
Chapitre 17 − Suites réelles, partie II. 1

Exercice 1 Calculer les limites en +∞ des suites suivantes.

1. ∀n ∈ N∗, un = 1 + (−1)n

n
.

2. ∀n ∈ N, un = n2 − n cos(n) + 2.
3. ∀n ∈ N, un =

√
n + 1 −

√
n.

4. ∀n ∈ N∗, un = n − n4 + 3n + 4
n3 + 2 .

5. ∀n ∈ N∗, un = (ln(n))2 − 2
n + ln(n) .

Exercice 2 Soit u la suite définie par u0 = 0 et ∀nN, un+1 = 1 + un

2 + un
.

1. Montrer que la fonction x 7→ 1 + x

2 + x
est croissante sur R+.

2. Montrer que la suite (un)n∈N est bien définie et que

∀n ∈ N, 0 ≤ un ≤ −1 +
√

5
2 .

3. Etudier la monotonie de la suite u.
4. En déduire que la suite converge et déterminer sa limite.
5. Que se passe-t-il si u0 = 1 ?

Correction
1. La fonction f est dérivable sur R+ comme quotient de deux fonctions dérivables sur R+ avec un

dénominateur qui ne s’annule pas et
∀x ∈ R+, f ′(x) = 2 + x − (1 + x)

(2 + x)2 = 1
(x + 2)2 ≥ 0.

Donc, f est croissante sur R+.

2. On raisonne par récurrence avec ∀n ∈ N, H(n) : ”un existe et 0 ≤ un ≤ −1 +
√

5
2 ”.

I Pour n = 0 : u0 = 0 et
√

5 ≥ 2 donc
√

5 − 1
2 ≥ 0 donc H(0) est vraie.

H Soit n ∈ N tel que H(n) soit vraie. Montrons que H(n + 1) est vraie également.

H(n) est vraie donc 0 ≤ un ≤ −1 +
√

5
2 .

Donc, un ̸= −2 donc f(un) existe. Donc, un+1 existe.

De plus, f est croissante sur R+ donc f(0) ≤ f(un) ≤ f

(
−1 +

√
5

2

)
.

Donc, 1
2 ≤ un+1 ≤ −1 +

√
5

2
Donc, H(n + 1) est vraie.

C Par le principe de récurrence, ∀n ∈ N, un existe et 0 ≤ un ≤ −1 +
√

5
2 .

3. On raisonne de nouveau par récurrence. avec ∀n ∈ N, H(n) : ”un ≤ un+1”.

I Pour n = 0 : u0 = 0 et u1 = 1
2 donc H(0) est vraie.

H Soit n ∈ N tel que H(n) soit vraie. Montrons que H(n + 1) est vraie également.
H(n) est vraie donc un ≤ un+1.
Donc f(un) ≤ f(un+1) car f est croissante sur R+.
Donc, un+1 ≤ un+2.
Donc, H(n + 1) est vraie.

C Par le principe de récurrence, la suite u est croissante.
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Chapitre 17 − Suites réelles, partie II. 2

4. La suite u est croissante et majorée. Par le théorème de la limite monotone, elle converge.
De plus, la fonction f est continue sur R − + donc, par le théorème du point fixe, la suite u

converge vers une solution de l’équation ℓ = 1 + ℓ

2 + ℓ
.

ℓ = 1 + ℓ

2 + ℓ
⇔ ℓ(2 + ℓ) = 1 + ℓ ⇔ ℓ2 + ℓ − 1 = 0 ⇔ ℓ = −1 +

√
5

2 ou ℓ = −1 −
√

5
2 .

Or, −1 −
√

5
2 < 0 donc la suite converge vers −1 +

√
5

2 .

5. On reprend par récurrence à ceci près que l’encadrement proposé n’est plus vrai.
• On commence par la monotonie avec ∀n ∈ N, H(n) : ”un ≥ un+1”.

I Pour n = 0 : u0 = 1 et u1 = 2
3 donc H(0) est vraie.

H Soit n ∈ N tel que H(n) soit vraie. Montrons que H(n + 1) est vraie également.
H(n) est vraie donc un ≥ un+1.
Donc f(un) ≥ f(un+1) car f est croissante sur R+.
Donc, un+1 ≥ un+2.
Donc, H(n + 1) est vraie.

C Par le principe de récurrence, la suite u est décroissante.
• On va donc seulement montrer que la suite est minorée.

