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Chapitre 15 : Géométrie dans R3
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1 Espaces R3

1.1 Vecteurs et opérations sur les vecteurs

On définit l’espace euclidien par

R3 = {−→u = (x, y, z) avec x, y, z ∈ R}

Tous les éléments de R3 ont appelés des vecteurs de R3. x, y et z sont les composantes du vecteur.

Définition 1.

Soient −→u = (x1, y1, z1) et −→v = (x2, y2, z2) deux vecteurs de R3. Soit λ ∈ R.
1. On définit le vecteur −→u +−→v comme l’unique vecteur de composantes (x1 +x2, y1 +y2, z1 +z2).
2. On définit le vecteur λ.−→u comme l’unique vecteur de composantes (λ.x1, λ.y1, λ.z1).

Définition 2 (Opérations sur R3).

La loi + sur R3 a les propriétés suivantes.
• Commutativité : ∀(−→u , −→v ) ∈ (R3)2 , −→u + −→v = −→v + −→u .
• Associativité : ∀(−→u , −→v , −→w ) ∈ (R3)3 , (−→u + −→v ) + −→w = −→u + (−→v + −→w ).
• Elément neutre : ∀−→u ∈ R3 , −→u + −→0 = −→u .
• Symétrique : ∀−→u ∈ R3 , ∃−→v ∈ R3 tel que −→u + −→v = −→0 .

Théorème 3 (Règles de calculs).

La loi + et la loi . sur R2 ont les propriétés suivantes.
• ∀−→u ∈ R3 , 0.−→u = −→0 et 1.−→u = −→u .

• ∀−→u ∈ R3 , ∀λ ∈ R, λ.−→u = −→0 ⇔
(

λ = 0 ou −→u = −→0
)

.
• ∀−→u ∈ R3, ∀(λ, µ) ∈ R2, (λ + µ)−→u = λ−→u + µ−→u et λ(µ−→u ) = (λµ)−→u .
• ∀−→u , −→v ∈ R3, ∀λ ∈ R, λ(−→u + −→v ) = λ−→u + λ−→v .

Théorème 4 (Règles de calculs).

1.2 Vecteurs colinéaires.

Soient −→u et −→v deux vecteurs de R3. On dit que −→u et −→v sont colinéaires lorsque

∃ (λ1, λ2) ∈ R2 , (λ1, λ2) ̸= (0, 0) tel que λ1
−→u + λ2

−→v = −→0 .

Définition 5.

Exemple 6. Les vecteurs −→u = (1, 2, 3) et −→v = (−2, −4, −6) sont colinéaires.
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Soient −→u et −→v deux vecteurs de R3.
1. Si −→u = −→0 ou −→v = −→0 alors −→u et −→v sont colinéaires.
2. Supposons que −→u et −→v soient tous les deux non nuls.

Ils sont colinéaires si, et seulement si, il existe t ∈ R tel que −→u = t.−→v .

Théorème 7.

1.3 Vecteurs coplanaires.

Soient −→u , −→v et −→w trois vecteurs de R3. On dit que −→u , −→v et −→w sont coplanaires lorsque

∃ (λ1, λ2, λ3) ∈ R3 , (λ1, λ2, λ3) ̸= (0, 0, 0) tel que λ1
−→u + λ2

−→v + λ3
−→w = −→0 .

Définition 8.

Exemple 9. Montrer que les vecteurs −→u = (1, 2, 0), −→v = (4, 0, 6) et −→w = (0, 8, 9) ne sont pas coplanaires.

Soient −→u , −→v et −→w trois vecteurs de R3.
1. Si −→u et −→v sont colinéaires alors −→u , −→v et −→w sont coplanaires.
2. Supposons que −→u et −→v ne soient pas colinéaires.

−→u , −→v et −→w sont coplanaires si, et seulement si, il existe (t, t′) ∈ R2 tel que −→w = t.−→v + t′.−→v .

Théorème 10.

1.4 Points de l’espace affine et vecteurs.

Pour représenter les points de l’espace E , on utilise le repère (O,
−→
i ,

−→
j ,

−→
k ) où

• O est l’origine du repère,
• −→

i est le vecteur (1, 0, 0)
• −→

j est le vecteur (0, 1, 0)

•
−→
l est le vecteur (0, 0, 1)

A tout point M de l’espace, on associe le vecteur −→u tel que −−→
OM = −→u .

Les coordonnées de M sont les coordonnées de −→u dans la base (−→i ,
−→
j ,

−→
k ).

