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Chapitre 18 : Limites et continuité de
fonctions réelles
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Soit I un intervalle de R non vide et non réduit à un point.
On note I l’union de I et des extrémités de I.

Définition 1.

Exemple 2. [1, 2[ = [1, 2] et R = [−∞,+∞].

1 Limites d’une fonction
1.1 Limites en −∞ ou en +∞

Soit I un intervalle de R. Soit f : I → R. Soit ` ∈ R.
On dit que la fonction f admet une limite finie ` en +∞ lorsque

Définition 3 (Limites finies en +∞.).

Soit I un intervalle de R. Soit f : I → R.
• On dit que la fonction f diverge vers +∞ en +∞ lorsque

• On dit que la fonction f diverge vers −∞ en +∞ lorsque

Définition 4 (Limites infinies en +∞.).
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Soit I un intervalle de R. Soit f : I → R. Soit ` ∈ R.
• On dit que la fonction f admet une limite finie ` en −∞ lorsque

• On dit que la fonction f diverge vers +∞ en −∞ lorsque

• On dit que la fonction f diverge vers −∞ en −∞ lorsque

Définition 5 (Limites en −∞.).

1.2 Limites en un point

Soit I un intervalle de R. Soit f : I → R. Soit a ∈ I. Soit ` ∈ R.
On dit que la fonction f admet une limite finie ` en a lorsque

∀ε > 0, ∃η > 0, ∀x ∈ I, |x− a| ≤ η ⇒ |f(x)− `| ≤ ε

Définition 6.

Remarque 7. Le réel η dépend du réel ε vu l’ordre des quantificateurs.

Soit I un intervalle de R. Soit f : I → R. Soit a ∈ I.
On dit que la fonction f admet une limite infinie +∞ en a lorsque

∀M > 0, ∃η > 0, ∀x ∈ I, |x− a| ≤ η ⇒ f(x) ≥M

On dit que la fonction f admet une limite infinie −∞ en a lorsque

∀M < 0, ∃η > 0, ∀x ∈ I, |x− a| ≤ η ⇒ f(x) ≤M

Définition 8.
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1.3 Limites à gauche et à droite en un point

Soit I un intervalle borné de R. Soit f : I → R. Soit a ∈ I.
On dit que f admet une limite finie ` à gauche en a lorsque :

∀ε > 0, ∃η > 0, ∀x ∈ I, a− η ≤ x ≤ a⇒ |f(x)− `| ≤ ε

On dit que f admet une limite finie ` à droite en a lorsque :

∀ε > 0, ∃η > 0, ∀x ∈ I, a ≤ x ≤ a+ η ⇒ |f(x)− `| ≤ ε

Définition 9.

Exemple 10. Soit x 7→ bxc la fonction partie entière.

lim
x→1
x<1
bxc = 0 et lim

x→1
x>1
bxc = 0

Remarque 11.
1. Ces limites à gauche et à droite sont rencontrées lorsqu’on étudie une fonction qui a des valeurs interdites,

pour lesquelles Df = I\ {a}.
2. Les limites à gauche et à droite en a peuvent être différentes de la valeur que la fonction prend en a.

1.4 Quelques propriétés de la limite

Soit I un intervalle de R. Soit f : I → R.
Si f admet une limite en a ∈ I (resp. limite à gauche ou à droite) alors cette limite est unique.
On la note lim

x→a
f(x) (resp. lim

x→a+
f(x) ou lim

x→a−
f(x)).

Théorème 12.

Soit I un intervalle de R. Soit f : I → R. Soit a ∈ I. Soit ` ∈ R.
1. Si f est définie en a,

lim
x→a

f(x) = `⇔ lim
x→a+

f(x) = lim
x→a−

f(x) = ` et f(a) = `

2. Si f n’est pas définie en a,

lim
x→a

f(x) = `⇔ lim
x→a+

f(x) = lim
x→a−

f(x) = `

Théorème 13.

Exemple 14. Soit f la fonction définie sur R∗ par f(x) = e 1
x . Montrer que la fonction f n’admet pas de limite

en 0.

1.5 Propriété séquentielle de la limite

Exemple 15. Déterminer la limite suivante lim
n→+∞

ln
(

1
n2

)
.
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Soit I un intervalle de R. Soit a ∈ I. Soit ` ∈ R. Soit f : I → R.
Soit (un)n∈N une suite à valeurs dans I.
Si lim

n→+∞
un = a et si lim

x→a
f(x) = ` alors lim

n→+∞
f(un) = `.

Théorème 16 (Composition de limites).

