Exercice 1 Déterminer graphiquement les ensembles suivants.

1.
$$\sin\left(\left[-\frac{\pi}{3}; \frac{\pi}{4}\right]\right)$$
.

4.
$$\ln([1, \mathbf{e}] \cup [2\mathbf{e}, +\infty[)]$$
.

2.
$$\cos\left(\left[\frac{\pi}{3}, \frac{5\pi}{4}\right]\right)$$
.

5.
$$\exp(\mathbb{R}^*)$$
.

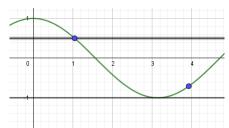
3.
$$\tan\left(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right)$$
.

1.
$$\sin\left(\left[-\frac{\pi}{3}; \frac{\pi}{4}\right]\right)$$
.
2. $\cos\left(\left[\frac{\pi}{3}, \frac{5\pi}{4}\right]\right)$.
3. $\tan\left(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right)$.
6. $f([-5, 1])$ pour $f: x \mapsto x^2$.

Correction

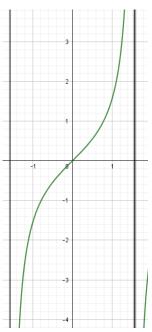
1. La fonction sinus est croissante sur
$$\left[-\frac{\pi}{3}, \frac{\pi}{4}\right]$$
 donc $\sin\left(\left[-\frac{\pi}{3}, \frac{\pi}{4}\right]\right) = \left[-\frac{\sqrt{3}}{2}, \frac{\sqrt{2}}{2}\right]$.

2. Le graphe de la fonction cosinus est le suivant



On en déduit que
$$\cos\left(\left[\frac{\pi}{3}, \frac{5\pi}{4}\right]\right) = \left[-1, \frac{1}{2}\right].$$

3. Le graphe de la fonction tangente est le suivant



La fonction tangente est croissante sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \lim_{x \to -\frac{\pi}{2}^+} \tan(x) = -\infty \text{ et } \lim_{x \to \frac{\pi}{2}^-} \tan(x) = +\infty.$

On en déduit que $\tan\left(\left|-\frac{\pi}{2},\frac{\pi}{2}\right|\right) = \mathbb{R}$.

- 4. $\ln([1, \mathbf{e}] \cup [2\mathbf{e}, +\infty[) = [0, 1] \cup [\ln(2e), +\infty[$
- 5. $\exp(\mathbb{R}^*) =]0, 1[\cup]1, +\infty[.$
- 6. f([-5,1]) = ([0,25]).

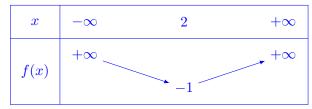
Exercice 2

1. Pour chacune des fonctions f suivantes, donner leur ensemble de définition D_f et leur image $f(D_f)$.

- (a) $f(x) = x^2 4x + 3$.
- (b) $f(x) = \sqrt{2x+3} 1$
- (c) $f(x) = |\sin(x)|$
- 2. Etudier le caractère bijectif de ces fonctions et la bijection réciproque lorsqu'elle existe.

Correction

1. (a) f est définie sur \mathbb{R} comme polynôme de degré 2. Elle est dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$, f'(x) =2x-4. On en déduit le tableau de variation suivant.



On en déduit que $f(\mathbb{R}) = [-1, +\infty[$.

(b) La fonction f est définie sur $D_f = \left[-\frac{3}{2}, +\infty\right[$. Elle est dérivable sur $\left]-\frac{3}{2}, +\infty\right[$ comme composée puis somme de fonctions dérivables et $\forall x \in \left]-\frac{3}{2}, +\infty\right[$, $f'(x) = \frac{2}{2\sqrt{2x+3}} = \frac{1}{\sqrt{2x+3}}$. On en déduit que f est strictement croissants sur D. Describés $f'(x) = \frac{3}{2}$

$$\forall x \in \left] -\frac{3}{2}, +\infty \right[, \ f'(x) = \frac{2}{2\sqrt{2x+3}} = \frac{1}{\sqrt{2x+3}}.$$

On en déduit que f est strictement croissante sur D_f . Donc, $f(D_f) = [-1, +\infty[$.