Soient A(xA, yA, zA) et B(xB , yB , zB) deux points de l’espace E .
Le vecteur −−→

AB est l’unique vecteur de R3 tel que −−→
AB = (xB − xA, yB − yA, zB − zA).

Définition 11.

Soient A, B et C trois points de l’espace E .
1. −→

AA = −→0
2. −−→

AB = −→0 ⇔ A = B.
3. −→

AC = −−→
AB + −−→

BC

4. −−→
AB = −

−−→
BA.

Théorème 12 (Relation de Chasles).
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Trois points A, B, C du plan sont dits alignés lorsque −−→
AB et −−→

BC sont colinéaires.
Un triangle est un triplet de points (A, B, C) non alignés, on le note ABC.

Définition 13.

1.5 Droites de l’espace

Soit A un point de R3 et soit −→u un vecteur non nul de R3.
On appelle droite passant par A et de vecteur directeur −→u tous les points M de R3 tel que
−−→
AM et −→u soient colinéaires.

D =
{

M ∈ R3 tel que
(
∃k ∈ R tel que −−→

AM = k.−→u
)}

Définition 14.

Soit A(xA, yA, zA) un point de R3 et soit −→u = (α, β, γ) un vecteur non nul de R3.
Soit D la droite passant par A et de vecteur directeur −→u .

M(x, y, z) ∈ D ⇔ ∃t ∈ R ,

 x = xA + tα
y = yA + tβ
z = zA + tγ

C’est une représentation paramétrique de la droite D.

Théorème 15.

1.6 Plans de l’espace

Soit A un point de R3 et soit (−→u , −→v ) deux vecteurs non colinéaires de R3.
On définit le plan passant par A et de vecteurs directeurs −→u et −→v comme l’ensemble des points M

de R3 tel que −−→
AM , −→u et −→v soient coplanaires.

Définition 16.

Soit A(xA, yA, zA) un point de R3 et soit (−→u = (α1, β1, γ1), −→v = (α2, β2, γ2)) deux vecteurs non
colinéaires.
Soit P le plan passant par A et de vecteurs directeurs −→u et −→v .

M(x, y, z) ∈ P ⇔ ∃(t, t′) ∈ R2 ,

 x = xA + tα1 + t′α2
y = yA + tβ1 + t′β2
z = zA + tγ1 + t′γ2

C’est une représentation paramétrique du plan P.

Théorème 17.

Exemple 18. Soient A(1, 0, 2), B(0, −1, 3) et C(1, 2, 3). Déterminer un système d’équations paramétriques du
plan passant par A, B et C.
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1.7 Bases de R3

On appelle base de R3 une famille de trois vecteurs de R2 non coplanaires.
La famille ((1, 0, 0), (0, 1, 0), (0, 0, 1)) est appelée la base canonique de R3.

Définition 19.

Exemple 20. Soient −→u =
(√

2,
√

2, 0
)
, −→v =

(√
2, −

√
2, 0

)
et −→w = (1, 0, 0).

Montrer que (−→u , −→v , −→w ) est une base de R3.

Soit (−→e1 , −→e2 , −→e3) une base de R3.

∀−→u ∈ R3, ∃ !(a, b, c) ∈ R3 tel que −→u = a−→e1 + b−→e2 + c−→e3

On dit que (a, b, c) sont les coordonnées de −→u dans la base (−→e1 , −→e2 , −→e3).

Théorème 21 (Coordonnées dans une base).

Exemple 22.
1. Montrer que (−→e1 = (1, 0, 0), −→e2 = (1, 1, 0), , −→e3 = (1, 1, 0)) forme une base de R3.
2. Déterminer les coordonnées de −→u = (2, −5, 4) dans cette base.

Soit B = (−→e1 , −→e2 , −→e3) une base de R3. Soit −→u ∈ R3.
Soit (a, b, c) les coordonnées de −→u dans la base B.

On appelle matrice de −→u dans la base B la matrice colonne matB(−→u ) =

a
b
c

.

Définition 23.

2 Orthogonalité.
2.1 Produit scalaire

Soient −→u = (x, y, z) et −→v = (x′, y′, z′) deux vecteurs de R3. On appelle produit scalaire de −→u et −→v
le réel noté < −→u , −→v > et défini par

< −→u , −→v >= xx′ + yy′ + zz′.

Définition 24.

Soient −→u et −→v deux vecteurs de R2. On dit que −→u et −→v sont orthogonaux lorsque < −→u , −→v >= 0.

