Exercice 1 Déterminer graphiquement les ensembles suivants.

1.
$$\sin\left(\left[-\frac{\pi}{3}; \frac{\pi}{4}\right]\right)$$
.

4.
$$\ln([1, \mathbf{e}] \cup [2\mathbf{e}, +\infty[).$$

2.
$$\cos\left(\left[\frac{\pi}{3}, \frac{5\pi}{4}\right]\right)$$
.

5.
$$\exp(\mathbb{R}^*)$$
.

3.
$$\tan\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right]\right)$$
.

Exercice 2

1. Pour chacune des fonctions f suivantes, donner leur ensemble de définition D_f et leur image $f(D_f)$.

(a)
$$f(x) = x^2 - 4x + 3$$
.

(b)
$$f(x) = \sqrt{2x+3} - 1$$

(c)
$$f(x) = |\sin(x)|$$

2. Etudier le caractère bijectif de ces fonctions et la bijection réciproque lorsqu'elle existe.

Exercice 3 On considère l'application h définie par

$$h: x \mapsto \frac{2x+1}{x+2}$$

- 1. Déterminer son ensemble de définition D_h .
- 2. Déterminer $h(D_h)$.
- 3. Montrer que h est une bijection de D_h sur $h(D_h)$ et donner sa bijection réciproque.

Exercice 4 On considère l'application q définie par

$$g: x \mapsto \sqrt{|x-1|} + 4$$

- 1. Déterminer son ensemble de définition D_q et $g(D_q)$.
- 2. L'application g est-elle injective sur D_q ?
- 3. Déterminer un intervalle sur lequel est l'est.

Exercice 5

- 1. Pour chacune des fonctions f suivantes, donner leur ensemble de définition D_f et leur image $f(D_f)$.
 - (a) f(n) = 2n + 1.
 - (b) $f(z) = \overline{z}$
 - (c) $f(\theta) = \mathbf{e}^{\mathbf{i}\theta}$
- 2. Etudier le caractère bijectif de ces fonctions.

Exercice 6

- 1. Soit $f: \left\{ \begin{array}{l} \mathbb{C}^3 \to \mathbb{C}^3 \\ (x, y, z) \mapsto (x, x+y, x+y+z) \end{array} \right.$
 - (a) Soit $(a, b, c) \in \mathbb{C}^3$. Déterminer les antécédents par f de (a, b, c).
 - (b) f est-elle bijective de \mathbb{C}^3 dans \mathbb{C}^3 .
- 2. Soit $f: \left\{ \begin{array}{l} \mathbb{R}^3 \to \mathbb{R}^3 \\ (x, y, z) \mapsto (x, y^2, z^2) \end{array} \right.$

Déterminer deux ensembles E et F tels que

- (a) f soit surjectif de E dans F,
- (b) f soit injectif de E dans F,
- (c) f soit bijectif de E dans F.

Exercice 7 On note $\mathbb{U} = \{z \in \mathbb{C} \text{ tel que } |z| = 1\}$. Soit $f: \left\{ \begin{array}{l} \mathbb{R} \to \mathbb{U} \\ x \mapsto \frac{1 + \mathbf{i}x}{1 + \mathbf{i}x} \end{array} \right.$

- 1. Montrer que f est bien définie sur \mathbb{R} et à valeurs dans \mathbb{U} .
- 2. Cette application est-elle injective de \mathbb{R} dans \mathbb{U} ? surjective de \mathbb{R} dans \mathbb{U} ?

Exercice 8 [*] Soient E, F et G trois ensembles.

Soit $f \in \mathcal{F}(E, F)$ et soit $g \in \mathcal{F}(F, G)$.

- 1. Montrer que si $g \circ f$ est injective de E dans G alors f est injective de E dans F.
- 2. Montrer que si $g \circ f$ est surjective de E dans G alors g est surjective de F dans G.

Exercice 9 [*] Soient E et F deux ensembles. Soit $f: E \to F$. Soit $(A,B) \in \mathcal{P}(E)^2$. Montrer que

$$f(A \cup B) = f(A) \cup f(B)$$