PROGRAMME D'INTERROGATIONS ORALES DE SCIENCES PHYSIQUES SEMAINE DU 15 JANVIER 2024

Vous devez vous présenter en colle muni de

- x une fiche d'évaluation pour 3, qui vous a été remise avant la colle par le professeur.
- votre cahier de colle, à jour : y coller le sujet de la première colle et le récapitulatif avec la note, y rédiger question de cours + résolution du/des exercice(s) proposés.

Energie

- → E1 : Systèmes thermodynamiques (cours + exercices)

 Rmq : les notions de systèmes « ouvert/fermé/isolé » n'ont pas encore été revues...
- → E2 : Description d'un corps pur en équilibre diphasé (cours + exercices)

Constitution et cohésion de la matière

- → C6 : Description d'un système chimique en réaction (cours + exercices)
- → C7 : Transformations modélisées par des réactions acide-base (cours + exercices)

TP: titrage d'un acide fort par une base forte suivi par conductimétrie Suivi pH métrique et colorimétrique d'un titrage

Extraits du programme

C.2 Transformations chimiques : évolution d'un système vers un état final		
C.2.1 Prévoir l'état final d'un système, siège		
Notions et contenus	Capacités exigibles	
Système physico-chimique		
Espèce physico-chimique.	Recenser les espèces physico-chimiques présentes dans un système.	
Mélange : concentration en quantité de	Décrire la composition d'un système à l'aide des grandeurs physiques pertinentes.	
matière, fraction molaire, pression partielle. Bilan de matière d'une transformation		
Modélisation d'une transformation par une	Écrire l'équation de la réaction (ou des réactions) qui modélise(nt) une transformation	
ou plusieurs réactions chimiques.	chimique à partir d'informations fournies.	
Équation de réaction ; avancement, taux	Décrire qualitativement et quantitativement un système chimique dans l'état initial ou	
d'avancement, caractère total ou non d'une	dans l'état final à partir de données expérimentales.	
transformation.	adiis read iniara partir de donnees experimentales.	
Évolution d'un système		
Activité, quotient de réaction.	Exprimer le quotient de réaction.	
Constante thermodynamique d'équilibre K°.	Associer la valeur de la constante thermodynamique d'équilibre au caractère	
, , ,	thermodynamiquement favorable ou non d'une réaction.	
	Déterminer la valeur de la constante thermodynamique d'équilibre pour une équation de	
	réaction, combinaison linéaire d'équations dont les constantes thermodynamiques	
	d'équilibre sont connues.	
Critère d'évolution.	Prévoir le sens de l'évolution spontanée d'un système physico-chimique.	
Composition à l'état final		
État d'équilibre chimique d'un système,	Déterminer la composition du système dans l'état final, en distinguant les cas d'équilibre	
transformation totale.	chimique et de transformation totale, pour une transformation modélisée par une réaction	
	chimique unique.	
C.2.2 Applications aux transformations mode		
Couple acide-base.	Reconnaître un couple acide-base.	
Constante d'acidité Ka d'un couple,	Écrire l'équation de la réaction associée à la constante d'acidité d'un couple donné.	
constantes d'acidité des deux couples acide-		
base de l'eau.		
pH, diagramme de prédominance,	Extraire les valeurs de constantes d'acidité de courbes de distribution et de diagrammes de	
diagramme de distribution : tracé et	prédominance.	
exploitation.		
Application aux acides aminés, point		
isoélectrique.		
	Capacité numérique : tracer, à l'aide d'un langage de programmation, le diagramme de	
	distribution des espèces d'un ou plusieurs couple(s) acide-base, et déterminer la valeur du	
	point isoélectrique d'un acide aminé.	
Mise en solution et réaction d'un acide ou	Identifier le caractère fort ou faible d'un acide ou d'une base à partir d'informations	
d'une base dans l'eau, modèle des acides et	fournies (pH d'une solution de concentration donnée, espèces présentes dans l'état final,	
bases forts, des acides et bases faibles.	constante d'acidité Ka).	
Exemples usuels d'acides et de bases : nom,	Citer l'influence de la constante d'acidité Ka et de la concentration de l'acide ou de la base	
formule et caractère – faible ou fort – des	sur le taux d'avancement de la réaction d'un acide ou d'une base avec l'eau.	
acides sulfurique, nitrique, chlorhydrique,		
phosphorique , éthanoïque, du dioxyde de		
carbone aqueu x, de la soude, la potasse,		
l'ion hydrogénocarbonate, l'ion carbonate ,		
l'ammoniac.		
Réaction acide-base ; relation entre la	Reconnaître une réaction acide-base à partir de son équation.	
constante thermodynamique d'équilibre et	Écrire l'équation de la réaction acide-base modélisant une transformation en solution	
les constantes d'acidité des couples mis en	aqueuse et déterminer la valeur de sa constante thermodynamique d'équilibre.	
jeu.		
Exploitation de diagrammes de	Extraire les données thermodynamiques pertinentes de tables pour étudier un système en	
prédominance et état final d'un système.	solution aqueuse.	
	Utiliser les diagrammes de prédominance pour identifier des espèces incompatibles ou	
	prévoir la nature des espèces majoritaires.	
	Déterminer la composition du système dans l'état final pour <mark>une transformation modélisée</mark>	
	par une réaction chimique unique, en simplifiant éventuellement les calculs à l'aide	
	d'hypothèses adaptées.	
	Mettre en œuvre une réaction acide-base pour réaliser une analyse qualitative ou	
	quantitative en solution aqueuse.	

