Chapitre 09 : Suites réelles, partie 1

Table des matières

1	Suites usuelles	
	.1 Suites arithmétiques	
	2 Suites géométriques	
	.3 Suites arithmético-géométriques	
	.4 Suites récurrentes linéaires homogènes d'ordre 2	
2	Suites bornées et suites monotones	
	2.1 Suites bornées	
	2.2 Suites monotones	
3	Limite d'une suite	
	3.1 Opérations sur les limites	
	3.2 Croissances comparées	
	3.3 Limites et inégalités	
	3.4 Conditions suffisantes de convergence	
1	Suites récurrentes de la forme $u_{n+1} = f(u_n)$	
	l.1 Définition de la suite	
	Représentation d'une telle suite	
	4.3 Etude de la monotonie	
	4 Lorsqu'elle existe, valeur de la limite	

Définition 1.

On appelle <u>suite réelle</u> toute fonction u de \mathbb{N} dans \mathbb{R} . On note une suite sous la forme $(u_n)_{n\in\mathbb{N}}$ ou seulement u.

Notations.

- 1. Pour $n \in \mathbb{N}$, u_n est le terme de rang n de la suite.
- 2. $(u_n)_{n\in\mathbb{N}}$ correspond à la suite
- 3. $u(\mathbb{N}) = \{u_n, n \in \mathbb{N}\}$ est l'ensemble des valeurs prises par la suite u.

Exemple 2. Il existe plusieurs types de suites. En particulier,

- Suite définie explicitement : $\forall n \in \mathbb{N}, u_n = n^2 + 4$.
- Suite définie par récurrence : $w_0=1$ et $\forall n\geq 0,\ w_{n+1}=\frac{3w_n-5}{w_n+1}$
- Suite définie implicitement : pour $n \in \mathbb{N}$, u_n est l'unique racine positive de $P = x^2 + nx + 4$.

1 Suites usuelles

1.1 Suites arithmétiques

Définition 3.

Soit $u = (u_n)_{n \in \mathbb{N}}$ une suite réelle. Soit $r \in \mathbb{R}$.

On dit que la suite u est arithmétique de raison r lorsque : $\forall n \in \mathbb{N}, u_{n+1} = u_n + r$.

Théorème 4.

Soit $u = (u_n)_{n \in \mathbb{N}}$ une suite arithmétique de raison r.

- 1. $\forall n \in \mathbb{N}, \ u_n = u_0 + nr.$
- 2. Si r > 0 alors $\lim_{n \to +\infty} u_n = +\infty$.
 - $\bullet\,$ Si r=0 alors la suite est constante.
 - Si r < 0 alors $\lim_{n \to +\infty} u_n = -\infty$.
- 3. $\forall (n,p) \in \mathbb{N}^2, \ u_n = u_p + (n-p)r.$

Théorème 5.

Soit $u = (u_n)_{n \in \mathbb{N}}$ une suite arithmétique de raison r. Soit $(m, n) \in \mathbb{N}^2$ tel que $m \leq n$.

$$\sum_{k=m}^{n} u_k = \sum_{k=m}^{n} (u_0 + kr) = (n - m + 1) \times \frac{(u_m + u_n)}{2}$$

 $(nombre de termes) \times (moyenne des termes extrêmes)$

1.2 Suites géométriques

Définition 6.

Soit $u = (u_n)_{n \in \mathbb{N}}$ une suite réelle. Soit $q \in \mathbb{R}$.

On dit que la suite u est géométrique de raison q lorsque : $\forall n \in \mathbb{N}, u_{n+1} = qu_n$.

Théorème 7.

Soit $u = (u_n)_{n \in \mathbb{N}}$ une suite géométrique de raison q.

- 1. $\forall n \in \mathbb{N}, \ u_n = u_0 \times q^n$.
- 2. Si |q| < 1 alors $\lim_{n \to +\infty} u_n = 0$.
 - Si q = 1 alors la suite est constante.
 - Si |q| > 1 alors $\lim_{n \to +\infty} u_n = +\infty$.
- 3. Si $q \neq 0$, $\forall (n, p) \in \mathbb{N}^2$, $u_n = u_p \times q^{n-p}$.

