PROGRAMME D'INTERROGATIONS ORALES DE SCIENCES PHYSIQUES SEMAINE DU 02 OCTOBRE 2023

Vous devez vous présenter en colle muni de

- 🗴 une fiche d'évaluation pour 3, qui vous a été remise avant la colle par le professeur.
- votre cahier de colle, à jour : y coller le sujet de la première colle et le récapitulatif avec la note, y rédiger question de cours + résolution du/des exercice(s) proposés.

Signaux:

- → S1 : Propagation d'un signal (cours + exercices)
- → S2 : La lumière (cours + début des exercices)

TP: mesure de la célérité du son dans l'air par mesure du retard temporel

TP: mesure de la célérité du son dans l'air par mesure de la longueur d'onde

Constitution et cohésion de la matière

→ C1 : Constitution et cohésion au sein des atomes (cours + exercices)

Méthodologie:

→ M2 : Mesures et incertitudes

Extraits du programme

S.1 Propagation d'un signal physique		
Notions et contenus	Capacités exigibles	
Signaux physiques		
Exemples de signaux	Identifier les grandeurs physiques correspondant à des signaux mécaniques, acoustiques,	
physiques.	électriques et sismiques.	
	un milieu homogène, illimité, non dispersif et transparent	
Célérité.	Obtenir l'expression de la célérité par analyse dimensionnelle à partir des grandeurs	
Celente.	physiques fournies. Interpréter l'influence de ces grandeurs physiques sur la célérité. Citer les valeurs de la célérité du son dans l'air et dans l'eau dans les conditions usuelles.	
Retard temporel.	Exploiter la relation entre la distance parcourue par le signal, le retard temporel et la célérité. Exploiter des données pour localiser l'épicentre d'un séisme.	
Approche descriptive de la	Exploiter une représentation graphique donnant l'amplitude du signal en fonction du temps	
propagation d'un signal unidimensionnel.	en un point donné, ou en fonction de la position à un instant donné.	
Cas particulier du signal sinusoïdal : amplitude, double périodicité spatiale et	Exploiter la relation entre la période ou la fréquence, la longueur d'onde et la célérité. Citer les limites en termes de fréquences du spectre audible par l'être humain.	
temporelle.		
Propagation d'un signal dans un milieu homogène, illimité, non dispersif et transparent		
Célérité.	Obtenir l'expression de la célérité par analyse dimensionnelle à partir des grandeurs physiques fournies. Interpréter l'influence de ces grandeurs physiques sur la célérité. Citer les valeurs de la célérité du son dans l'air et dans l'eau dans les conditions usuelles.	
Retard temporel.	Exploiter la relation entre la distance parcourue par le signal, le retard temporel et la célérité. Exploiter des données pour localiser l'épicentre d'un séisme.	
Approche descriptive de la	Exploiter une représentation graphique donnant l'amplitude du signal en fonction du temps	
propagation d'un signal unidimensionnel.	en un point donné, ou en fonction de la position à un instant donné.	
Cas particulier du signal sinusoïdal : amplitude, double périodicité spatiale et temporelle.	Exploiter la relation entre la période ou la fréquence, la longueur d'onde et la célérité. Citer les limites en termes de fréquences du spectre audible par l'être humain.	
	ique : modèles ondulatoire et particulaire de la lumière	
Domaines spectraux du rayonnement électromagnétique.	Citer des ordres de grandeur de longueurs d'onde associées aux différents domaines spectraux du rayonnement électromagnétique (ondes radio, micro-ondes, rayonnements infrarouge, visible, ultraviolet, rayons X et gamma). Citer des applications scientifiques et techniques des différents domaines spectraux de rayonnement électromagnétique.	
Photon : énergie, loi de Planck-Einstein. Effet photoélectrique et	Interpréter qualitativement l'effet photoélectrique et l'effet photoionisant à l'aide du modèle particulaire de la lumière.	
photoionisation. Réflexion, réfraction		
Notion de rayon lumineux	Définir le modèle de l'optique géométrique et en indiquer les limites.	
dans le modèle de l'optique géométrique.		
Indice optique d'un milieu transparent.		
Réflexion, réfraction des ondes lumineuses. Lois de Snell-Descartes.	Établir la condition de réflexion totale.	
Rais sismiques. Généralisation des lois de Snell-Descartes aux ondes sismiques de volume.	Appliquer les lois de la réflexion et de la réfraction à l'étude de la propagation des ondes sismiques de volume dans la Terre.	

