frac{\pi}{6}} = \cos\left(\frac{-\pi}{6}\right) + \mathbf{i}\sin\left(\frac{-\pi}{6}\right) = \frac{\sqrt{3}}{2} - \mathbf{i}\frac{1}{2}.$$

Théorème 26 (Règles de calculs).

- 1. $\forall \theta \in \mathbb{R}$, $\operatorname{Re}(\mathbf{e}^{\mathbf{i}\theta}) = \cos(\theta)$, $\operatorname{Im}(\mathbf{e}^{\mathbf{i}\theta}) = \sin(\theta)$ et $|\mathbf{e}^{\mathbf{i}\theta}| = 1$. En particulier, $\mathbf{e}^{\mathbf{i}\theta} \neq 0$.
- 2. $\forall (\theta, \theta') \in \mathbb{R}^2, \ \mathbf{e}^{\mathbf{i}\theta} = \mathbf{e}^{\mathbf{i}\theta'} \ \text{si, et seulement si, } \exists k \in \mathbb{Z}, \ \theta = \theta' + 2k\pi.$
- 3. $\forall \theta \in \mathbb{R}, \ \overline{\mathbf{e}^{\mathbf{i}\theta}} = \mathbf{e}^{-i\theta} = \frac{1}{\mathbf{e}^{\mathbf{i}\theta}}.$
- 4. $\forall (\theta, \theta') \in \mathbb{R}^2, \ \mathbf{e}^{\mathbf{i}(\theta + \theta')} = \mathbf{e}^{\mathbf{i}\theta}.\mathbf{e}^{\mathbf{i}\theta'}$
- 5. $\forall \theta \in \mathbb{R}, \ \forall n \in \mathbb{Z}, \ (\mathbf{e}^{i\theta})^n = \mathbf{e}^{\mathbf{i}n\theta}.$

Démonstration: Soit $\theta \in \mathbb{R}$. Par définition, $e^{i\theta} = \cos(\theta) + i\sin(\theta)$.

1.
$$\operatorname{Re}(\mathbf{e}^{\mathbf{i}\theta}) = \cos(\theta) \text{ et } \operatorname{Im}(\mathbf{e}^{\mathbf{i}\theta}) = \sin(\theta).$$

 $|\mathbf{e}^{\mathbf{i}\theta}| = \cos^2(\theta) + \sin^2(\theta) = 1.$

2. Soit $\theta' \in \mathbb{R}$. On raisonne par équivalence.

$$\mathbf{e}^{\mathbf{i}\theta} = \mathbf{e}^{\mathbf{i}\theta'} \quad \Leftrightarrow \quad \begin{cases} \operatorname{Re}(\mathbf{e}^{\mathbf{i}\theta}) = \operatorname{Re}(\mathbf{e}^{\mathbf{i}\theta'}) \\ \operatorname{Im}(\mathbf{e}^{\mathbf{i}\theta}) = \operatorname{Im}(\mathbf{e}^{\mathbf{i}\theta'}) \end{cases}$$

$$\Leftrightarrow \quad \begin{cases} \cos(\theta) = \cos(\theta') \\ \sin(\theta) = \sin(\theta') \end{cases}$$

$$\Leftrightarrow \quad \exists k \in \mathbb{Z}, \ \theta = \theta' + 2k\pi$$

3.
$$\overline{\mathbf{e}^{\mathbf{i}\theta}} = \overline{\cos(\theta) + \mathbf{i}\sin(\theta)} = \cos(\theta) - \mathbf{i}\sin(\theta) = \cos(-\theta) + \mathbf{i}\sin(-\theta) = \mathbf{e}^{-\mathbf{i}\theta}.$$
$$\frac{1}{\mathbf{e}^{\mathbf{i}\theta}} = \frac{\overline{\mathbf{e}^{\mathbf{i}\theta}}}{\mathbf{e}^{\mathbf{i}\theta}, \overline{\mathbf{e}^{\mathbf{i}\theta}}} = \frac{\mathbf{e}^{\mathbf{i}\theta}}{|\mathbf{e}^{\mathbf{i}\theta}|^2} = \overline{\mathbf{e}^{\mathbf{i}\theta}}$$

4. Soit $\theta' \in \mathbb{R}$. Par définition, $\mathbf{e}^{\mathbf{i}(\theta+\theta')} = \cos(\theta+\theta') + \mathbf{i}\sin(\theta+\theta')$. On applique alors les formules de trigonométrie.