Théorème 8.

Soit $u=(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison q. Soit $(n,p)\in\mathbb{N}^2$ tel que $p\leq n$.

$$\sum_{k=p}^{n} u_k = \sum_{k=p}^{n} u_0 \cdot q^k = \begin{cases} (n-p+1) \times u_0 & \text{si } q = 1\\ u_p \frac{1-q^{n-p+1}}{1-q} & \text{si } q \neq 1 \end{cases}$$

1.3 Suites arithmético-géométriques

Définition 9.

Soit $u = (u_n)_{n \in \mathbb{N}}$ une suite réelle.

On dit que $u=(u_n)_{n\in\mathbb{N}}$ est une suite arithmético-géométrique lorsque

$$\exists (a,b) \in \mathbb{R}^2, \ \forall n \in \mathbb{N}, \ u_{n+1} = au_n + b$$

Exemple 10. La suite u définie par $u_0 = 1$ et $\forall n \in \mathbb{N}, u_{n+1} = 2u_n + 3$ est une suite arithmético-géométrique.

Methode 1 (Etude d'une suite arithmético-géométrique définie par $\forall n \in \mathbb{N}, u_{n+1} = au_n + b$).

- 1. Chercher la solution ℓ de l'équation x = ax + b.
- 2. Montrer que la suite définie par $\forall n \in \mathbb{N}, \ v_n = u_n \ell$ est géométrique.
- 3. En déduire le terme général de la suite $v:v_n$ en fonction de n et de v_0 .
- 4. En déduire le terme général de la suite $u:u_n$ en fonction de n, de ℓ et de u_0 .

Exemple 11. Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1=$ et $\forall n\in\mathbb{N},\ 3u_{n+1}+2u_n+5=0$. Déterminer le terme général de cette suite.

1.4 Suites récurrentes linéaires homogènes d'ordre 2

Définition 12.

Soit $u = (u_n)_{n \in \mathbb{N}}$ une suite réelle.

On dit que $u = (u_n)_{n \in \mathbb{N}}$ est <u>une suite récurrente linéaire d'ordre 2</u> lorsque

$$\exists (a,b) \in \mathbb{R}^2, \ \forall n \in \mathbb{N}, \ u_{n+2} = au_{n+1} + bu_n$$

On appelle équation caractéristique l'équation $x^2 = ax + b$.

Exemple 13. La suite de Fibonacci est la suite définie par : $u_0 = 0$, $u_1 = 1$, et $\forall n \in \mathbb{N}$, $u_{n+2} = u_{n+1} + u_n$.

Théorème 14.

Soit $u = (u_n)_{n \in \mathbb{N}}$ une suite récurrente linéaire d'ordre 2.

Notons Δ le discriminant de son équation caractéristique $x^2 = ax + b$.

1. Si $\Delta > 0$ alors l'équation caractéristique admet deux racines réelles r_1 et r_2 et

$$\exists (A,B) \in \mathbb{R}^2, \ \forall n \in \mathbb{N}, \ u_n = Ar_1^n + Br_2^n$$

2. Si $\Delta = 0$ alors l'équation caractéristique admet une racine double r_0 et

$$\exists (A, B) \in \mathbb{R}^2, \ \forall n \in \mathbb{N}, \ u_n = (An + B)r_0^n$$

3. Si $\Delta < 0$ alors l'équation caractéristique admet deux racines complexes conjugués $r_1 = r\mathbf{e}^{\mathbf{i}\theta}$ et $r_2 = r\mathbf{e}^{-\mathbf{i}\theta}$ et

$$\exists (A, B) \in \mathbb{R}^2, \ \forall n \in \mathbb{N}, \ u_n = r^n \left[A \cos(n\theta) + B \sin(n\theta) \right]$$

Remarque 15. Les constantes A et B sont à déterminer à partir de u_0 et de u_1 .

Exemple 16. Déterminer l'expression générale de la suite de Fibonacci.