Solutions tampons.	Citer les propriétés d'une solution tampon et les relier à sa composition.	
	Citer des couples acide-base jouant un rôle de tampon dans des systèmes biologiques et	
	géologiques.	

E.1 Descriptions microscopiques et macroscopiques d'un système		
E.1 Descriptions microscopiques et macroscopiques d'un système		
Caractérisation d'un système thermodynamique		
Système thermodynamique. Échelles microscopique, mésoscopique et macroscopique. État d'équilibre thermodynamique	Préciser les paramètres nécessaires à la description d'un état microscopique et d'un état macroscopique d'un système thermodynamique. Définir l'échelle mésoscopique et en expliquer la nécessité. Associer qualitativement la température et la pression aux propriétés physiques du	
Etat u equilibre thermodynamique	système à l'échelle microscopique.	
Gaz parfait		
Modèle du gaz parfait. Masse volumique, température, pression. Équation d'état du gaz parfait.	Exploiter l'équation d'état du gaz parfait pour décrire le comportement d'un gaz.	
Phase condensée indilatable et incompressible		
Phase condensée indilatable et incompressible Modèle de la phase condensée indilatable et incompressible.		
Description d'un corps pur en équilibre diphas	é	
Corps pur en équilibre diphasé. Diagramme de phases (P,T).	Analyser un diagramme de phases expérimental (P,T). Positionner les différentes phases d'un corps pur dans les diagrammes (P,T)	
Cas particulier de l'équilibre liquide-vapeur : diagramme de Clapeyron (P, v), pression de vapeur saturante, titre en vapeur.	et (P, v).	

Plan des chapitres

<u>Chap C6 : Description d'un système chimique</u> en réaction

- I. Description d'un système physico-chimique
 - 1. Définitions
 - 2. Paramètres descriptifs
- II. Bilan de matière d'une transformation chimique
 - 1. Modélisation de la transformation chimique
 - 2. Avancement d'une réaction
 - a. Définition
 - b. Avancement final et avancement maximal
 - c. Autres paramètres d'évolution
- III. Evolution d'un système
 - 1. Activité d'un constituant
 - 2. Quotient réactionnel Q_r
 - 3. Constante thermodynamique d'équilibre
 - a. Définition
 - b.Propriétés
 - c. Caractère thermodynamiquement favorable ou non d'une réaction
 - 4. Critère d'évolution spontanée d'un système
- IV. Composition à l'état final
 - 1. Cas d'une transformation totale
 - 2. Cas d'un équilibre chimique