$$\begin{aligned} \mathbf{e}^{\mathbf{i}(\theta+\theta')} &= & \cos(\theta)\cos(\theta') - \sin(\theta)\sin(\theta') + \mathbf{i}[\sin(\theta)\cos(\theta') + \cos(\theta)\sin(\theta')] \\ &= & \cos(\theta)[\cos(\theta') + \mathbf{i}\sin(\theta')] + \mathbf{i}\sin(\theta)[\cos(\theta') + \mathbf{i}\sin(\theta)] \\ &= & [\cos(\theta') + \mathbf{i}\sin(\theta')][\cos(\theta) + \mathbf{i}\sin(\theta)] \\ &= & \mathbf{e}^{\mathbf{i}\theta}.\mathbf{e}^{\mathbf{i}\theta'} \end{aligned}$$

5. Pour $n \in \mathbb{N}$, on raisonne par récurrence en appliquant des formules de trigonométrie. Soit $n \in \mathbb{Z} \setminus \mathbb{N}$. Soit $\theta \in \mathbb{R}$.

$$\left(\mathbf{e}^{\mathbf{i}\theta}\right)^n = \left(\mathbf{e}^{\mathbf{i}\theta}\right)^{-(-n)} = \left(\left(\mathbf{e}^{\mathbf{i}\theta}\right)^{-n}\right)^{-1} = \left(\mathbf{e}^{-n\mathbf{i}\theta}\right)^{-1} = \mathbf{e}^{n\mathbf{i}\theta}$$

Théorème 27 (Formules d'Euler).

$$\forall \theta \in \mathbb{R}, \cos(\theta) = \frac{\mathbf{e}^{\mathbf{i}\theta} + \mathbf{e}^{-\mathbf{i}\theta}}{2} \text{ et } \sin(\theta) = \frac{\mathbf{e}^{\mathbf{i}\theta} - \mathbf{e}^{-\mathbf{i}\theta}}{2\mathbf{i}}$$

On peut également reformuler ces formules.

$$\forall \theta \in \mathbb{R}, \ \mathbf{e}^{\mathbf{i}\theta} + \mathbf{e}^{-\mathbf{i}\theta} = 2\cos(\theta) \ \text{et} \ \mathbf{e}^{\mathbf{i}\theta} - \mathbf{e}^{-\mathbf{i}\theta} = 2\mathbf{i}\sin(\theta)$$

Démonstration: Soit $\theta \in \mathbb{R}$.

$$\operatorname{Re}(\mathbf{e}^{\mathbf{i}\theta}) = \frac{\mathbf{e}^{\mathbf{i}\theta} + \overline{\mathbf{e}^{\mathbf{i}\theta}}}{2} \Rightarrow \cos(\theta) = \frac{\mathbf{e}^{\mathbf{i}\theta} + \mathbf{e}^{-\mathbf{i}\theta}}{2}$$

De même,

$$\operatorname{Im}(\mathbf{e}^{\mathbf{i}\theta}) = \frac{\mathbf{e}^{\mathbf{i}\theta} - \overline{\mathbf{e}^{\mathbf{i}\theta}}}{2\mathbf{i}} \Rightarrow \sin(\theta) = \frac{\mathbf{e}^{\mathbf{i}\theta} - \mathbf{e}^{-\mathbf{i}\theta}}{2\mathbf{i}}$$

Exemple 28. Linéarisation des fonctions circulaires

Soit $\theta \in \mathbb{R}$. Exprimer $\cos^3(\theta)$ avec des termes de la forme $\cos(n\theta)$.

$$\cos^{3}(\theta) = \left(\frac{\mathbf{e}^{\mathbf{i}\theta} + \mathbf{e}^{-\mathbf{i}\theta}}{2}\right)^{3} = \frac{(\mathbf{e}^{\mathbf{i}\theta} + \mathbf{e}^{-\mathbf{i}\theta})^{3}}{8} \\
= \frac{(\mathbf{e}^{\mathbf{i}\theta})^{3} + 3(\mathbf{e}^{\mathbf{i}\theta})^{2} \cdot \mathbf{e}^{-\mathbf{i}\theta} + 3\mathbf{e}^{\mathbf{i}\theta} \cdot (\mathbf{e}^{-\mathbf{i}\theta})^{2} + (\mathbf{e}^{-\mathbf{i}\theta})^{3}}{8} \\
= \frac{\mathbf{e}^{3\mathbf{i}\theta} + 3\mathbf{e}^{2\mathbf{i}\theta} \cdot \mathbf{e}^{-\mathbf{i}\theta} + 3\mathbf{e}^{\mathbf{i}\theta} \cdot \mathbf{e}^{-2\mathbf{i}\theta} + \mathbf{e}^{-3\mathbf{i}\theta}}{8} \\
= \frac{\mathbf{e}^{3\mathbf{i}\theta} + 3\mathbf{e}^{\mathbf{i}\theta} + 3\mathbf{e}^{-\mathbf{i}\theta} + \mathbf{e}^{-3\mathbf{i}\theta}}{8} \\
= \frac{\mathbf{e}^{3\mathbf{i}\theta} + \mathbf{e}^{-3\mathbf{i}\theta} + 3(\mathbf{e}^{\mathbf{i}\theta} + \mathbf{e}^{-\mathbf{i}\theta})}{8} \\
= \frac{3\cos(3\theta) + 6\cos(\theta)}{8} \\
\cos^{3}(\theta) = \frac{\cos(3\theta) + 3\cos(\theta)}{4}$$