Définition 25.
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Soient −→u , −→v et −→w trois vecteurs de R3. Le produit scalaire a les propriétés suivantes.
1. < −→u ,

−→0 >= 0.
2. Symétrie : < −→u , −→v >=< −→v , −→u >

3. Positivité : < −→u , −→u >≥ 0.

4. Définition : < −→u , −→u >= 0 ⇔ −→u = −→0 .

5. Linéarité : < −→v + −→w , −→u >=< −→v , −→u > + < −→w , −→u >

Théorème 26.

Soient −→u et −→v deux vecteurs de R3 non nuls.
Si −→u et −→v sont orthogonaux alors ils ne sont pas colinéaires.

Théorème 27.

2.2 Plans de l’espace, bis.

Soit P un plan et (−→u , −→v ) des vecteurs directeurs de P.
On appelle vecteur normal au plan P tout vecteur orthogonal à −→u et à −→v .

Définition 28.

Soit A(xA, yA, zA) un point de R3 et soit −→n = (a, b, c) un vecteur non nul.
Soit P le plan passant par A et de vecteur normal −→n .

M(x, y, z) ∈ P ⇔ A⃗M.w⃗ = 0
⇔ a(x − xA) + b(y − yA) + c(z − zA) = 0

C’est une équation cartésienne de P.

Théorème 29.

Exemple 30. Déterminer une équation cartésienne du plan passant par A(−1, 2, 1) et de vecteur normal
−→n = (1, 3, −2).

Soit P un plan et −→u et −→v des vecteurs directeurs de P.

Pour trouver un vecteur directeur, on résout le système
{

< −→u , −→n >= 0
< −→v , −→n >= 0

Methode 1.

Soit P un plan d’équation cartésienne ax + by + cz + d = 0.
Le vecteur −→n = (a, b, c) est un vecteur normal au plan P.

Methode 2.

Exemple 31. Soit P le plan de l’espace passant par B(1, 2, 0) et de vecteurs directeurs u⃗(1, 0, 1) et v⃗(−1, 1, 2).
Déterminer une équation cartésienne de P.
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2.3 Intersection de plans

On dit que deux plans P et P ′ sont orthogonaux s’ils admettent des vecteurs normaux orthogonaux.

Définition 32.

Exemple 33. Déterminer une équation cartésienne d’un plan orthogonal au plan P : 2x−y +z +1 = 0 passant
par A(1, 1, 1). Un tel plan est-il unique ?

On dit que deux plans de l’espace sont parallèles s’ils admettent des vecteurs normaux colinéaires.
En d’autres termes, deux plans sont parallèles s’ils ont un vecteur normal commun.

Définition 34.

2.4 Norme euclidienne

Soit −→u = (x, y, z) ∈ R3. On appelle norme euclidienne de −→u le réel :

||−→u || =
√

< −→u , −→u > =
√

x2 + y2 + z2.

On dit que le vecteur −→u est unitaire lorsque ||−→u || = 1.

Définition 35.

Soit −→u un vecteur de R3 et soit λ ∈ R. On a :
1. ||λ−→u || = |λ| ||u⃗||,
2. ||−→u || ≥ 0,
3. ||−→u || = 0 ⇒ −→u = −→0 .

Théorème 36.

Soient −→u et −→v deux vecteurs de R3 et soit λ ∈ R. On a :
1. ||−→u || ≥ 0,
2. ||−→u || = 0 ⇔ −→u = −→0 .
3. ||λ−→u || = |λ| ||−→u ||,
4. ||−→u + −→v ||2 = ||−→u ||2 + 2 < −→u , −→v > +||−→v ||2.

Théorème 37.

2.5 Normes et produit scalaire.

Soient u⃗ et v⃗ deux vecteurs de R3.
u⃗ et v⃗ sont orthogonaux si, et seulement si, ||−→u + −→v ||2 = ||−→u ||2 + ||−→v ||2.

Théorème 38 (Théorème de Pythagore).
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Soient −→u et −→v deux vecteurs de R3.
1. | < −→u , −→v > | ≤ ||−→u || × ||−→v ||.
2. On a égalité si, et seulement si, les vecteurs −→u et −→v sont colinéaires.

Théorème 39 (Inégalité de Cauchy-Schwarz, Admis).

2.6 Bases orthonormées

Soit (−→u , −→v , −→w ) ∈
(
R3)3 une base de R3.

On parle de base orthonormée lorsque les vecteurs sont orthogonaux deux à deux et unitaires.
< −→u , −→v >= 0,
< −→u , −→w >= 0,
< −→v , −→w >= 0,
||−→u || = ||−→v || = ||−→w || = 1.

Définition 40.