- (c) La fonction f est définie sur \mathbb{R} . $\sin(\mathbb{R}) = [-1, 1]$. Par composée avec la bon valeur absolue, $f(\mathbb{R}) = [0, 1]$.
- 2. On peut étudier la bijectivité des deux premières fonctions à l'aide du théorème de la bijection.
 - (a) La fonction f est continue et strictement décroissante sur $]-\infty,2]$ donc, par le théorème de la bijection, elle est bijective de $]-\infty,2]$ dans $[-1,+\infty[$. De même, elle est bijective de $[2, +\infty[$ dans $[-1, +\infty[$. Soit $y \in [-1, +\infty[$.

$$f(x) = y \Leftrightarrow x^2 - 4x + 3 = y$$
$$\Leftrightarrow x^2 - 4x + 3 - y = 0$$

 $\Delta = 4(1+y) \ge 0$ donc ce polynôme admet deux racines réelles

$$x_1 = \frac{4 - 2\sqrt{1 + y}}{2} = 2 - \sqrt{1 + y}$$
 et $x_2 = \frac{4 + 2\sqrt{1 + y}}{2} = 2 + \sqrt{1 + y}$

On remarque que $x_1 \in]-\infty,2]$ et $x_2 \in [2,+\infty[$.

On en déduit les deux bijections réciproques

$$f_g^{-1}: \left\{ \begin{array}{ccc} [-1,+\infty[& \rightarrow &]-\infty,2] \\ y & \mapsto & 2-\sqrt{1+y} \end{array} \right. \text{ et } f_d^{-1}: \left\{ \begin{array}{ccc} [-1,+\infty[& \rightarrow & [2,+\infty[\\ y & \mapsto & 2+\sqrt{1+y} \end{array} \right. \right.$$

(b) La fonction f est continue et strictement croissante sur D_f donc, par le théorème de la bijection, elle est bijective de D_f dans $[-1, +\infty[$. Soit $y \in [-1, +\infty[$.

$$\sqrt{2x+3} - 1 = y \Leftrightarrow x = \frac{(y+1)^2 - 3}{2} \ge \frac{-3}{2}$$

La solution appartient bien à D_f .

On en déduit la bijection réciproque f^{-1} : $\begin{cases} [-1, +\infty[\rightarrow \left[-\frac{3}{2}, +\infty \right] \right] \\ y \mapsto \frac{(y+1)^2 - 3}{2} \end{cases}$

(c) $f(0) = f(\pi)$ donc 0 admet au moins deux antécédents par la fonction f. Donc, f n'est pas bijective de \mathbb{R} dans [0,1].

Exercice 3 On considère l'application h définie par

$$h: x \mapsto \frac{2x+1}{x+2}$$

- 1. Déterminer son ensemble de définition D_h .
- 2. Déterminer $h(D_h)$.
- 3. Montrer que h est une bijection de D_h sur $h(D_h)$ et donner sa bijection réciproque.

Correction

- 1. $D_h = \mathbb{R} \setminus \{-2\}$.
- 2. On va étudier les variations de h. La fonction h est dérivable sur D_f comme quotient de fonctions dérivables avec un dénominateur qui ne s'annule pas.

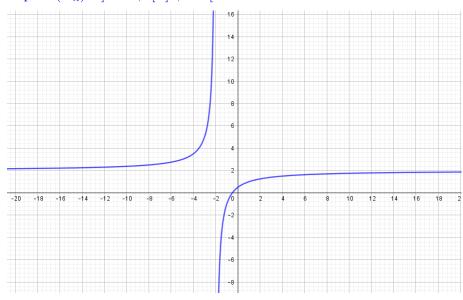
$$\forall x \in D_h, \ h'(x) = \frac{2(x+2) - (2x+1)}{(x+2)^2} = \frac{3}{(x+2)^2} > 0$$

Donc, h est strictement croissante sur] $-\infty$, -2[et sur] -2, $+\infty[$.

$$\lim_{\substack{x \to -2^+ \\ x \to -\infty}} h(x) = -\infty \text{ et } \lim_{\substack{x \to -2^- \\ x \to +\infty}} h(x) = +\infty.$$

$$\lim_{x \to \infty} h(x) = 2 \text{ et } \lim_{x \to \infty} h(x) = 2$$

On en déduit que $h(D_h) =]-\infty, 2[\cup]2, +\infty[$.



