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Chapitre 16 : Polynômes réels (prof)
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1 Polynômes, règles de calculs
1.1 Ensemble des polynômes

On appelle fonction polynomiale une fonction f pour laquelle il existe n ∈ N et (a0, . . . , an) ∈ Rn+1

tels que

∀x ∈ R, f(x) =
n∑

k=0
akxk

On note P =
n∑

k=0
akXk le polynôme associé à f .

On note R[X] l’ensemble des polynômes à coefficients dans R.

Définition 1.

Soit P =
n∑

k=0
akXk ∈ R[X].

• P est le polynôme nul lorsque tous ces coefficients sont nuls.
P = 0 et ∀x ∈ R, f(x) = 0.

• P est un polynôme constant lorsque P = a0.
∀x ∈ R, f(x) = a0.

• P est un monôme s’il admet un seul terme.
∃k ∈ N tel que P = akXk et ∀x ∈ R, f(x) = akxk.

Définition 2.

1.2 Opérations sur l’ensemble des polynômes

Remarque 3. Soit P =
n∑

k=0
akXk ∈ R[X].

Pour un entier m ≥ n, on peut écrire P =
m∑

k=0
akXk ∈ R[X] en définissant an+1 = an+2 = · · · = am = 0.

Soit P =
n∑

k=0
akXk ∈ R[X]. Soit Q =

m∑
k=0

bkXk ∈ R[X]. Soit λ ∈ R.

On définit le polynôme P + Q par P + Q =
max(n,m)∑

k=0
(ak + bk)Xk.

On définit le polynôme λ.P par λ.P =
n∑

k=0
λ.akXk.

Définition 4.

Remarque 5. On retrouve la stabilité par addition et par multiplication par un scalaire.
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Soit (P, Q) ∈ R[X]2.
On définit le polynôme PQ par (PQ)(X) = P (X).Q(X).
On définit le polynôme Q ◦ P par (Q ◦ P )(X) = Q[P (X)].

Définition 6.

Exemple 7. On pose P = 2X2 + 1, Q = X3 + X + 1. Déterminer P + 3Q, P.Q, P ◦ Q et Q ◦ P .

1.3 Identification

• Un polynôme est le polynôme nul si, et seulement si, tous ses coefficients sont nuls.
• Deux polynômes sont égaux si, et seulement si, ils ont les mêmes coefficients.

Théorème 8 (Identification).

Exemple 9. Soit P = aX2 + bX + c.
1. Calculer P (−X).
2. A quelle condition a-t-on P (−X) = P (X) ?
3. A quelle condition a-t-on P (−X) = −P (X) ?

1.4 Règles de calculs

Soit n ∈ N∗. Soit a ∈ R.

(X + a)n =
n∑

k=0

(
n

k

)
an−kXk

Xn − an = (X − a).
(

n−1∑
k=0

an−1−kXk

)

Théorème 10.

Exemple 11. Développer (X − 1)5.

Exemple 12. Factoriser X5 − 1.

Exemple 13. Factoriser X3 + 1.

1.5 Degré d’un polynôme

Soit P =
n∑

k=0
akXk ∈ R[X].

• On appelle degré de P le réel deg(P ) = max {k ∈ [[0, n]] , ak ̸= 0}.
• Par convention, deg(0) = −∞.
• Le coefficient adeg(P ) est appelé coefficient dominant de P .

Définition 14.
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Exemple 15. Parmi les polynômes suivants :

A = X3 + 3X2 + 5X + 2 , B = 3X10 + (2 + i)X5 + 3X , C = X2 + X + 1 , D = iX5 , E = 3 , F = 0

• Quels sont ceux qui appartiennent à R[X] ?
• Quels sont ceux de degré 3 ?
• Quels sont ceux dont le coefficient dominant vaut 1 ?
• Quel sont ceux dont le coefficient constant est pair ?

Soit (P, Q) ∈ R[X]2.
1. deg(P + Q) ≤ max (deg(P ), deg(Q)).
2. Si deg(P ) ̸= deg(Q) alors deg(P + Q) = max

(
deg(P ),deg(Q)

)
3. deg(P × Q) = deg(P ) + deg(Q)

Théorème 16.

Exemple 17. Déterminer deux polynômes P et Q tels que deg(P + Q) < max(deg(P ), deg(Q)).

1.6 Polynôme dérivé

Soit P =
n∑

k=0
akXk ∈ R[X].

On appelle polynôme dérivé de P le polynôme défini par

P ′ =
n∑

k=1
kakXk−1 =

n−1∑
k=0

(k + 1)ak+1Xk

Définition 18.