Soit I un intervalle de R. Soit a ∈ I. Soit ` ∈ R. Soit f : I → R.
Soit (un)n∈N et (vn)n∈N deux suites à valeurs dans I.
Si lim

n→+∞
un = a, lim

n→+∞
vn = a et lim

n→+∞
f(un) 6= lim

n→+∞
f(vn) alors la fonction f n’admet pas de

limite en a.

Théorème 17.

Exemple 18. Démontrer que la fonction cos n’admet pas de limite en +∞.

2 Opérations sur les limites

3 Propriétés de la limite
3.1 Limites et inégalités
3.2 Théorèmes d’encadrement, de minoration et de majoration
3.3 Théorème de la limite monotone

Soit a ∈ R ∪ {−∞}. Soit b ∈ R ∪ {+∞} avec a < b. Soit f : ]a, b[→ R une fonction croissante.
1. f admet une limite à droite en a.
2. f admet une limite à gauche en b.

Ces limites sont finies ou infinies.

Théorème 19.

Soit a ∈ R ∪ {−∞}. Soit b ∈ R ∪ {+∞} avec a < b. Soit f : ]a, b[→ R une fonction décroissante.
1. f admet une limite à droite en a
2. f admet une limite à gauche en b.

Ces limites sont finies ou infinies.

Théorème 20.
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3.4 Croissances comparées

Soit (α, β) ∈
(
R∗+
)2.

lim
x 7→+∞

eαx

xβ
= +∞ lim

x 7→−∞
xβeαx = 0.

lim
x 7→+∞

ln(x)α

xβ
= 0 lim

x7→0+
xβ ln(x)α = 0.

Théorème 21.

4 Fonctions équivalentes
4.1 Définition

Soit I un intervalle de R. Soit a ∈ I. Soient f, g : I → R avec g non nulle au voisinage de a.
On dit que f est équivalente en g en a lorsque la fonction f

g
admet une limite en a égale à 1.

On note f ∼
a
g ou f(x) ∼

x→a
g(x).

Définition 22.

Exemple 23. Déterminer la limite lim
x→+∞

x2 − 2x+ 5
x2 . En déduire un équivalent de x2 − 2x+ 5 en +∞.

Exemple 24.
• Soit f(x) = x2 + x+ ln(x). Déterminer des équivalents aux bords de l’intervalle de définition.
• Soit g(x) =

√
x+ x2. Déterminer des équivalents aux bords de l’ensemble de définition.

Remarque 25. Si lim
x→a

f(x) = ` 6= 0 alors f ∼
a
`.

4.2 Propriétés des fonctions équivalentes

Soit I un intervalle de R. Soit a ∈ I. Soient f, g : I → R ne s’annulant pas au voisinage de a.
1. Si f ∼

a
g et si g admet une limite (finie ou infinie) en a alors f admet la même limite en a.

2. Si f ∼
a
g alors f et g ont le même signe au voisinage de a.

Théorème 26.
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4.3 Opérations compatibles avec les équivalents

Soit I un intervalle de R. Soit a ∈ I. Soit λ ∈ R∗.
Soient f , g, h, k : I → R non nulles au voisinage de a.

1. Si f ∼
a
g et si g ∼

a
h alors f ∼

a
h.

2. Si f ∼
a
g et si h ∼

a
k alors fh ∼

a
gk.

3. Si f ∼
a
g alors 1

f
∼
a

1
g
.

4. Si f ∼
a
g et si h ∼

a
k alors f

h
∼
a

g

k
.

5. Si f ∼
a
g alors ∀α ∈ R, fα ∼

a
gα.

Théorème 27.

Exemple 28. Déterminer un équivalent simple de f : x 7→ 1
x2 + x

en 0 et en +∞.

4.4 Equivalents usuels

• sin(x) ∼
x→0

x

• cos(x) ∼
x→0

1

• tan(x) ∼
x→0

x

• ex − 1 ∼
x→0

x

• ln(1 + x) ∼
x→0

x

• ∀α ∈ R∗, (1 + x)α − 1 ∼
x→0

αx

• cos(x)− 1 ∼
x→0
−x

2

2

Théorème 29.

Exemple 30.

1. Déterminer un équivalent en 0 de g(x) =
√

ln(1 + x)

2. Déterminer un équivalent en +∞ de f(x) =
√
x3 + 1 sin

(
1
x

)
.

Exemple 31. Déterminer un équivalent en 0 de h(x) = ln(1 + x) + x.

4.5 Substitution dans les équivalents

Soient I et J deux intervalles de R. Soit a ∈ I.
Soient f , g : I → R non nulles au voisinage de a.
Soit h : J → R avec h(J) ⊂ I.
Si f(x) ∼

x→a
g(x) et lim

x→b
h(x) = a alors f(h(x)) ∼

x→b
g(h(x)).