3. Soit $y \in \mathbb{R} \setminus \{2\}$. Soit $xin\mathbb{R} \setminus \{-2\}$.

$$\frac{2x+1}{x+2} = y \Leftrightarrow 2x+1 = y(x+2)$$

$$\Leftrightarrow x(2-y) = 2y-1$$

$$\Leftrightarrow x = \frac{2y-1}{2-y}$$

De plus,
$$\frac{2y-1}{2-y}=-2\Leftrightarrow 2y-1=-4+2y\Leftrightarrow 1=4.$$
 Donc, $\frac{2y-1}{2-y}\neq -2.$ Donc, $\frac{2y-1}{2-y}\in D_h.$

L'équation admet une unique solution dans D_h donc h est une bijection de $\mathbb{R}\setminus\{-2\}$ dans $\mathbb{R}\setminus\{2\}$. La bijection réciproque est donnée par la résolution de l'équation précédente.

$$h^{-1}: \left\{ \begin{array}{l} \mathbb{R} \setminus \{2\} \to \mathbb{R} \setminus \{-2\} \\ y \mapsto \frac{2y-1}{2-y} \end{array} \right.$$

Exercice 4 On considère l'application g définie par

$$g: x \mapsto \sqrt{|x-1|} + 4$$

- 1. Déterminer son ensemble de définition D_g et $g(D_g)$.
- 2. L'application g est-elle injective sur D_g ?
- 3. Déterminer un intervalle sur lequel est l'est.

Correction

- 1. $\forall x \in \mathbb{R}, |x-1| \ge 0 \text{ donc } D_g = \mathbb{R}.$
- 2. Pour dériver g, on va donner son expression sans la valeur absolue.

$$\forall x \in \mathbb{R}, \ g(x) = \begin{cases} \sqrt{1-x} + 4 \text{ si } x \le 1\\ \sqrt{x-1} + 4 \text{ si } x \ge 1 \end{cases}$$

La fonction g est dérivable sur $\mathbb{R}\setminus\{1\}$ comme composée de fonctions dérivables.

$$\forall x \in \mathbb{R} \setminus \{1\}, \ g'(x) = \begin{cases} \frac{-1}{2\sqrt{1-x}} & \text{si } x < 1\\ \frac{1}{2\sqrt{x-1}} & \text{si } x > 1 \end{cases}$$

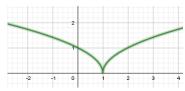
On en déduit que la fonction g est strictement décroissante sur $]-\infty,1[$ et strictement croissante sur $]1,+\infty[$.

On étudie maintenant les limites aux bord pour en déduire $g(D_g)$.

$$\lim_{x\to -\infty} g(x) = +\infty \text{ et } \lim_{x\to +\infty} g(x) = +\infty.$$

$$g(0) = 4 \text{ donc } g(D_g) = [4, +\infty[.$$

Le graphe de la fonction g est le suivant



- 3. g(0) = g(2) = 4 donc 0 admet deux antécédents par g. On en déduit que g n'est pas injective sur \mathbb{R} .
- 4. g est strictement monotone sur $]-\infty,1[$ et sur $]1,+\infty[$ donc g est injective sur $]-\infty,1[$ et sur $]1,+\infty[$.

Exercice 5

1. Pour chacune des fonctions f suivantes, donner leur ensemble de définition D_f et leur image $f(D_f)$.

(a)
$$f(n) = 2n + 1$$
.

- (b) $f(z) = \overline{z}$
- (c) $f(\theta) = \mathbf{e}^{\mathbf{i}\theta}$
- 2. Etudier le caractère bijectif de ces fonctions.

Correction

1. $D_f = \mathbb{N} \text{ et } f(D_f) = 2\mathbb{N} + 1.$ Soit $y \in 2\mathbb{N} + 1.$

$$2x + 1 = y \Leftrightarrow x = \frac{y - 1}{2}$$

donc l'équation admet une unique solution donc f est bijective de \mathbb{N} dans $2\mathbb{N}+1$.

2. $D_f = \mathbb{C} \text{ et } f(D_z) = \mathbb{C}.$ Soit $y \in \mathbb{C}.$

$$f(z) = y \Leftrightarrow \overline{z} = y \Leftrightarrow z = \overline{y}$$

L'équation admet une unique solution donc f est bijective de \mathbb{C} dans \mathbb{C} .

