

Corrigé du devoir maison n° 1 - Méthodes de calculs, Complexes et Fonctions. -

Exercice 1 - Calculs.

1. Soit $n \in \mathbb{N}^*$.

$$\sum_{1 \leqslant i \leqslant j \leqslant n} 2^j = \sum_{i=1}^n \left(\sum_{j=i}^n 2^j \right) = \sum_{i=1}^n \left(2^i \cdot \frac{1 - 2^{n-i+1}}{1 - 2} \right) = \sum_{i=1}^n \left(\frac{2^i - 2^i \cdot 2^{n-i+1}}{-1} \right) = \sum_{i=1}^n \left(2^{n+1} - 2^i \right)$$

$$= \sum_{i=1}^n 2^{n+1} - \sum_{i=1}^n 2^i = n \cdot 2^{n+1} - 2 \cdot \frac{1 - 2^n}{1 - 2} = n \cdot 2^{n+1} + 2 - 2^{n+1}$$

Donc,
$$\sum_{1 \leqslant i \leqslant j \leqslant n} 2^j = 2 + (n-1)2^{n+1}$$

2. (a)
$$|z| = \sqrt{8} = 2\sqrt{2} \text{ donc } z = 2 - 2\mathbf{i} = 2\sqrt{2} \left(\frac{\sqrt{2}}{2} - \mathbf{i}\frac{\sqrt{2}}{2}\right)$$
. Donc, $z = 2\sqrt{2}e^{-\mathbf{i}\frac{\pi}{4}}$

(b)
$$\frac{1-\mathbf{i}}{1+\mathbf{i}} = \frac{\sqrt{2}\mathbf{e}^{\frac{-\mathbf{i}\pi}{4}}}{\sqrt{2}\mathbf{e}^{\frac{\mathbf{i}\pi}{4}}} = \mathbf{e}^{-\frac{\mathbf{i}\pi}{2}}$$
. Donc, $z = \mathbf{e}^{-\frac{5\mathbf{i}\pi}{2}}$

3. Soit $\theta \in \mathbb{R}$. Soit $n \in \mathbb{N}$.

(a)

$$\sin^3(\theta) = \sin^2(\theta).\sin(\theta) = \frac{1 - \cos(2\theta)}{2}.\sin(\theta) = \frac{\sin(\theta) - \cos(2\theta)\sin(\theta)}{2}$$

Or,
$$\sin(\theta)\cos(2\theta) = \frac{\sin(3\theta) + \sin(-\theta)}{2}$$
. Donc,

$$\sin^3(\theta) = \frac{\sin(\theta) - \frac{\sin(3\theta) - \sin(\theta)}{2}}{2} = \frac{\sin(\theta)}{2} - \frac{\sin(3\theta)}{4} + \frac{\sin(\theta)}{4}$$

Finalement,
$$\sin^3(\theta) = \frac{3\sin(\theta) - \sin(3\theta)}{4}$$

(b) Soit $k \in \{1, ..., n\}$. On applique la formule précédente au réel $\frac{\theta}{2k}$

$$\sin^3\left(\frac{\theta}{3^k}\right) = \frac{1}{4} \left[3\sin\left(\frac{\theta}{3^k}\right) - \sin\left(3\frac{\theta}{3^k}\right) \right]$$

$$= \frac{1}{4} \left[3\sin\left(\frac{\theta}{3^k}\right) - \sin\left(\frac{\theta}{3^{k-1}}\right) \right]$$
Donc,
$$\sum_{k=1}^n 3^k \sin^3\left(\frac{\theta}{3^k}\right) = \sum_{k=1}^n \frac{3^k}{4} \left[3\sin\left(\frac{\theta}{3^k}\right) - \sin\left(\frac{\theta}{3^{k-1}}\right) \right]$$

$$= \frac{1}{4} \sum_{k=1}^n \left[3^{k+1} \sin\left(\frac{\theta}{3^k}\right) - 3^k \sin\left(\frac{\theta}{3^{k-1}}\right) \right]$$

On reconnait une somme télescopique. Donc, $\left| \sum_{k=1}^{n} 3^{k} \sin^{3} \left(\frac{\theta}{3^{k}} \right) = \frac{1}{4} \left[3^{n+1} \sin \left(\frac{\theta}{3^{n}} \right) - 3 \sin \left(\theta \right) \right]$

Exercice 2 - Etude de fonctions.