Methode 1 (Linéarisation).

Soit $(p,q) \in \mathbb{N}^2$. Pour linéariser $\cos^p(\theta) \sin^q(\theta)$ (supprimer les puissances et les produits),

• on applique les formules d'Euler

$$\cos^{p}(\theta)\sin^{q}(\theta) = \left(\frac{\mathbf{e}^{\mathbf{i}\theta} + \mathbf{e}^{-\mathbf{i}\theta}}{2}\right)^{p} \cdot \left(\frac{\mathbf{e}^{\mathbf{i}\theta} - \mathbf{e}^{-\mathbf{i}\theta}}{2\mathbf{i}}\right)^{q}$$

• on distribue les puissances.

$$\cos^{p}(\theta)\sin^{q}(\theta) = \frac{\left(\mathbf{e}^{\mathbf{i}\theta} + \mathbf{e}^{-\mathbf{i}\theta}\right)^{p}}{2^{p}} \cdot \frac{\left(\mathbf{e}^{\mathbf{i}\theta} - \mathbf{e}^{-\mathbf{i}\theta}\right)^{q}}{2^{q}\mathbf{i}^{q}}$$

- on développe avec la formule du binôme de Newton
- on regroupe les termes pour faire apparaître $\cos(n\theta)$ et $\sin(n\theta)$.

Exemple 29. Méthode de l'angle moitié

Exprimer $z = 1 + e^{\frac{i\pi}{4}}$ sous forme de produit et calculer son module.

$$1 + e^{\frac{i\pi}{4}} = e^{i0} + e^{\frac{i\pi}{4}}$$

$$= e^{\frac{i\pi}{8}} \left(e^{\frac{-i\pi}{8}} + e^{\frac{i\pi}{8}} \right)$$

$$= 2\cos\left(\frac{\pi}{8}\right) \cdot e^{\frac{i\pi}{8}}$$

On peut alors calculer son module.

$$|z| = \left| 2\cos\left(\frac{\pi}{8}\right).\mathbf{e}^{\frac{\mathbf{i}\pi}{8}} \right| = 2\left| \cos\left(\frac{\pi}{8}\right) \right|.|\mathbf{e}^{\frac{\mathbf{i}\pi}{8}}| = 2\cos\left(\frac{\pi}{8}\right)$$

Théorème 30 (Formules de Moivre).

$$\forall \theta \in \mathbb{R}, \ \forall n \in \mathbb{Z}^*, \ \cos(n\theta) = \text{Re}\left[\left(\cos(\theta) + \mathbf{i}\sin(\theta)\right)^n\right]$$

$$\forall \theta \in \mathbb{R}, \ \forall n \in \mathbb{Z}^*, \ \sin(n\theta) = \operatorname{Im}\left[(\cos(\theta) + \mathbf{i}\sin(\theta))^n\right]$$

Démonstration : Soit $\theta \in \mathbb{R}$. Soit $n \in \mathbb{Z}$.

$$\left(\mathbf{e}^{\mathbf{i}\theta}\right)^n = \mathbf{e}^{in\theta} \Rightarrow \left(\cos(\theta) + \mathbf{i}\sin(\theta)\right)^n = \cos(n\theta) + \mathbf{i}\sin(n\theta)$$

Exemple 31. Polynômes trigonométriques

Soit $\theta \in \mathbb{R}$. Exprimer $\cos(4\theta)$ comme un polynôme en $\cos(\theta)$.

$$\cos(4\theta) = \operatorname{Re}(\mathbf{e}^{4\mathbf{i}\theta}) = \operatorname{Re}[(\cos(\theta) + \mathbf{i}\sin(\theta))^4]$$
$$(\cos(\theta) + \mathbf{i}\sin(\theta))^4 = \cos^4(\theta) + 4\mathbf{i}\cos^3(\theta)\sin(\theta) - 6\cos^2(\theta)\sin^2(\theta) - 4\mathbf{i}\cos(\theta)\sin^3(\theta) + \sin^4(\theta)$$