Exemple 41. Soient −→u =
(√

2
2 ,

√
2

2 , 0
)

, −→v =
(√

2
2 , −

√
2

2 , 0
)

et −→w = (1, 0, 0). La famille (−→u , −→v , −→w ) est-elle

une base orthonormée de R3 ?

Remarque 42. La base canonique est une base orthonormée de R3.

2.7 Droites de l’espace, bis.

Soit A un point de R3 et soit −→u un vecteur non nul de R3.
On appelle droite passant par A et de vecteur directeur −→u tous les points M de R3 tel que
−−→
AM et −→u soient colinéaires.

D =
{

M ∈ R3 tel que
(
∃k ∈ R tel que −−→

AM = k.−→u
)}

Définition 43.

Soit A(xA, yA, zA) un point de R3 et soit −→u = (α, β, γ) un vecteur non nul de R3.
Soit D la droite passant par A et de vecteur directeur −→u .

M(x, y, z) ∈ D ⇔ ∃t ∈ R ,

 x = xA + tα
y = yA + tβ
z = zA + tγ

C’est une représentation paramétrique de la droite D.

Théorème 44.
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L’intersection de deux plans P et P ′ de l’espace est :
1. Soit un plan (P = P ′). Dans ce cas, on dit que P et P ′ sont confondus (en particulier, ils sont

parallèles).
2. Soit l’ensemble vide. Dans ce cas, on dit que P et P ′ sont parallèles distincts.
3. Soit une droite. Dans ce cas, on dit que P et P ′ sont sécants (leurs vecteurs normaux sont non

colinéaires).

Théorème 45.

Soit D une droite définie comme l’intersection de deux plans. Le système{
ax + by + cz + d = 0

a′x + b′y + c′z + d′ = 0

est un système d’équation cartésienne de D.

Définition 46.

Exemple 47.
1. Déterminer l’intersection des plans P et P ′ définis par P : x − 2y + z + 1 = 0 et P ′ : 2x + y − z − 3 = 0.

Préciser, si c’est une droite, un point et un vecteur directeur et en déduire une représentation paramétrique.
2. Soit D la droite de l’espace passant par A(1, 2, 0) et de vecteur directeur u⃗(1, 1, 1). Déterminer un système

d’équations cartésiennes de D.

2.8 Projection orthogonale d’un point sur une droite.

Soit −→u un vecteur non nul de R3. Soit D une droite de vecteur directeur −→u .
Soit M un point de l’espace E .
On appelle projeté orthogonal de M sur D l’unique point H de l’espace E tel que

{
H ∈ D
−−→
MH.−→u = 0

Définition 48.

Exemple 49. Soit D : x + 2y − 1 = 0 et M(2, 1, 1). Déterminer le projeté orthogonal de M sur D.

2.9 Distance d’un point à une droite.

Soit M un point de l’espace et D une droite de l’espace. Soit H le projeté orthogonal de M sur D.
On appelle distance de M à D la distance MH. On la note d(M ,D).

Définition 50.

Exemple 51. Soit A(1, 1, 1). Soit D la droite dont une équation paramétrique est

 x = 1 + 2t
y = −3 + t
z = 1 + 2t

, t ∈ R.

Déterminer la distance de A à P.
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Soit A, B et C trois points de l’espace E . Soit H le projeté orthogonal de C sur la droite (AB).

−−→
AB.

−→
AC =

∣∣∣∣∣∣−−→AH
∣∣∣∣∣∣ .

∣∣∣∣∣∣−−→AB
∣∣∣∣∣∣

Théorème 52.

2.10 Projection orthogonale d’un point sur une droite.

Soient −→u et −→v deux vecteurs non colinéaires de R3. Soit P un plan de vecteurs directeurs −→u et −→v .
Soit M un point de l’espace E .
On appelle projeté orthogonal de M sur P l’unique point H de l’espace E tel que


H ∈ P
−−→
MH.−→u = 0
−−→
MH.−→v = 0

Définition 53.

Exemple 54. Soit A(1, 1, 1). Soit P le plan d’ équation paramétrique

 x = 1 + 2t + t′

y = −3 + t + t′

z = 1 + 2t + t′
, (t, t′) ∈ R2.

Déterminer le projeté orthogonal de A à P.

2.11 Distance d’un point à un plan.

Soit M un point de l’espace et P un plan de l’espace. Soit H le projeté orthogonal de M sur P.
On appelle distance de M à P la distance MH. On la note d(M ,P).

Définition 55.

Exemple 56. Soit P : x + 2y − 3z − 1 = 0 et M(2, 1, 1). Déterminer la distance de M à P.
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