Exemple 17. Déterminer l'expression générale de la suite u définie par

$$u_0 = 1, u_1 = 2 \text{ et } \forall n \in \mathbb{N}, u_{n+2} - 2u_{n+1} + 2u_n = 0.$$

2 Suites bornées et suites monotones

2.1 Suites bornées

Définition 18.

Soit $u = (u_n)_{n \in \mathbb{N}}$ une suite réelle.

- On dit que <u>la suite u est minorée</u> lorsque : $\exists m \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ m \leq u_n$.
- On dit que la suite u est majorée lorsque : $\exists M \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ u_n \leq M$.
- On dit que <u>la suite u est bornée</u> lorsqu'elle est minorée et majorée : $\exists \ (m,M) \in \mathbb{R}^2, \ \forall n \in \mathbb{N}, \ m \leq u_n \leq M.$

Exemple 19. La suite $((-1)^n)_{n\in\mathbb{N}}$ est une suite bornée. La suite $(n^2-4)_{n\in\mathbb{N}}$ est une suite minorée.

Théorème 20.

Soit $u = (u_n)_{n \in \mathbb{N}}$ une suite réelle.

La suite u est bornée si, et seulement si, la suite |u| est majorée.

Exemple 21. Montrer que la suite définie par $\forall n \in \mathbb{N}, \ u_n = \frac{\cos(n)}{2^n}$ est bornée.

Théorème 22.

La somme ou le produit de deux suites bornées est encore une suite bornée.

Exemple 23. Montrer que la suite définie par $\forall n \in \mathbb{N}, u_n = \cos(n) - \sin(5n)$ est bornée.

2.2 Suites monotones

(**D**éfinition 24.)

Soit $u = (u_n)_{n \in \mathbb{N}}$ une suite réelle.

- On dit que <u>la suite u est croissante</u> lorsque : $\forall n \in \mathbb{N}, u_n \leq u_{n+1}$.
- On dit que <u>la suite u est décroissante</u> lorsque : $\forall n \in \mathbb{N}, u_{n+1} \leq u_n$.
- On dit que <u>la suite u est constante</u> lorsque : $\forall n \in \mathbb{N}, u_{n+1} = u_n$.

Methode 2 (Etude de la monotonie d'une suite.).

Soit $u=(u_n)_{n\in\mathbb{N}}$ une suite réelle. Pour étudier la monotonie de u,

- On étudie, à n fixé, le signe de la quantité $u_{n+1}-u_n$.
- Si la suite est non nulle, on compare, à n fixé, le quotient $\frac{u_{n+1}}{u_n}$ à 1.

Exemple 25. Etudier la monotonie de la suite définie par $u_0 = 1$ et $\forall n \in \mathbb{N}, \ u_{n+1} = 1 + u_n^2$.

Exemple 26. Déterminer la monotonie de la suite définie par $\forall n \in \mathbb{N}, \ u_n = \frac{n+1}{n+2}$.

3 Limite d'une suite

3.1 Opérations sur les limites

Théorème 27.

Soient $u=(u_n)_{n\in\mathbb{N}}$ et $v=(v_n)_{n\in\mathbb{N}}$ deux suites réelles. Ce tableau donne la valeur de $\lim_{n\to+\infty}(u_n+v_n)$.

$\lim_{n \to \infty} u_n$	$-\infty$	ℓ'	+∞
$-\infty$	$-\infty$	$-\infty$	Forme Ind.
ℓ	$-\infty$	$\ell + \ell'$	$+\infty$
$+\infty$	Forme Ind.	$+\infty$	$+\infty$

Exemple 28. Déterminer la limite de la suite définie par $\forall n \in \mathbb{N}, u_n = n - n^2$.

Exemple 29. Déterminer la limite de la suite définie par $\forall n \in \mathbb{N}, u_n = \mathbf{e}^n - n^2$.

Théorème 30.

Soient $u=(u_n)_{n\in\mathbb{N}}$ et $v=(v_n)_{n\in\mathbb{N}}$ deux suites réelles. Ce tableau donne la valeur de $\lim_{n\to+\infty}(u_n\times v_n)$.

