Exercice 1 Déterminer le terme général des suites suivantes

1.
$$u_0 = 3$$
 et $\forall n \in \mathbb{N}, u_{n+1} = -u_n$.

2.
$$u_0 = 0$$
 et $\forall n \in \mathbb{N}, u_{n+1} = 2u_n + 1$.

3.
$$u_0 = -1$$
 et $\forall n \in \mathbb{N}, u_{n+1} = 1 - u_n$.

4.
$$u_0 = 2$$
 et $\forall n \in \mathbb{N}, \ u_{n+1} = u_n^2$.

On pourra faire une conjecture ou utiliser la suite v définie par $\forall n \in \mathbb{N}, v_n = \ln(u_n)$.

Exercice 2 Déterminer le terme général des suites suivantes.

1.
$$u_0 = 1$$
, $u_1 = 0$ et $\forall n \in \mathbb{N}$, $u_{n+2} = 4u_{n+1} - 4u_n$.

2.
$$u_0 = 1$$
, $u_1 = 2$ et $\forall n \in \mathbb{N}$, $u_{n+2} + 2u_{n+1} - 3u_n = 0$.

3.
$$u_0 = 1$$
, $u_1 = 0$ et $\forall n \in \mathbb{N}$, $u_{n+2} = 2u_{n+1} - 2u_n$.

Exercice 3 Soient $(u_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ deux suites réelles telles que

$$u_0 = 1, \ w_0 = 2 \text{ et } \forall n \in \mathbb{N}, \ u_{n+1} = 3u_n + 2w_n \text{ et } w_{n+1} = 3w_n + 2u_n$$

- 1. Calculer u_1, w_1, u_2 et w_2 .
- 2. Montrer que la suite $(u_n w_n)_{n \in \mathbb{N}}$ est constante.
- 3. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est arithmético-géométrique.
- 4. En déduire le terme général de la suite $(u_n)_{n\in\mathbb{N}}$ puis de $(w_n)_{n\in\mathbb{N}}$.

Exercice 4 Etudier la nature des suites proposées.

1.
$$\forall n \in \mathbb{N}, \ u_n = \frac{2^n - 3^n}{2^n + 3^n}$$

$$4. \ \forall n \in \mathbb{N}, \ u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$$

$$2. \ \forall n \in \mathbb{N}, \ u_n = \frac{\cos(n)}{n+1}$$

5.
$$\forall n \in \mathbb{N}^*, \ u_n = \frac{\lfloor na \rfloor}{n} \text{ pour } a \in \mathbb{R}.$$

$$3. * \forall n \in \mathbb{N}, \ u_n = \frac{n!}{n^n}$$

6.
$$\forall n \in \mathbb{N}, \ u_n = \frac{\lfloor na \rfloor}{a} \text{ pour } a \in \mathbb{R}^*.$$

<u>Exercice</u> 5 Sans se soucier de la bonne définition de la suite, étudier la monotonie des suites proposées.

1.
$$u_0 = 1$$
 et $\forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{1 + u_n}$.

2. * $u_0 \in \mathbb{R}$ et $\forall n \in \mathbb{N}, u_{n+1} = \mathbf{e}^{u_n} - 1$.

On pourra utiliser la fonction $g: x \mapsto \mathbf{e}^x - 1 - x$ en calculant la dérivée seconde de g.

Exercice 6 Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par

$$u_0 = 2 \text{ et } \forall n \in \mathbb{N}, \ u_{n+1} = \frac{2u_n + 1}{u_n + 2}.$$

- 1. Soit $f: x \mapsto \frac{2x+1}{x+2}$. Montrer que $\forall x \in \mathbb{R}_+, \ f(x) \ge 0$.
- 2. En déduire que $\forall n \in \mathbb{N}, u_n$ existe et $u_n \geq 0$.
- 3. On définit une suite auxiliaire $(t_n)_{n\in\mathbb{N}}$ par $\forall n\in\mathbb{N},\ t_n=\frac{u_n-1}{u_n+1}$. Montrer que cette suite est géométrique.
- 4. En déduire le terme de général de la suite t en fonction de n.
- 5. En déduire celui de la suite u.

Exercice 7 On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$u_0 = 1 \text{ et } \forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{\frac{2}{u_n}}$$

- 1. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie, à termes strictement positifs.
- 2. On pose : $\forall n \in \mathbb{N}, \ v_n = \ln(u_n)$. Justifier que la suite $(v_n)_{n \in \mathbb{N}}$ est bien définie.
- 3. Exprimer, pour tout $n \in \mathbb{N}$, v_{n+1} en fonction de v_n . En déduire l'expression de v_n en fonction de n.
- 4. En déduire ensuite l'expression de u_n en fonction de $n \in \mathbb{N}$.
- 5. Quelle est la limite de $(u_n)_{n\in\mathbb{N}}$ quand n tend vers $+\infty$?

- 6. Écrire une fonction python suite(n) qui prend en argument d'entrée un entier naturel n et qui renvoie le terme u_n . On rappelle que la racine carrée est obtenue par la commande sqrt.
- 7. Écrire une fonction python somme(n) qui prend en argument d'entrée un entier naturel n et qui renvoie la somme $\sum_{k=0}^{n} u_k$. On pourra utiliser la fonction suite de la question précédente, ou pas (2 solutions possibles).

Exercice 8 Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$u_0 = 2 \text{ et } \forall n \in \mathbb{N}, \ u_{n+1} = \frac{3u_n - 1}{u_n + 1}.$$

- 1. Calculer u_1 , u_2 et u_3 .
- 2. Soit $f: x \mapsto \frac{3x-1}{x+1}$. Étudier les variations de f sur \mathbb{R}_+ .
- 3. Montrer que l'intervalle [1,2] est stable par f, c'est-à-dire que $\forall x \in [1,2], \ f(x) \in [1,2].$
- 4. Montrer que pour tout entier $n \in \mathbb{N}$, u_n existe et $1 \le u_n \le 2$.
- 5. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.
- $6. \ \, {\rm En}$ déduire que la suite est convergente et déterminer sa limite.