Exemple 19. Déterminer le polynôme dérivé de P = 5X4 + X2 + 3.

Remarque 20. La fonction polynomiale associée à P ′ est la dérivée de la fonction polynomiale associée à P .

Soit P ∈ R[X].
1. Si deg(P ) ≥ 1, deg(P ′) = deg(P ) − 1.
2. Si deg(P ) ≤ 0 alors deg(P ′) = −∞.

Théorème 21.

Soit (P, Q) ∈ R[X]2. Soit (λ, µ) ∈ (R∗)2.
1. (λP + µQ)′ = λP ′ + µQ′.
2. (PQ)′ = P ′ × Q + P × Q′.
3. ∀k ∈ N∗, (Qk)′ = kQ′Qk−1.

Théorème 22.

S. Freyssinet BCPST 1.1 2025−2026



5

Soit P un polynôme de R[X]. On définit par récurrence les polynômes dérivés successifs de P par{
P (0) = P
∀m ∈ N∗, P (m) = (P (m−1))′

Définition 23.

Exemple 24. Déterminer les polynômes dérivés successifs de P = 5X4 + X2 + 3.

2 Racines et Factorisation
2.1 Existence de racines

Soit P ∈ R[X] et soit α ∈ R. On dit que α est une racine de P lorsque P (α) = 0.

Définition 25.

Tout polynôme réel non nul de degré impair admet au moins une racine réelle.

Théorème 26.

2.2 Factorisation

Soit P ∈ R[X] et soit α ∈ R. On a équivalence entre :
1. α est une racine de P , c’est-à-dire P (α) = 0.
2. Il existe un polynôme Q ∈ R[X] tel que P = (X − α)Q.

Théorème 27.

Exemple 28. Calculer P (1). En déduire une factorisation de P = X3 + X2 − 5X + 3.

Exemple 29. Proposer une factorisation du polynôme P = X4 − 1.

Remarque 30. Pour déterminer Q, on détermine son degré puis ses coefficients par identification.

Soit P ∈ R[X] et soit (α1, . . . , αs) ∈ Rs des racines distinctes de P .

∃ Q ∈ R[X], P =
s∏

k=1
(X − αk) × Q

Théorème 31.

Remarque 32. Pour déterminer Q, on détermine son degré puis ses coefficients par identification.
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2.3 Nombre de racines.

1. Le nombre de racines distinctes d’un polynôme non nul est majoré par son degré.
2. Soit P un polynôme de degré au plus n. Si P admet n + 1 racines distinctes alors P = 0.
3. Si un polynôme admet une infinité de racines alors c’est le polynôme nul.

Théorème 33.

Exemple 34. Déterminer les polynômes P dans les cas suivants.
1. deg(P ) = 3 et P (−1) = P (1) = P (2) = P (3) = 0.
2. ∀n ∈ N, P (n) = 0.

Soit P ∈ R[X] un polynôme de degré n ∈ N∗ admettant n racines distinctes (α1, . . . , αn) ∈ Rn.

P = an

n∏
k=1

(X − αk)

Théorème 35.

3 Racines multiples
3.1 Définition

Soit P ∈ R[X]\ {0}. Soit α ∈ R une racine de P . Soit r ∈ N.
On dit que α est une racine de multiplicité r lorsque

∃ Q ∈ R[X] tel que P = (X − α)rQ et Q(α) ̸= 0.

1. Pour r = 1, on parle de racine simple.
2. Pour r = 2, on parle de racine double.
3. Pour r ≥ 2, on parle de racine multiple.

Définition 36.

Remarque 37. La multiplicité d’une racine α d’un polynôme P est la plus grande puissance de X − α qu’on
peut mettre en facteur dans P .

Exemple 38. Déterminer les racines des polynômes suivants et dire si elles sont simples ou multiples.
1. P = (X + 2)(X − 3)2(X + 1)5

2. P = X5 − 2X4 + X3

3.2 Caractérisation

Soient P ∈ R[X]\ {0}, α ∈ R. On a équivalence entre :
1. α est racine multiple de P

2. P (α) = 0 et P ′(α) = 0.

Théorème 39.
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Exemple 40. Soit n ∈ N∗ fixé. Soit P = 1 + X + X2

2! + X3

3! . Montrer que P n’a que des racines simples.

Soient P ∈ R[X]\ {0}, α ∈ R et r ∈ N. On a équivalence entre :
1. α est racine de P de multiplicité r

2. P (α) = 0, P ′(α) = 0, . . . , P (r−1)(α) = 0 et P (r)(α) ̸= 0.

Théorème 41 (Hors-Programme).
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