<u>Chap C7 : Transformations modélisées par des réactions acide-base</u>

- I. Couples acido-basiques
 - 1. Théorie de Brönsted (1923) : définitions
 - 2. Réactions acido-basiques en théorie de Brönsted
 - 3. Couples de l'eau

II. Force des acides et bases en solution aqueuse

- 1. Mise en solution d'un acide
- 2. Acides forts et bases fortes
- 3. Acides faibles / bases faibles constante d'acidité d'un couple AH/A^-
- 4. Constantes d'acidité des couples de l'eau
- 5. Échelle d'acidité
- 6. Loi de dilution d'Ostwald

III. pH et distribution des espèces

- 1. Définitions du pH
- 2. Diagrammes de prédominance
 - a. Diagramme de prédominance simple
 - b. Diagrammes avec domaines de majorité
 - c. Diagramme de prédominance d'un polyacide ou d'une polybase
- 3. Courbes de distribution des espèces en fonction du pH
- 4. Applications aux acides aminés
 - a. Diagramme de prédominance
 - b. Point isoélectrique
 - c. Application : électrophorèse

IV. Prévision de l'état d'équilibre d'un système siège d'une transformation acido-basique

- 1. Coexistence d'acides et de bases faibles Approche qualitative
- 2. Constante thermodynamique d'équilibre
 - a. Expression
 - b. Prévision de la réaction acide base
 - c. Exploitation de l'échelle de pK_A Règle du gamma
 - d. Exemples
- 3. Méthode d'étude

- a. Etude d'une solution d'acide fort
- b. Etude d'une solution d'acide faible
- c. Etude d'une solution d'ampholyte
- d. Etude d'un mélange

V. Solutions tampons

- 1. Définition
- 2. Préparation d'une solution tampon

<u>Chap E.1: Description d'un système</u> <u>thermodynamique</u>

- I. Caractérisation d'un système thermodynamique
 - 1. Définitions
 - 2. Echelles de description d'un système
 - 3. Paramètres d'état
 - 4. La pression
 - 5. La température
 - a. Echelle de température à deux points fixes
 - b. Echelle de température absolue
 - 6. Équilibre thermodynamique
 - a. Équilibre interne
 - b. Équilibre thermodynamique avec l'extérieur

II. Etats physiques de la matière

- 1. Notion de phase
- 2. Les trois états de la matière
- 3. Propriétés des différentes phases
 - a. Masse volumique
 - b. Compressibilité et dilatabilité
- 4. Modèle de la phase condensée indilatable et incompressible
- 5. Modèle du gaz parfait
 - a. Approche macroscopique du gaz parfait
 - b. Point de vue microscopique du gaz parfait
 - c. Mélange idéal de gaz parfaits
 - d. Conditions de validité du modèle ?

<u>Chap E2 : Description d'un corps pur en équilibre diphasé</u>

I. Etats physiques et changements d'état

II. Etude expérimentale

- 1. Suivi de la température au cours d'un changement d'état
- 2. Suivi de la pression au cours d'un changement d'état
- 3. Cas de l'équilibre liquide vapeur
 - a. Cas du corps pur
 - b. Vaporisation dans un autre gaz
 - c. Vocabulaire Définitions

III. Diagramme d'état en coordonnées (P, T) = diagramme de phases

- 1. Allure la plus générale
- 2. Allure des courbes de changement d'état
- 3. Exemples de diagrammes

IV. Cas particulier de l'équilibre liquide-vapeur -Diagramme en coordonnées (P, v)

- 1. Isothermes d'Andrews
- 2. Diagramme de Clapeyron
- 3. Composition du mélange diphasé