En ne conservant que la partie réelle,

$$\cos(4\theta) = \cos^{4}(\theta) - 6\cos^{2}(\theta)\sin^{2}(\theta) + \sin^{4}(\theta)$$

$$= \cos^{4}(\theta) - 6\cos^{2}(\theta)(1 - \cos^{2}(\theta)) + (1 - \cos^{2}(\theta))^{2}$$

$$= \cos^{4}(\theta) - 6\cos^{2}(\theta) + 6\cos^{4}(\theta) + 1 - 2\cos^{2}(\theta) + \cos^{4}(\theta)$$

$$= 8\cos^{4}(\theta) - 8\cos^{2}(\theta) + 1$$

Methode 2 (Polynômes trigonométriques).

Soit $p \in \mathbb{N}$. Pour exprimer $\cos(p\theta)$ ou $\sin(p\theta)$ comme un polynôme en $\cos(\theta)$ ou $\sin(\theta)$,

• on applique la formule de Moivre

$$\cos(p\theta) = \operatorname{Re}\left[(\cos(\theta) + \mathbf{i}\sin(\theta))^p\right] \text{ ou } \sin(p\theta) = \operatorname{Im}\left[(\cos(\theta) + \mathbf{i}\sin(\theta))^p\right]$$

- on utilise le binôme de Newton.
- on ne conserve que la partie réelle ou imaginaire.

3.2 Arguments et forme trigonométrique

$egin{pmatrix} \mathbf{Th\'eor\`eme} & \mathbf{32.} \end{pmatrix}$

Soit $z = x + \mathbf{i}y \in \mathbb{C}^*$.

$$1. \left| \frac{z}{|z|} \right| = 1.$$

2. Il existe un réel θ , unique modulo 2π , tel que $z = |z|e^{i\theta}$.

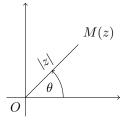
$$z = x + \mathbf{i}y = |z|\mathbf{e}^{\mathbf{i}\theta}$$
 et
$$\begin{cases} x = |z|\cos(\theta) \\ y = |z|\sin(\theta) \end{cases}$$

Définition 33.

Soit $z \in \mathbb{C}$. Une écriture de z sous la forme $z = |z| \mathbf{e}^{\mathbf{i}\theta}$ est appelée forme trigonométrique de z.

L'ensemble $\{\theta + 2k\pi, k \in \mathbb{Z}\}$ est l'ensemble des arguments de z.

En imposant $\theta \in [0, 2\pi]$, on a unicité de l'écriture trigonométrique et $(|z|, \theta)$ sont les coordonnées polaires de z.



Exemple 34. Donner la forme trigonométrique du complexe $z = 1 + \mathbf{i}$ puis la forme algébrique de $(1 + \mathbf{i})^4$.

$$\overline{|1 + \mathbf{i}|} = \sqrt{2}. \text{ Donc } z = \sqrt{2} \left(\frac{\sqrt{2}}{2} + \mathbf{i} \frac{\sqrt{2}}{2} \right) = 2\mathbf{e}^{\mathbf{i} \frac{\pi}{4}}.$$

$$z^4 = \left(2\mathbf{e}^{\mathbf{i} \frac{\pi}{4}} \right)^4 = 2^4 \mathbf{e}^{\mathbf{i} \frac{4\pi}{4}} = -2^4.$$

4 Equations complexes du second degré

4.1 Equations du second degré à coefficients réels.

Théorème 35.

Soient $(a, b, c) \in \mathbb{R}^3$ avec $a \neq 0$ et soit Δ le discriminant de l'équation $az^2 + bz + c = 0$.

1. Si $\Delta > 0$ alors l'équation admet exactement deux solutions réelles

$$z_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $z_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

- 2. Si $\Delta = 0$ alors l'équation admet une racine double $z_1 = z_2 = \frac{-b}{2a}$.
- 3. Si $\Delta < 0$ alors l'équation admet exactement deux racines complexes conjuguées

$$z_1 = \frac{-b - \mathbf{i}\sqrt{-\Delta}}{2a}$$
 et $z_2 = \frac{-b + \mathbf{i}\sqrt{-\Delta}}{2a}$.

$$\forall z \in \mathbb{C}, \ az^2 + bz + c = a(z - z_1)(z - z_2)$$

Exemple 36. Résoudre l'équation $z^3 - 3z^2 + 3z = 0$.

$$\Delta = 9 - 12 = -3 < 0$$
. L'équation admet deux racines complexes conjuguées $z_1 = \frac{3 + \mathbf{i}\sqrt{3}}{2}$ et $z_2 = \frac{3 - \mathbf{i}\sqrt{3}}{2}$.