On raisonne par récurrence avec ∀n ∈ N, H(n) : ”un existe et 0 ≤ un”.
I Pour n = 0 : u0 = 0 donc H(0) est vraie.

H Soit n ∈ N tel que H(n) soit vraie. Montrons que H(n + 1) est vraie également.
H(n) est vraie donc 0 ≤ un.
Donc, un ̸= −2 donc f(un) existe. Donc, un+1 existe.
De plus, f est croissante sur R+ donc f(0) ≤ f(un).
Donc, 1

2 ≤ un+1

Donc, H(n + 1) est vraie.
C Par le principe de récurrence, ∀n ∈ N, un existe et 0 ≤ un.

• La suite u est décroissante et minorée. Par le théorème de la limite monotone, elle converge.
De plus, la fonction f est continue sur R − + donc, par le théorème du point fixe, la suite
u converge vers une solution de l’équation ℓ = 1 + ℓ

2 + ℓ
.

ℓ = 1 + ℓ

2 + ℓ
⇔ ℓ(2 + ℓ) = 1 + ℓ ⇔ ℓ2 + ℓ − 1 = 0 ⇔ ℓ = −1 +

√
5

2 ou ℓ = −1 −
√

5
2 .

Or, −1 −
√

5
2 < 0 donc la suite converge vers −1 +

√
5

2 .

Exercice 3 Pour n ∈ N∗, on pose Hn =
n∑

k=1

1
k

. C’est la suite harmonique.

1. Montrer que la suite H est croissante.

2. Montrer que ∀n ∈ N∗, H2n − Hn ≥ 1
2.

3. En déduire que la suite n’est pas convergente et que lim
n→+∞

Hn = +∞.

Correction
1. Soit n ∈ N∗.

Hn+1 − Hn = 1
n + 1 ≥ 0

La suite H est croissante.
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Chapitre 17 − Suites réelles, partie II. 3

2. Soit n ∈ N∗.

H2n − Hn =
2n∑

k=1

1
k

−
n∑

k=1

1
k

=
2n∑

k=n+1

1
k

≥
2n∑

k=n+1

1
2n

= n.
1

2n
= 1

2

car la fonction x 7→ 1
x

est décroissante sur R∗
+.

3. Supposons que la suite H converge.
Alors la suite extraite de rangs pairs (H2n)n∈N converge vers la même limite.
Par passage à la limite dans l’inéquation de la question 2, on obtient : 0 ≥ 1

2.
C’est absurde. On en déduit que H ne converge pas.
De plus, comme elle est croissante, elle diverge vers +∞ et donc lim

n→+∞
Hn = +∞.

Exercice 4 [*] Pour tout n ∈ N∗, on pose Sn =
n∑

k=1

(−1)k

k
.

1. Montrer que les suites (S2n)n∈N∗ et (S2n+1)n∈N sont adjacentes.
2. Que peut-on en conclure ?

Correction
1. On va vérifier les trois points de la définition.

• On étudie la monotonie de (S2n)n∈N∗ . Soit n ∈ N∗.

S2(n+1) − S2n =
2n+2∑
k=1

(−1)k

k
−

2n∑
k=1

(−1)k

k
= (−1)2n+2

2n + 2 + (−1)2n+1

2n + 1 = 1
2n + 2 − 1

2n + 1 < 0

Donc, la suite (S2n)n∈N∗ est décroissante.
• On étudie la monotonie de (S2n+1)n∈N. Soit n ∈ N.

S2(n+1)+1 − S2n+1 =
2n+3∑
k=1

(−1)k

k
−

2n+1∑
k=1

(−1)k

k
= (−1)2n+3

2n + 3 + (−1)2n+2

2n + 2 = 1
2n + 2 − 1

2n + 3 > 0

Donc, la suite (S2n+1)n∈N est croissante.
• On étudie la limite de la différence.

lim
n→+∞

(S2n+1 − S2n) = lim
n→+∞

2n+1∑
k=1

(−1)k

k
−

2n∑
k=1

(−1)k

k
= (−1)2n+1

2n + 1 = 0

Donc, lim
n→+∞

(S2n+1 − S2n) = 0.

Les suites (S2n)n∈N∗ et (S2n+1)n∈N sont bien adjacentes.
2. On en déduit qu’elles sont convergentes et qu’elles convergent vers la même limite.

On a donc la suite extraite de rangs pairs (S2n)n∈N∗ et la suite extraite de rangs impairs
(S2n+1)n∈N qui convergent vers la même limite.
Donc, la suite (Sn)n∈N∗ est convergente.