- 3. $D_f = \mathbb{R}$ et $f(D_f) = \{z \in \mathbb{C} \text{ tel que } |z| = 1\} = \mathcal{C}(0,1) = \mathbb{U}$.
 - (a) Injectivité? Soit $(\theta, \theta') \in \mathbb{R}^2$ tel que $f(\theta) = f(\theta')$. donc, $\mathbf{e}^{\mathbf{i}\theta} = \mathbf{e}^{\mathbf{i}\theta'}$ donc $\exists k \in \mathbb{Z}, \ \theta = \theta' + 2k\pi$ Donc f n'est pas injective de \mathbb{R} dans \mathbb{U} .
 - (b) Surjectivité? Soit $y = e^{i\phi} \in \mathbb{U}$.

$$e^{i\theta} = y \Leftrightarrow \exists k \in \mathbb{Z}, \ \theta = \phi + 2k\pi$$

L'équation admet plusieurs solutions donc f est surjective de $\mathbb R$ dans $\mathbb U$.

(c) Elle n'est pas bijective de \mathbb{R} dans \mathbb{U} .

Exercice 6

- 1. Soit $f: \left\{ \begin{array}{l} \mathbb{C}^3 \to \mathbb{C}^3 \\ (x, y, z) \mapsto (x, x+y, x+y+z) \end{array} \right.$
 - (a) Soit $(a, b, c) \in \mathbb{C}^3$. Déterminer les antécédents par f de (a, b, c).
 - (b) f est-elle bijective de \mathbb{C}^3 dans \mathbb{C}^3 .
- 2. Soit $f: \left\{ \begin{array}{l} \mathbb{R}^3 \to \mathbb{R}^3 \\ (x, y, z) \mapsto (x, y^2, z^2) \end{array} \right.$

Déterminer deux ensembles E et F tels que

- (a) f soit surjectif de E dans F,
- (b) f soit injectif de E dans F,
- (c) f soit bijectif de E dans F.

Correction

1. (a) Soit $(a, b, c) \in \mathbb{C}^3$. Soit $(x, y, z) \in \mathbb{C}^3$.

$$f(x,y,z) = (a,b,c) \Leftrightarrow \begin{cases} a = x \\ b = x + y \\ c = x + y + z \end{cases}$$

$$\Leftrightarrow \begin{cases} x = a \\ y = b - a \\ z = c - a - b \end{cases}$$

- (b) Chaque point de \mathbb{C}^3 a un unique antécédent donc f est bijective de \mathbb{C}^3 dans \mathbb{C}^3 .
- 2. Soit $(a, b, c) \in \mathbb{R}^3$. Soit $(x, y, z) \in \mathbb{R}^3$.

$$f(x, y, z) = (a, b, c) \Leftrightarrow \begin{cases} x = a \\ y^2 = b \\ z^2 = c \end{cases}$$

- (a) Si b et c sont négatifs, le système n'a pas de solution donc f est surjective de \mathbb{R}^3 dans $\mathbb{R} \times \mathbb{R}_+ \times \mathbb{R}_+$.
- (b) Si b et c sont positifs, le système a plusieurs solutions donc f est injective de \mathbb{R}^3 dans $\mathbb{R} \times \mathbb{R}_- \times \mathbb{R}_-$.
- (c) Soit $(a, b, c) \in \mathbb{R} \times \mathbb{R}_+ \times \mathbb{R}_+$. Soit $(x, y, z) \in \mathbb{R}^3$.

$$f(x, y, z) = (a, b, c) \Leftrightarrow \begin{cases} x = a \\ y = \sqrt{b} \text{ ou } y = -\sqrt{b} \\ z = \sqrt{c} \text{ ou } z = -\sqrt{c} \end{cases}$$

Pour n'avoir qu'une solution, on va restreindre l'ensemble de départ.

La fonction f est bijective de $\mathbb{R} \times \mathbb{R}_+ \times \mathbb{R}_+$ dans $\mathbb{R} \times \mathbb{R}_+ \times \mathbb{R}_+$ ou de $\mathbb{R} \times \mathbb{R}_- \times \mathbb{R}_-$ dans $\mathbb{R} \times \mathbb{R}_+ \times \mathbb{R}_+$ ou de $\mathbb{R} \times \mathbb{R}_+ \times \mathbb{R}_+$ dans $\mathbb{R} \times \mathbb{R}_+ \times \mathbb{R}_+$ ou de $\mathbb{R} \times \mathbb{R}_+ \times \mathbb{R}_+$ dans $\mathbb{R} \times \mathbb{R}_+ \times \mathbb{R}_+$.

Exercice 7 On note
$$\mathbb{U} = \{z \in \mathbb{C} \text{ tel que } |z| = 1\}$$
. Soit $f : \left\{ \begin{array}{l} \mathbb{R} \to \mathbb{U} \\ x \mapsto \dfrac{1 + \mathbf{i} x}{1 - \mathbf{i} x} \end{array} \right.$

- 1. Montrer que f est bien définie sur $\mathbb R$ et à valeurs dans $\mathbb U.$
- 2. Cette application est-elle injective de \mathbb{R} dans \mathbb{U} ? surjective de \mathbb{R} dans \mathbb{U} ?