$\lim_{n \to +\infty} u_n$	$-\infty$	$\ell' < 0$	0	$\ell' > 0$	+∞
$-\infty$	$+\infty$	$+\infty$	Forme Ind.	$-\infty$	$-\infty$
$\ell < 0$	$+\infty$	$\ell \times \ell'$	0	$\ell \times \ell'$	$-\infty$
0	Forme Ind.	0	0	0	Forme Ind.
$\ell > 0$	$-\infty$	$\ell \times \ell'$	0	$\ell \times \ell'$	$+\infty$
$+\infty$	$-\infty$	$-\infty$	Forme Ind.	$+\infty$	$+\infty$

Théorème 31.

Soient $u=(u_n)_{n\in\mathbb{N}}$ et $v=(v_n)_{n\in\mathbb{N}}$ deux suites réelles. Ce tableau donne la valeur de $\lim_{n\to+\infty}\frac{u_n}{v_n}$.

$\lim_{n \to +\infty} u_n$	$-\infty$	$\ell' < 0$	0-	0+	$\ell' > 0$	$+\infty$
$-\infty$	F.I.	$+\infty$	$+\infty$	$-\infty$	$-\infty$	F.I.
$\ell < 0$	0+	$\frac{\ell}{\ell'}$	$+\infty$	$-\infty$	$\frac{\ell}{\ell'}$	0-
0-	0+	0+	F.I.	F.I.	0-	0-
0+	0+	0-	F.I.	F.I.	0+	0+
$\ell > 0$	0-	$\frac{\ell}{\ell'}$	$-\infty$	$+\infty$	$\frac{\ell}{\ell'}$	0+
$+\infty$	F.I.	$-\infty$	$-\infty$	$+\infty$	$+\infty$	F.I.

Exemple 32. Déterminer la nature de la suite définie par $\forall n \in \mathbb{N}, \ u_n = \frac{2n^3 - 5n + 1}{n^3 + 6n^2 + 8}$.

Exemple 33. Déterminer la nature de la suite définie par $\forall n \in \mathbb{N}, \ u_n = \sqrt{n+4} - \sqrt{n+1}$.

3.2 Croissances comparées

Théorème 34.

Soit $a \in \mathbb{R}$, a > 1. Soit $b \in \mathbb{R}^*$.

$$\lim_{n \to +\infty} \frac{a^n}{n!} = 0 \quad \lim_{n \to +\infty} \frac{n^b}{a^n} = 0$$

3.3 Limites et inégalités

Théorème 35.

Soit $u = (u_n)_{n \in \mathbb{N}}$ et $v = (v_n)_{n \in \mathbb{N}}$ deux suites réelles **convergentes**.

- 1. Si $\exists n_0 \in \mathbb{N}, \ \forall n \geq n_0, \ u_n > 0 \ \text{alors} \ \lim_{n \to +\infty} u_n \geq 0.$
- 2. Si $\exists n_0 \in \mathbb{N}, \ \forall n \geq n_0, \ u_n > v_n \ \text{alors} \lim_{n \to +\infty} u_n \geq \lim_{n \to +\infty} v_n.$
- 3. Si $\lim_{n \to +\infty} u_n > 0$ alors $\exists n_0 \in \mathbb{N}, \ \forall n \ge n_0, \ u_n > 0$.

Théorème 36.

Soient $u = (u_n)_{n \in \mathbb{N}}$ et $v = (v_n)_{n \in \mathbb{N}}$ deux suites réelles telles que : $\exists n_0 \in \mathbb{N}, \ \forall n \geq n_0, \ u_n > v_n$.

- 1. Si v diverge vers $+\infty$ alors u diverge vers $+\infty$.
- 2. Si u diverge vers $-\infty$ alors v diverge vers $-\infty$.

Théorème 37 (Théorème d'encadrement).

Soient $u=(u_n)_{n\in\mathbb{N}}, v=(v_n)_{n\in\mathbb{N}}$ et $w=(w_n)_{n\in\mathbb{N}}$ trois suites réelles telles que :

$$\exists n_0 \in \mathbb{N}, \ \forall n \geq n_0, \ u_n > v_n > w_n.$$

Si les suites u et w convergent vers la même limite finie ℓ alors la suite v converge vers ℓ .