Exercice 5 Déterminer des équivalents pour les suites proposées.
1. ∀n ∈ N, un = 2n2 + 3n − 6.
2. ∀n ∈ N, un = 4n3 + 2n + cos(n)

3. ∀n ∈ N∗, un = 3 + 1
n

4. ∀n ∈ N∗, un = 3
n2 + 5

n3 .
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Chapitre 17 − Suites réelles, partie II. 4

5. ∀n ∈ N, un =
√

n2 + 2n + 10.
6. ∀n ∈ N, un = (n2 + n + 1)3

7. ∀n ∈ N∗, un =
(

1 + 1
n

)2024

8. ∀n ∈ N∗, un =
(

1 + 1
n

)n

9. ∀n ∈ N∗, un = n sin
( 2

n2

)
10. ∀n ∈ N, un = ln

(
n2 + 1
n2 + 2

)

11. ∀n ∈ N∗, un =
sin
( 1

n

)
e

3
n2 − 1

12. ∀n ∈ N∗, un =
(

1 + 2
n

)n

Correction
1. un ∼

n→+∞
2n2.

2. un ∼
n→+∞

4n3.

3. un ∼
n→+∞

3.

4. ∀n ∈ N∗, un = 3
n2

(
1 + 5

3n

)
donc un ∼

n→+∞

3
n2 .

5. ∀n ∈ N∗, un = n

√
1 + 2

n
+ 10

n2 donc un ∼
n→+∞

n.

6. n2 + n + 1 ∼
n→+∞

n2 donc, par passage à la puissance, un ∼
n→+∞

n6.

7. 1 + 1
n

∼
n→+∞

1 donc, par passage à la puissance, un ∼
n→+∞

1.

8. Attention, la puissance n’est pas constante donc la règle précédente ne s’applique pas.
Soit n ∈ N. un = exp

(
n ln

(
1 + 1

n

))
.

Or, n ln
(

1 + 1
n

)
∼

n→+∞
n.

1
n

donc lim
n→+∞

n ln
(

1 + 1
n

)
= 1 donc, par composée de limites,

lim
n→+∞

un = e. Donc, un ∼
n→+∞

e.

9. lim
n→+∞

2
n2 = 0 donc un ∼

n→+∞
n.

2
n2 donc un ∼

n→+∞

2
n

.

10. ∀n ∈ N,
n2 + 1
n2 + 2 = n2 + 2 − 1

n2 + 2 = 1 − 1
n2 + 2 et lim

n→+∞

1
n2 + 2 = 0 donc un ∼

n→+∞

−1
n2 + 2 donc

un ∼
n→+∞

−1
n2 .

11. lim
n→+∞

1
n

= 0 donc sin
( 1

n

)
∼

n→+∞

1
n

.

lim
n→+∞

3
n2 = 0 donc e

3
n2 − 1 ∼

n→+∞

3
n2 .

Par quotient , un ∼
n→+∞

1
n
3

n2
donc un ∼

n→+∞

n

3 .

12. Soit n ∈ N. un = exp
(

n ln
(

1 + 2
n

))
.

Or, n ln
(

1 + 2
n

)
∼

n→+∞
n.

2
n

donc lim
n→+∞

n ln
(

1 + 1
n

)
= 2 donc, par composée de limites,

lim
n→+∞

un = e2. Donc, un ∼
n→+∞

e2.
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Exercice 6 Déterminer des équivalents pour les suites proposées et en
déduire leur limite .

1. ∀n ∈ N∗, un = n3 + n sin(n10 + n7)
n + ln n

2. ∀n ∈ N, un = n2(ln n)4 − n3(ln n)2 + (−1)nn2e−n

3. ∀n ∈ N∗, un = n +
√

n ln n√
n + 2

4. ∀n ∈ N, un = ln(2n15) + 15n2

5. ∀n ∈ N, un = ln
(

n2 + 3n + 6
n2 + 1

)
6. ∀n ∈ N, un = ln(3n10 + 1)

7. ∀n ∈ N, n ≥ 2, un = ln
(√

n + 1
n − 1

)
8. ∀n ∈ N∗, un = n2 ln

(
1 + sin

( 1
n

))
9. ∀n ∈ N∗, un = exp(

√
n + 1 −

√
n − 1) − 1

10. ∀n ∈ N, un = ln(n3 + 1)
n2 − n + 2

11. ∀n ∈ N∗, un = n3 + n + 1
n +

√
n

e−n

12. ∀n ∈ N, un = n3 + 5n + 2
3n + 3(−1)n

13. ∀n ∈ N, un = 32n + 23n

14. ∀n ∈ N, un = en + e2n −
√

en

15. ∀n ∈ N, un = en − e−n

en + e−n

16. ∀n ∈ N∗, un = ln(2 − e
1
n )