Théorème 32.

Exemple 33.
1. Déterminer un équivalent en +∞ de sin(e−x).
2. Déterminer un équivalent en 0 de tan(4x3 + x).

Exemple 34. Déterminer la limite lorsque x tend vers 1 de x 7→ sin2(x− 1)
x2 + x− 2 .
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Soit I un intervalle de R. Soit a ∈ I.
Soient f , g : I → R non nulles au voisinage de a. Soit (un)n∈N une suite réelle.
Si f(x) ∼

x→a
g(x) et lim

n→+∞
un = a alors f(un) ∼

n→+∞
g(un).

Théorème 35.

Exemple 36.
1. Déterminer un équivalent quand n tend vers +∞ de cos(e−n)− 1.
2. Déterminer un équivalent quand n tend vers +∞ de n 1

n − 1.

4.6 Opérations NON autorisées sur les équivalents.

Exemple 37. Soient deux fonctions f et g définies par ∀x ∈ R∗, f(x) = x2 + x et g(x) = x2.
1. Montrer que les fonctions f et g sont équivalentes en +∞.
2. Est-ce que exp(f) et exp(g) sont équivalentes en +∞ ?

Exemple 38. Déterminer la limite lorsque x tend vers +∞ de
(

1 + 1
x

)x
.

5 Continuité locale d’une fonction
5.1 Continuité en un point

Soit I un intervalle de R. Soit f : I → R. Soit a ∈ I.
La fonction f est continue en a lorsque lim

x→a
f(x) = f(a).

Lorsque f n’admet pas de limite finie en a, on dit que f est discontinue en a.

Définition 39.

Exemple 40. Soit f la fonction définie sur R par f(x) =
{

e−
1

x2 pour x 6= 0
0 pour x = 0

Cette fonction est-elle continue en 0 ?

Exemple 41. Les fonctions usuelles sont continues en tout point de leur ensemble de définition.

5.2 Continuité à gauche et à droite

Soit I et intervalle de R. Soit f : I → R. Soit a ∈ I.
La fonction f est continue à gauche en a lorsque lim

x→a−
f(x) = f(a).

La fonction f est continue à droite en a lorsque lim
x→a+

f(x) = f(a).

Définition 42.

Exemple 43. Etudier la continuité en 1 de la fonction partie entière.
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Soit I un intervalle de R. Soit f : I → R. Soit a ∈ I.
f est continue en a si, et seulement si, f est continue à gauche et à droite en a.

Théorème 44.

Exemple 45. Soit f la fonction définie sur R par f(x) =

 e 1
x pour x < 0

0 pour x = 0
e− 1

x pour x > 0
Cette fonction est-elle continue en 0 ?

5.3 Prolongement par continuité en un point

Soit I un intervalle de R de la forme I =]a, b[. Soit f : I → R.
On dit que f est prolongeable par continuité en a lorsque f admet une limite à droite finie en a,
notée `.
Le prolongement est définie de la façon suivante :

f̃a :

 [a, b[→ R

x 7→
{
f(x) pour x ∈ ]a, b[
` pour x = a

On dit que f est prolongeable par continuité en b lorsque f admet une limite à gauche finie en b,
notée `′.
Le prolongement est définie de la façon suivante :

f̃b :

 ]a, b]→ R

x 7→
{
f(x) pour x ∈ ]a, b[
`′ pour x = b

Définition 46.

Exemple 47. Soit f la définie sur R∗+ par f(x) = sin(x)
x

. Peut-on prolonger cette fonction par continuité en
0 ?

Exemple 48. Soit f la fonction définie sur R∗− par f(x) = e− 1
x . Peut-on prolonger cette fonction par continuité

en 0 ?

Exemple 49. Montrer que la fonction x 7→ xx peut être prolongée par continuité en 0.

5.4 Continuité et suites

Soit I un intervalle de R. Soit a ∈ I. Soit f : I → R continue en a.
Soit (xn)n∈N une suite à valeurs dans I telle que lim

n→+∞
xn = a.

Alors lim
n→+∞

f(xn) = f(a).

Théorème 50.

Exemple 51. Soit u la suite définie par ∀n ∈ N∗, un = tan
(

sin
(

1
n

))
.

Déterminer la nature de la suite u.
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Soit (un)n∈N une suite réelle et soit f une fonction définie sur un intervalle I.

Si

 ∀n ∈ N, un+1 = f(un)
(un) converge vers ` ∈ I
f est continue sur I,

, alors ` vérifie ` = f(`).

Théorème 52 (Théorème du point fixe).
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