DS 8 – Mathématiques – Sujet B Mercredi 15 Mai 2024

Durée de l'épreuve : 1 heures 15 minutes

Indiquez en tête de votre copie si vous traitez le sujet A ou B.

Le devoir est composé de quatre exercices et d'un exercice bonus.

L'exercice bonus est plus difficile et n'est à traiter que si le reste est terminé.

Exercice 1. On considère :

$$F = \{(x, y, z, t) \in \mathbb{R}^4 / x + y - z + t = 0\} \quad \text{et} \quad G = \{(2a, -a, 0, a), \ a \in \mathbb{R}\}.$$

- 1. Montrer que F et G sont des sous-espaces vectoriels de \mathbb{R}^4 .
- 2. Donner deux éléments distincts de F. Déterminer une base et la dimension de F.
- 3. Donner deux éléments distincts de G. Déterminer une base et la dimension de G.
- 4. Montrer que $F \cap G = \{0_{\mathbb{R}^4}\}$.

Exercice 2. On considère les vecteurs $u_1 = (0,1,1)$, $u_2 = (1,0,1)$ et $u_3 = (1,1,1)$ de \mathbb{R}^3 .

- 1. Montrer que $B=(u_1,u_2,u_3)$ est une base de \mathbb{R}^3 .
- 2. Soient $v_1=(1,2,4)$ et $v_2=(1,0,1)\in\mathbb{R}^3$. Déterminer les coordonnées de v_1 et de v_2 dans la base B.
- 3. Déterminer le vecteur $u \in \mathbb{R}^3$ tel que $\operatorname{coord}_B(u) = \begin{pmatrix} 1 \\ 2 \\ -4 \end{pmatrix}$.

Exercice 3. Factoriser complètement le polynôme P donné par

$$\forall x \in \mathbb{R}, \quad P(x) = x^4 - 3x^3 + x^2 + 3x - 2.$$

Exercice 4. Dans cet exercice, on se propose de déterminer tous les polynômes P tels que

$$\forall x \in \mathbb{R}, \quad P(x+1) = P(x) \tag{*}$$

(autrement dit on cherche l'ensemble des polynômes réels P qui sont 1-périodiques sur \mathbb{R}).

- 1. Soit P un polynôme solution de (\star) .
 - (a) Montrer que pour tout $n \in \mathbb{N}$,

$$P(n) = P(0).$$

(b) On considère le polynôme Q défini par

$$\forall x \in \mathbb{R}, \quad Q(x) = P(x) - P(0).$$

Montrer que le polynôme Q possède une infinité de racines réelles. En conclure que Q=0.

- (c) En déduire que P est un polynôme constant.
- 2. Réciproquement, montrer que tout polynôme constant est solution de (*). Conclure.

Exercice 5 (Bonus - Polynômes de Lagrange). Soient $n \in \mathbb{N}^*$ et x_0, x_1, \ldots, x_n des nombres réels deux à deux distincts. Pour tout $i \in [0, n]$, on définit le i-ème polynôme de Lagrange L_i par

$$\forall x \in \mathbb{R}, \quad L_i(x) = \prod_{\substack{j=0 \ j \neq i}}^n \frac{x - x_j}{x_i - x_j}.$$

- 1. Dans le cas n=2, $x_0=0$, $x_1=1$ et $x_2=2$, écrire sous forme développée les polynômes L_0 , L_1 et L_2 .
- 2. Soit $i \in [0, n]$. Déterminer le degré de L_i , ses racines et la valeur de $L_i(x_i)$.
- 3. Prouver que $\sum_{i=0}^{n} L_i = 1$.
- 4. Soit P un polynôme réel. Prouver que pour tout $x \in \mathbb{R}$,

$$P(x) = \sum_{i=0}^{n} P(x_i) L_i(x).$$