17. ∀n ∈ N∗, un = ln
(

2n2 + 1
n2 + n + 1

)

18. ∀n ∈ N, un =
√

1 + e−n − 1
e−2n

19. ∀n ∈ N∗, un = (2n)
1
n − 1

20. ∀n ∈ N∗, un =
√

e
1
n − 1

Correction
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Chapitre 17 − Suites réelles, partie II. 6

1. un ∼
n→+∞

n2.

2. un ∼
n→+∞

−n3 ln(n)2.

3. un ∼
n→+∞

√
n.

4. un ∼
n→+∞

15n2.

5. un ∼
n→+∞

3
n

.

6. un ∼
n→+∞

10 ln(n).

7. un ∼
n→+∞

1
n

.
8. un ∼

n→+∞
n.

9. un ∼
n→+∞

1
2
√

n
.

10. un ∼
n→+∞

3 ln(n)
n2 .

11. un ∼
n→+∞

n2e−n.

12. un ∼
n→+∞

n3

3n
.

13. un ∼
n→+∞

9n.

14. un ∼
n→+∞

e2n.
15. un ∼

n→+∞
1.

16. un ∼
n→+∞

−1
n

.

17. un ∼
n→+∞

ln(2).

18. un ∼
n→+∞

en

2 .

19. un ∼
n→+∞

ln(n)
n

.

20. un ∼
n→+∞

1
2n

.

Exercice 7 On considère la suite définie par

u0 = 1 et ∀n ∈ N, un+1 = 3
1 + 3un

.

. On pose : f : x 7→ 3
1 + 3x

.

1. Tracer le graphe de f sur R+ et construire les premiers termes de la suite.
2. On pose I = [0, 3]. Montrer que I est stable par f

(c’est à dire que f(I) ⊂ I, ou encore ∀x ∈ I, f(x) ∈ I.)
3. Montrer que pour tout entier n ∈ N, un existe et 0 ≤ un ≤ 3.
4. Déterminer les points fixes de f ◦ f sur R+ (c’est à dire les réels x vérifiant f ◦ f(x) = x).
5. Montrer que les suites (u2n) et (u2n+1) sont monotones, de monotonies contraires.
6. Montrer que les suites (u2n) et (u2n+1) sont convergentes.
7. En déduire la convergence de la suite (un).

Correction
1. La fonction f est dérivable sur R+ comme quotient de fonctions dérivables avec un dénominateur

qui ne s’annule pas et ∀x ∈ R+, f ′(x) = −9
(1 + 3x)2 < 0.

Donc, f est strictement décroissante sur R+.
u1 = 3

1 + 3u0
= 3

4, u2 = 3
1 + 3u1

= 12
13 et u3 = 3

1 + 3u2
= 39

49.

2. La fonction f est décroissante sur [0, 3] donc ∀x ∈ [0, 3], f(3) ≤ f(x) ≤ f(0).
Donc, ∀x ∈ [0, 3], 0 ≤ 3

10 ≤ f(x) ≤ 3.
Donc, I est bien stable par f .

3. On raisonne par récurrence. ∀n ∈ N, P (n) : un existe et 0 ≤ un ≤ 3.
I u0 existe et u0 = 1 donc P (0) est vrai.

H Soit n ∈ N tel que P (n) soit vrai.
un ∈ R+ donc f(un) existe. Donc, un+1 existe.
De plus, par stabilité, f(un) ∈ [0, 3] donc 0 ≤ un+1 ≤ 3. Donc, P (n + 1) est vrai.

C Par le principe de récurrence, ∀n ∈ N, P (n) : un existe et 0 ≤ un ≤ 3.
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4. On doit d’abord justifier que la composée est possible. f(R+) ⊂ R+ donc f ◦ f est bien définie
sur R+.

∀x ∈ R+, (f ◦ f)(x) = f [f(x)] = 3
1 + 3f(x) = 3

1 + 3 3
1+3x

= 3 + 9x

10 + 3x

Donc, (f ◦ f)(ℓ) = ℓ ⇔ 3 + 9ℓ = 10ℓ + 3ℓ2 ⇔ 3ℓ2 + ℓ − 3 = 0 ⇔ ℓ = −1 ±
√

37
6 .