1. (a)
$$\mathcal{D} = \left\{ x \in \mathbb{R} \text{ tel que } 1 - x \neq 0 \text{ et } \frac{x+1}{1-x} > 0 \right\}$$
.
Soit $x \in \mathbb{R}, x \neq 1$.

$$\frac{x+1}{1-x} > 0 \Leftrightarrow (x+1)(1-x) > 0 \Leftrightarrow -1 < x < 1$$

Pour la dernière équivalence, on utilise le fait qu'un polynôme de degré 2 est du signe de -a à l'intéri<u>eur des racine</u>s.

Donc,
$$\mathcal{D} =]-1,1[$$

(b) La fonction $x \mapsto \frac{x+1}{1-x}$ est dérivable sur] - 1,1[comme quotient de fonctions dérivables avec un dénominateur qui ne s'annule pas sur]-1,1[.

Par composée, la fonction f est dérivable sur \mathcal{D} . Soit $x \in]-1,1[$.

$$f'(x) = \frac{1 - x + (x+1)}{(1-x)^2} \cdot \frac{1}{\frac{x+1}{1-x}}$$

$$= \frac{1}{(1-x)^2} \cdot \frac{1-x}{x+1}$$

$$= \frac{1}{1-x^2}$$

Donc,
$$\forall x \in]-1,1[, f'(x) = \frac{1}{1-x^2}$$

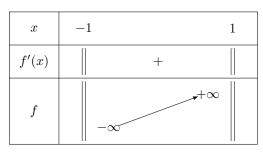
Or, pour $x \in]-1,1[,f'(x)>0$ donc f' est strictement croissante sur]-1,1[.

Il reste à déterminer les limites. $\lim_{x\to 1^-} 1 - x = 0^+$ donc, par quotient, $\lim_{x\to 1^-} \frac{x+1}{1-x} = +\infty$. Par composée, on en déduit que $\lim_{x\to 1^-} f(x) = +\infty$.

Par quotient, $\lim_{x \to -1^+} \frac{x+1}{1-x} = 0$.

Par composée, on en déduit que $\lim_{x \to -1^+} f(x) = -\infty$

Finalement, on obtient le tableau de variations suivant



- 2. (a) $\forall x \in \mathbb{R}, \ g(-x) = \frac{2(-x)}{(-x)^2 + 1} = \frac{-2x}{x^2 + 1} = -g(x)$. Donc g est impaire. On en déduit que sa courbe représentative est invariante par symétrie centrale de centre O.
 - (b) Puisque g est impaire, on peut se contenter de l'étudier sur \mathbb{R}_+ . On obtiendra ensuite toute la courbe à partir du tracé sur \mathbb{R}_+ , en effectuant une symétrie centrale de centre O.

$$g$$
 est une fraction rationnelle donc elle est dérivable sur son ensemble de définition, \mathbb{R} . Et $\forall x \in \mathbb{R}, \ g'(x) = \frac{2(x^2+1)-(2x)^2}{(x^2+1)^2} = \frac{2(1-x^2)}{(x^2+1)^2}$.

Soit $x \in]-1,1[$. g'(x) est du signe de $1-x^2$. On en déduit le tableau de variation (sur \mathbb{R}_+):

x	0	1	+∞
g'(x)		+	_
g(x)	0	1.	0

Précisions sur les valeurs et limites :

En
$$0: q(0) = 0$$

En
$$\theta$$
: $\forall x \in \mathbb{R}_{+}^{*}$, $g(x) = \frac{2x}{x^{2}(1 + \frac{1}{x^{2}})} = \frac{2}{x(1 + \frac{1}{x^{2}})}$. Donc $\lim_{x \to +\infty} = 0$ par quotient des limites.

(c) On en déduit l'allure du graphe de g :

