TD₂₆ Equations différentielles

Exercice 1 (• ° °)

- 1. Résoudre sur \mathbb{R} l'équation différentielle y' + 5y = x. On pourra chercher une solution particulière sous la forme d'un polynôme de degré 1.
- 2. Résoudre sur \mathbb{R} le problème de Cauchy suivant $\begin{cases} y' + 5y = x, \\ y(0) = 0. \end{cases}$

Exercice 2 (•••)

Résoudre sur \mathbb{R} les équations différentielles suivantes

1. $y'' - 3y' + 2y = \cos(3x)$,

Indication: chercher une solution particulière sous la forme $y_0(x) = a\cos(3x) + b\sin(3x)$,

2. (a) y'' - 2y' + y = x + 3

Indication: chercher une solution particulière sous la forme $y_0(x) = ax + b$,

- (b) Déterminer l'unique solution f telle que f(0) = 5 et f'(0) = 2.
- 3. $y'' 4y' + 5y = e^x$

Indication : chercher une solution particulière sous la forme $y_0(x) = (ax + b)e^x$

4. $y'' - 3y' + 2y = 2x^2$,

Indication : chercher une solution particulière sous la forme $y_0(x) = ax^2 + bx + c$,

Exercice 3 (•••)

Résoudre les équations différentielles suivantes en appliquant la méthode de la variation de la constante :

- 1. $y' + 2y = e^{-2x} \operatorname{sur} \mathbb{R}$, puis déterminer l'unique solution vérifiant y(1) = 2.
- $3. \ y' = \frac{y}{x} + x \operatorname{sur} \mathbb{R}^{+*}$

2. $y' + y = \frac{1}{1 + e^x} \operatorname{sur} \mathbb{R}$,

4. $y' - \left(2x - \frac{1}{x}\right)y = 1 \text{ sur } \mathbb{R}^{+\star} \text{ avec } y(1) = 1.$

Exercice 4 (•••)

Résoudre le système différentiel suivant sur R (on raisonnera par analyse-synthèse)

$$\begin{cases} x'(t) - y(t) = 0, \\ x(t) - y'(t) = 0. \end{cases}$$

Exercice 5 (•••)

Dans cet exercice, on cherche toutes les fonctions $f : \mathbb{R} \to \mathbb{R}$ telles que

$$\forall (x, y) \in \mathbb{R}^2, \quad f(x+y) = f(x)f(y). \tag{\mathcal{E}_1}$$

- 1. Donner un exemple d'une telle fonction f.
- 2. *Analyse*. On considère maintenant une fonction f solution de (\mathcal{E}_1) . En dérivant la relation (\mathcal{E}_1) par rapport à x, déduire que f vérifie une équation différentielle du type

$$v'(t) = av(t)$$

où $a \in \mathbb{R}$ est une constante à exprimer en fonction de f.

3. Résoudre cette dernière équation différentielle.

4. *Synthèse*. Toutes les fonctions trouvées sont-elles solutions de (\mathcal{E}_1) ? Conclure.

Exercice 6 (•••)

On cherche à résoudre sur $\mathbb{R}^{+\star}$ l'équation différentielle

$$x^{2}y''(x) - 3xy'(x) + 4y(x) = 0.$$
 (£₂)

- 1. Cette équation différentielle rentre-t-elle dans le cadre du cours?
- 2. *Analyse*. Considérons y une éventuelle solution de (\mathcal{E}_2) . On définit $z: \mathbb{R} \to \mathbb{R}$ par

$$\forall t \in \mathbb{R}, \quad z(t) = v(e^t).$$

- (a) Montrer que z est deux fois dérivable et calculer z' et z'' en fonction de y' et y''.
- (b) En déduire que *z* vérifie une équation différentielle linéaire d'ordre 2 à coefficients constants que l'on précisera.
- (c) Résoudre cette équation.
- (d) En déduire y.
- 3. *Synthèse*. Les fonctions trouvées précédemment sont-elles toutes solutions de l'équation différentielle (\mathscr{E}_2) ? Conclure.

Exercice 7 (•••)

On cherche à résoudre sur $\mathbb{R}^{+\star}$ l'équation différentielle

$$xy''(x) + 2(x+1)y'(x) + (x+2)y(x) = 0.$$
 (£)

Résoudre cette équation en s'inspirant de l'exercice précédent et en effectuant le changement de fonction inconnue

$$z: x \mapsto x y(x)$$
.