5. On va raisonner par récurrence. ∀n ∈ N, P (n) : ”u2(n+1) ≤ u2n”.

I u0 = 1 et u2 = 12
13 ≤ u0 donc P (0) est vrai.

H Soit n ∈ N tel que P (n) soit vrai.
On a u2(n+1) ≤ u2n. Par croissance de f ◦ f , (f ◦ f)(u2(n+1)) ≤ (f ◦ f)(u2n) donc
u2n+4 ≤ u2n+2. Donc, P (n + 1) est vrai.

C On en déduit que la suite (u2n)n∈N est décroissante.
On montre, de même, que la suite (u2n+1)n∈N est aussi décroissante.

6. Les suites (u2n)n∈N et (u2n+1)n∈N sont décroissantes et minorées. Par le théorème de la limite
monotone, elles sont convergentes.
De plus, la fonction f étant continue sur R+, les deux suites convergent vers un point fixe de
f ◦ f .
De plus, par passage à la limite dans l’encadrement de la question 3, on obtient que lueur limite

doit appartenir à [0, 3]. Finalement, seul ℓ = −1 +
√

37
6 est possible donc

lim
n→+∞

u2n = lim
n→+∞

u2n+1 = −1 +
√

37
6 .

7. Puisque les deux suites extraites convergent vers la même limite, on en déduit que la suite u

converge elle aussi vers cette limite : lim
n→+∞

un = −1 +
√

37
6 .

Exercice 8
1. Soit f3 : x ∈ R+ 7→ x3 + x2 + x − 1.

(a) Montrer que f3 est une bijection de R+ dans un intervalle à préciser.
(b) En déduire que l’équation f3(x) = 0 admet une unique solution dans R+. On la note x3.

(c) Montrer que x3 ≥ 1
2.

2. Pour n ∈ N∗, on note fn : x ∈ R+ 7→ xn + xn−1 + · · · + x − 1.
(a) Soit n ∈ N∗.

i. Montrer que fn est une bijection de R+ dans un intervalle à préciser.
ii. En déduire que l’équation fn(x) = 0 admet une unique solution. On la note xn.

(b) Déterminer x1 et x2.

(c) Montrer que ∀n ∈ N, xn ≥ 1
2.

(d) Soit n ∈ N∗. Comparer fn(xn) et fn(xn+1).
En déduire que la suite (xn)n∈N est décroissante.

(e) En déduire que la suite (xn)n∈N converge.

Correction

1. Soit n ∈ N∗. On peut écrire ∀x ∈ R+, fn(x) =
n∑

k=1
xk − 1.
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(a) La fonction fn est dérivable sur R+ puisque c’est une fonction polynomiale et

∀x ∈ R+, f ′
n(x) =

n∑
k=1

kxk−1 > 0.

Donc, la fonction fn est strictement croissante sur R+. Elle est également continue sur R+.
Par le théorème de la bijection, fn est une bijection de R+ dans
[fn(0), lim

x→+∞
fn(x)[= [−1, +∞[.

(b) 0 ∈ [−1, +∞[ donc 0 admet un unique antécédent par fn dans R+. On a donc fn(xn) = 0.
2. f1 : x 7→ x − 1 donc x1 = 1.

f2 : x 7→ x2 + x − 1 donc x2 =
√

5 − 1
2 .

3. Soit n ∈ N∗.
On raisonne par l’absurde et on suppose que xn <

1
2.

Or, fn est strictement croissante sur R+ donc fn(xn) < fn

(1
2

)
.

Or, fn

(1
2

)
=

n∑
k=1

(1
2

)k

− 1 = 1
2

1 −
(1

2

)n

1 − 1
2

− 1 = −
(1

2

)n

.

Donc, fn(xn) < 0.
C’est absurde donc xn ≥ 1

2.

4. On a fn(xn) = 0 et fn+1(xn+1) = 0.

De plus, fn(xn+1) =
n∑

k=1
xk

n+1 − 1 =
n+1∑
k=1

xk
n+1 − xn+1

n+1 − 1 = fn+1(xn+1) − xn+1
n+1 = −xn+1

n+1 < 0.

Donc, fn (xn+1) ≤ fn(xn). Par monotonie de la fonction fn, on obtient xn+1 ≤ xn.
Donc, la suite (xn)n∈N est décroissante.

5. La suite est décroissante et minorée. Par le théorème de la limite monotone, elle converge.
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