Correction

- 1. $\forall x \in \mathbb{R}, \ 1 \mathbf{i}x \neq 0 \text{ donc } D_f = \mathbb{R}.$ Soit $x \in \mathbb{R}. \left| \frac{1 + \mathbf{i}x}{1 - \mathbf{i}x} \right| = \frac{|1 + \mathbf{i}x|}{|1 - \mathbf{i}x|} = 1 \text{ donc } f \text{ est bien à valeurs dans } \mathbb{U}.$
- 2. Soit $(x,y) \in \mathbb{R}^2$ tel que f(x) = f(y).

$$\frac{1+\mathbf{i}x}{1-\mathbf{i}x} = \frac{1+\mathbf{i}y}{1-\mathbf{i}y} \Leftrightarrow (1+\mathbf{i}x)(1-\mathbf{i}y) = (1-\mathbf{i}x)(1+\mathbf{i}y)$$

$$\Leftrightarrow 1+xy+\mathbf{i}(x-y) = 1+xy+\mathbf{i}(-x+y)$$

$$\Leftrightarrow x-y = -x+y$$

$$\Leftrightarrow x = y$$

donc la fonction f est injective de \mathbb{R} dans \mathbb{U} . Soit $z \in \mathbb{U}$. Soit $x \in \mathbb{R}$.

$$\frac{1+\mathbf{i}x}{1-\mathbf{i}x} = z \quad \Leftrightarrow \quad 1+\mathbf{i}x = z(1-\mathbf{i}x)$$
$$\Leftrightarrow \quad \mathbf{i}x(1+z) = z-1$$

Donc, z=-1 n'a pas d'antécédent par f. Donc, f n'est pas surjective de \mathbb{R} dans \mathbb{U} .

Exercice 8 [*] Soient E, F et G trois ensembles.

Soit $f \in \mathcal{F}(E, F)$ et soit $g \in \mathcal{F}(F, G)$.

- 1. Montrer que si $g \circ f$ est injective de E dans G alors f est injective de E dans F.
- 2. Montrer que si $g \circ f$ est surjective de E dans G alors g est surjective de F dans G.

Correction Soit $f \in \mathcal{F}(E, F)$ et soit $g \in \mathcal{F}(F, G)$.

1. Supposons la fonction $g \circ f$ injective de E dans G.

Soit $(x, y) \in E^2$ tel que f(x) = f(y).

Donc, g[f(x)] = g[f(y)]

Donc, x = y (car $g \circ f$ est injective)

La fonction f est donc injective dans E dans F.

2. Supposons la fonction $g \circ f$ surjective de E dans G. On veut montrer que g est surjective de F dans G.

Soit $y \in G$.

Puisque $g \circ f$ est surjective de E dans G, $\exists x \in E$ tel que $(g \circ f)(x) = y$

que l'on peut réecrire g[f(x)] = y. Or, $f(x) \in F$.

On notant z = f(x), on a bien : $\exists z \in F$ tel que g(z) = y.

La fonction g est surjective de E dans F.

Exercice 9 [*] Soient E et F deux ensembles. Soit $f: E \to F$. Soit $(A, B) \in \mathcal{P}(E)^2$. Montrer que

$$f(A \cup B) = f(A) \cup f(B)$$

<u>Correction</u> Soit $(A, B) \in \mathcal{P}(E)^2$. On va montrer l'égalité des ensembles par double inclusion.

 \subset : Soit $y \in f(A \cup B)$.

Donc, $\exists x \in A \cup B$ tel que y = f(x).

Donc, $(\exists x \in A \text{ tel que } y = f(x))$ ou $(\exists x \in B \text{ tel que } y = f(x))$.

Donc, $y \in f(A)$ ou $y \in f(B)$.

Donc, $y \in f(A) \cup f(B)$.

On en déduit que $f(A \cup B) \subset f(A) \cup f(B)$.

 \supseteq : $A \subset A \cup B$ donc $f(A) \subset f(A \cup B)$.

De même, $f(B) \subset f(A \cup B)$.

On en déduit que $f(A) \cup f(B) \subset f(A \cup B)$.

On a montré par double inclusion que $f(A) \cup f(B) = f(A \cup B)$.