4.2 Relation coefficients—racines

Théorème 37.

Soient $(a, b, c) \in \mathbb{R}^3$ avec $a \neq 0$. Soit $(z_1, z_2) \in \mathbb{C}^2$.

$$z_1$$
 et z_2 sont solutions de $az^2 + bz + c = 0$ si, et seulement si,
$$\begin{cases} z_1 + z_2 = \frac{-b}{a} \\ z_1 z_2 = \frac{c}{a} \end{cases}$$

Démonstration: Soient $(a, b, c) \in \mathbb{R}^3$ avec $a \neq 0$. Soit $(z_1, z_2) \in \mathbb{C}^2$.

$$z_1$$
 et z_2 sont solutions de $az^2 + bz + c = 0$ $\Leftrightarrow \forall z \in \mathbb{C}, \ az^2 + bz + c = a(z - z_1)(z - z_2)$ $\Leftrightarrow \forall z \in \mathbb{C}, \ az^2 + bz + c = az^2 - a(z_1 + z_2)z + az_1z_2$ $\Leftrightarrow \begin{cases} z_1 + z_2 = \frac{-b}{a} \\ z_1z_2 = \frac{c}{a} \end{cases}$

Exemple 38. Déterminer les couples de complexes $(x,y) \in \mathbb{C}^2$ tels que $\begin{cases} x+y=2 \\ xy=3 \end{cases}$.

Les complexes x et y sont les deux solutions de l'équation $z^2 - 2z + 3 = 0$.

(On ne sait pas qui est x et qui est y).

$$\Delta = 4 - 12 = -8 < 0.$$

L'équation admet deux solutions complexes conjuguées $z_1 = \frac{2 + i\sqrt{8}}{2} = 1 + i\sqrt{2}$ et $z_2 = \frac{2 - i\sqrt{8}}{2} = 1 - i\sqrt{2}$. Il y a donc deux couples solutions.

$$S = \left\{ (1 + \mathbf{i}\sqrt{2}, 1 - \mathbf{i}\sqrt{2}) \; , \; (1 - \mathbf{i}\sqrt{2}, 1 + \mathbf{i}\sqrt{2}) \right\}$$

4.3 Racine carrée d'un complexe.

Définition 39.

Soit $Z \in \mathbb{C}$. On appelle <u>racinée carrée de Z</u> tout nombre complexe z tel que $z^2 = Z$.

Exemple 40. $(1+i)^2 = 2i$ donc 1+i est une racine carrée de 2i. $(2i)^2 = -4$ donc 2i est une racine carrée de -4.

Théorème 41.

Soit Z = a + ib un nombre complexe non nul.

L'équation $z^2 = Z$, d'inconnue $z = x + \mathbf{i}y$, admet exactement deux solutions qui sont des complexes opposés.

Pour les trouver, on résout le système suivant.

$$z^{2} = Z \Leftrightarrow \begin{cases} x^{2} + y^{2} = \sqrt{a^{2} + b^{2}} \\ x^{2} - y^{2} = a \\ 2xy = b \end{cases}$$

Démonstration: On cherche z sous la forme algébrique.

$$\begin{split} z^2 &= Z &\Leftrightarrow (x+\mathbf{i}y)^2 = a + \mathbf{i}b \\ &\Leftrightarrow x^2 - y^2 + 2\mathbf{i}xy = a + \mathbf{i}b \\ &\Leftrightarrow \left\{ \begin{array}{l} x^2 - y^2 = a \\ 2xy = b \end{array} \right. \end{split}$$

On ajoute une équation $|z^2| = |Z| \Leftrightarrow x^2 + y^2 = \sqrt{a^2 + b^2}$.

Exemple 42. Déterminer les deux racines carrés de Z = 3 + 4i.

Soit $z = x + \mathbf{i}y \in \mathbb{C}$.

$$z^{2} = 3 + 4\mathbf{i} \Leftrightarrow \begin{cases} x^{2} + y^{2} = \sqrt{9 + 16} = 5 \\ x^{2} - y^{2} = 3 \\ 2xy = 4 \end{cases} \Leftrightarrow \begin{cases} x^{2} + y^{2} = \sqrt{9 + 16} = 5 \\ 2x^{2} = 8 \\ xy = 2 \end{cases} \Leftrightarrow \begin{cases} y^{2} = 1 \\ x^{2} = 4 \\ xy = 2 \end{cases}$$

Donc, $S = \{2 + \mathbf{i}, -2 - \mathbf{i}\}.$