C.1 Constitution et cohésion de la matière à l'échelle des entités chimiques C.1.1 Constitution et cohésion au sein des atomes			
Modélisation quantique de l'atome			
Constitution de l'atome. Spectre de raies atomiques et quantification des niveaux énergétiques électroniques. Notion d'orbitale atomique : probabilité de présence des électrons, allures des orbitales atomiques s et p.	Relier longueurs d'onde d'émission ou d'absorption et diagramme de niveaux d'énergie électroniques. Citer les ordres de grandeur des énergies d'ionisation et des distances caractéristiques dans l'atome.		
Classification périodique et configuration électronique : électrons de cœur, électrons de valence.	Établir la configuration électronique d'un atome dans son état fondamental à partir de son numéro atomique, pour les trois premières périodes. En déduire la configuration électronique des ions monoatomiques usuels. Établir la configuration électronique de valence d'un atome à partir du tableau périodique (bloc f exclu).		
Lien entre propriétés atomiques et tableau périodique : électronégativité, polarisabilité.	Comparer les électronégativités et les polarisabilités de deux atomes à partir des positions des éléments associés dans le tableau périodique.		

Mesures et incertitudes		
Notions et contenus	Capacités exigibles	
Variabilité de la mesure d'une grandeur physique. Incertitude. Incertitude-type.	Identifier les incertitudes liées, par exemple, à l'opérateur, à l'environnement, aux instruments ou à la méthode de mesure. Procéder à l'évaluation d'une incertitude-type par une approche statistique (évaluation de type A). Procéder à l'évaluation d'une incertitude-type par une autre approche que statistique	
Incertitudes-types composées.	(évaluation de type B). Évaluer, à l'aide d'une relation fournie, l'incertitude-type d'une grandeur qui s'exprime en fonction d'autres grandeurs, dont les incertitudes-types sont connues, par une relation du type somme, différence, produit ou quotient. Comparer entre elles les différentes contributions lors de l'évaluation d'une incertitude-type composée.	
Écriture du résultat d'une mesure.	Écrire, avec un nombre adapté de chiffres significatifs, le résultat d'une mesure. Comparer deux valeurs dont les incertitudes-types sont connues à l'aide de leur écart	
Comparaison de deux valeurs; écart normalisé.	normalisé. Analyser les causes d'une éventuelle incompatibilité entre le résultat d'une mesure et le résultat attendu par une modélisation.	

Plan des chapitres

Chap S2: La lumière

Historique des modèles de la lumières

- I. Lumière onde électromagnétique (oem)
 - 1. Mise en évidence de la nature ondulatoire de la lumière
 - 2. Ondes électromagnétiques
 - 3. Propagation de la lumière dans les milieux matériels
- II. Lumière corpuscule
 - 1. Effet photoélectrique Nécessité d'un nouveau modèle
 - 2. Photon
 - 3. Bilan énergétique de l'effet photoélectrique
- III. Lumière ensemble de rayons lumineux
 - 1. Sources de lumière
 - 2. Modèle de l'optique géométrique
 - 3. Réflexion et réfraction
 - a. Quelques définitions
 - b. Lois de Snell-Descartes
 - c. Cas de la réflexion totale
 - 4. Application à l'étude des ondes sismiques

<u>Méthodo2 : Mesures et incertitudes</u>

- I. Variabilité de la mesure incertitude
 - Définitions
 - 2. Origine de la variabilité de la mesure
- II. Evaluation d'une incertitude-type
 - 1. Evaluation de type A approche statistique
 - 2. Evaluation de type B approche autre
 - 3. Sources d'erreurs multiples
 - 4. Incertitude-type composée
- III. Présentation d'un résultat expérimental
 - 1. Ecriture
 - 2. Choix du nombre de chiffres significatifs
- IV. Comparaison de deux valeurs
 - 1. Comparaison de deux résultats de mesurage
 - 2. Comparaison d'un résultat de mesurage à une valeur de référence