Colles de physique-chimie en BCPST 1.1 : Semaine 9 (24 au 28 novembre 2025)

CO2 : Stéréoisomérie en chimie organique

Connaître	Savoir faire
Représentation spatiale des molécules : Cram, perspective, Newman	Savoir dessiner une molécule quelconque dans une de ces représentations et savoir passer d'une représentation à une autre (notamment entre Newman et Cram)
Énergie potentielle d'une conformation d'une molécule, les différentes interactions permettant d'expliquer les variations d'énergie potentielle d'une conformation à l'autre	
Analyse conformationnelle de l'éthane, énergie de rotation, conformations décalée et éclipsée, les interactions présentes dans chaque conformation	Connaître l'ordre de grandeur de cette barrière d'énergie, en déduire la libre rotation
Analyse conformationnelle du butane, valeurs de l'angle α , interactions présentes dans chaque conformation, ordre de grandeur de la barrière d'énergie,	Déduire l'allure de la courbe de l'énergie potentielle en fonction de l'angle suivant les interactions présentes
Conformation zig-zag	
Définitions : isomères, stéréoisomères, stéréoisomères de configuration, diastéréoisomères, énantiomères, mélange racémique	
Règles CIP	Appliquer les règles CIP pour des substituants quelconques et savoir lequel est prioritaire, ne pas hésiter à faire une arborescence jusqu'au rang n pour départager deux substituants
Structure des alcènes, isomérie Z/E	À appliquer sur un alcène quelconque
Propriétés physiques et chimiques des diastéréoisomères Z et E	Comprendre pourquoi ces propriétés sont différentes, en nommer quelques-unes, les justifier
Chiralité, définition par le principe de Pasteur, par les éléments de symétrie	Reconnaître une molécule chirale, savoir écrire un couple d'énantiomères
Propriétés physiques et chimiques des énantiomères	Citer des exemples de propriétés physiques ou chimiques identiques ou différentes
Activité optique. Loi de Biot, mélange racémique	Relier la valeur du pouvoir rotatoire à la composition d'un mélange de stéréoisomères.
	Comparer les propriétés de deux stéréoisomères de configuration en milieu chiral et non chiral

Définition : carbone asymétrique	Reconnaître un atome de carbone asymétrique dans une molécule quelconque
Configuration absolue d'un carbone asymétrique, descripteurs R / S, règles de Cahn, Ingolg et Prélog	Savoir appliquer ces règles pour donner la configuration absolue d'un carbone asymétrique dans une molécule quelconque, représentée en Cram, Newman ou perspective
Molécule possédant plusieurs carbones asymétriques, couples d'énantiomères, de diastéréoisomères, composé méso, nombre de stéréoisomères en fonction du nombre de carbones asymétriques	Déduire du nombre de carbones asymétriques tous les stéréoisomères possibles pour une molécule, les nommer avec les descripteurs R/S, donner les couples d'énantiomères et de diastéréoisomères, repérer le composé méso
Molécules chirales sans carbone asymétrique	Citer au moins un exemple

CO3 : Spectroscopies UV-visible, IR et infra-rouge (COURS SEULEMENT)

Connaître	Savoir faire
Nature des transitions associées aux spectroscopies UV- visible et infrarouge, domaine du spectre des ondes électromagnétiques correspondant.	Relier la longueur d'onde du rayonnement absorbé à la nature et à l'énergie de la transition associée.
Transmittance, absorbance.	Identifier, à partir du spectre infrarouge et de tables de nombres d'onde de vibration, une liaison ou un groupe caractéristique dans une entité chimique organique.
Exploitation de spectres RMN ¹ H. Déplacement chimique, intégration.	
Multiplicité d'un signal	Confirmer ou attribuer la structure d'une entité à partir de données spectroscopiques infrarouge et/ou de résonance magnétique nucléaire du proton et de tables de nombres d'onde ou de déplacements chimiques caractéristiques.

E1 : Description d'un système thermodynamique

Connaître	Savoir faire
Système thermodynamique, échelles microscopique, mésoscopique et macroscopique État d'équilibre thermodynamique	Préciser les paramètres nécessaires à la description d'un état microscopique ou macroscopique d'un système thermodynamique Définir l'échelle mésoscopique et en expliquer la nécessité Associer qualitativement la température et la pression aux propriétés physiques du système à l'échelle microscopique
Modèle du gaz parfait. Masse volumique, température et pression Équation d'état du gaz parfait Modèle de la phase condensée indilatable et incompressible	Exploiter l'équation d'état du gaz parfait pour décrire le comportement d'un gaz

E2 : Changements d'états du corps pur

Connaître	Savoir faire
Corps pur en équilibre diphasé. Diagramme de phases (<i>P</i> , <i>T</i>).	Analyser un diagramme de phases expérimental (<i>P</i> , <i>T</i>).
Cas particulier de l'équilibre liquide-vapeur : diagramme de Clapeyron (P,v) , pression de vapeur saturante, titre en vapeur.	Positionner les différentes phases d'un corps pur dans les diagrammes (P, T) et (P, v).
Théorème des moments (sans démonstration)	Utiliser le théorème des moments