Exemple 38. Déterminer la nature de la suite définie par $\forall n \in \mathbb{N}, \ u_n = \frac{(-1)^n}{2^n \cdot n}$.

3.4 Conditions suffisantes de convergence.

Théorème 39 (Théorème de la limite monotone, admis.).

Soit $u = (u_n)_{n \in \mathbb{N}}$ une suite réelle.

- 1. Si u est croissante et majorée alors elle converge.
- 2. Si u est croissante et non majorée alors elle diverge vers $+\infty$.
- 3. Si u est décroissante et minorée alors elle converge.
- 4. Si u est décroissante et non minorée alors elle diverge vers $-\infty$.

Remarque 40. Ce théorème ne donne pas la valeur de la limite, il garantit qu'elle existe.

4 Suites récurrentes de la forme $u_{n+1} = f(u_n)$

4.1 Définition de la suite

Définition 41.

Soit $f: D_f \to \mathbb{R}$ une fonction continue sur D_f .

On appelle <u>suite récurrente</u> toute suite u définie par $\begin{cases} u_0 \in D_f \\ \forall n \in \mathbb{N}, \ u_{n+1} = f(u_n) \end{cases}$.

Exemple 42. La suite
$$u$$
 définie par
$$\begin{cases} u_0 = 2 \\ \forall n \in \mathbb{N}, \ u_{n+1} = \frac{1}{u_n - 1} \end{cases}$$
 est-elle bien définie?

Methode 3 (Montrer qu'une suite définie par récurrence est bien définie).

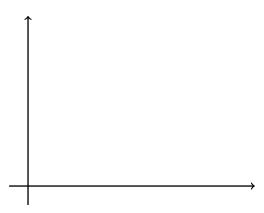
Pour montrer qu'une telle suite est bien définie :

- Si f est définie sur \mathbb{R} , la suite est bien définie.
- Si f est définie sur $D \neq \mathbb{R}$, on montre par récurrence que la suite u est à valeurs dans D.

$$\forall n \in \mathbb{N}, \ P(n) : "u_n \in D"$$

4.2 Représentation d'une telle suite

Exemple 43. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=1$ et $\forall n\in\mathbb{N},\ u_{n+1}=1+\frac{2}{u_n}$. Représenter les premiers termes de la suite.



4.3 Etude de la monotonie

Methode 4 (Etude de la monotonie d'une suite définie par récurrence).

On suppose que la fonction f est croissante sur D.

• Si $u_0 \le u_1$ alors on montre par récurrence que u est croissante.

$$\forall n \in \mathbb{N}, \ P(n) : "u_n \le u_{n+1}"$$

• Si $u_1 \leq u_0$ alors on montre par récurrence que u est décroissante.

$$\forall n \in \mathbb{N}, \ P(n) : "u_n \ge u_{n+1}"$$

Remarque 44. Si, de plus la suite est bornée, on peut appliquer le théorème de la limite monotone.

4.4 Lorsqu'elle existe, valeur de la limite

Théorème 45 (Théorème du point fixe, admis.). Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle et soit f une fonction définie sur un intervalle I. $\begin{cases} \forall n\in\mathbb{N},\ u_{n+1}=f(u_n)\\ (u_n)\ \text{converge vers }\ell\in I \quad \text{alors }\ell\ \text{vérifie}:\ell=f(\ell)\\ f\ \text{est continue sur }I, \end{cases}$

Remarque 46. Les solutions de l'équation x = f(x) sont les seules limites possibles de la suite u.

Exemple 47. Soit
$$u$$
 la suite définie par $\begin{cases} u_0 = 2 \\ \forall n \in \mathbb{N}, \ u_{n+1} = \ln(u_n + 1) \end{cases}$

- 1. Étudier la monotonie sur \mathbb{R}_+ de la fonction $x \mapsto \ln(x+1)$.
- 2. Montrer que pour tout entier n, u_n existe et $u_n \ge 0$.
- 3. En déduire la monotonie de la suite u.
- 4. Montrer que la suite est convergente.
- 5. En étudiant $x \mapsto \ln(x+1) x$, déterminer la valeur de sa limite.