PROGRAMME D'INTERROGATIONS ORALES DE SCIENCES PHYSIQUES SEMAINE DU 03 NOVEMBRE 2025

Avis aux étudiants : vous devez vous présenter en colle muni de

- ✗ La fiche d'évaluation qui vous a été remise avant la colle par le professeur.
- × Votre cahier de colle complété.

Ce programme de colle rassemble :

- * les notions abordées lors des dernières séances (cours + TP)
- * les parties du programme officiel de BCPST1 relatives à ces notions
- * des exemples de questions de cours qui peuvent être posées en colle

Signaux:

→ S3 : Signaux électriques (cours inachevé)

Constitution et cohésion de la matière

- → C2 : Constitution et cohésion au sein des entités polyatomiques (cours + exercices)
- → C3 : Familles de molécules organiques (cours seul)

TP 05 : Dosage par étalonnage du Dakin

Extraits du programme relatifs à ces parties du cours :

Assurez-vous d'être au point sur toutes les notions mentionnées dans la colonne « notions et contenus » du programme – au moins – et de savoir faire ce qui est mentionné dans la colonne « capacités exigibles ».

C.1 Constitution et cohésion de la matière à l'échelle des entités chimiques		
C.1.2 Cohésion au sein d'entités polyatomiques : molécules et ions		
Notions et contenus	Capacités exigibles	
Modèles de la liaison covalente		
Modèle de Lewis de la liaison covalente		
localisée.		
Modèle quantique de la liaison :	Relier qualitativement à la notion de recouvrement des OA les différences	
recouvrement des OA, notion de liaison σ	d'ordres de grandeur des énergies des liaisons σ et π pour une liaison entre deux	
et de liaison π .	atomes de carbone.	
Longueur et énergie de la liaison	Citer les ordres de grandeur de longueurs et d'énergies de liaisons covalentes.	
covalente.		
Représentation de Lewis d'une molécule	Établir une ou des représentations de Lewis pertinentes pour une molécule ou un	
ou d'un ion polyatomique. Hypervalence.	ion polyatomique.	
Modèles de la liaison covalente	Identifier les enchaînements donnant lieu à une délocalisation électronique dans	
délocalisée : mésomérie.	une entité et représenter les formules mésomères limites d'une entité chimique.	
	Mettre en évidence une éventuelle délocalisation électronique à partir de	
	données sur les longueurs de liaison.	
Géométrie et polarité des entités chimiqu	es	
Géométrie d'une molécule ou d'un ion	Associer qualitativement la géométrie d'une entité à la minimisation de son	
polyatomique : modèle VSEPR.	énergie.	
Représentation de Cram.	Prévoir et interpréter les structures de type AXn avec n ≤ 4	
	et AX_pE_q avec p + q = 3 ou 4.	
	Interpréter des écarts entre les prévisions du modèle	
	VSEPR et des données structurales.	
Liaison polarisée, moment dipolaire, entité	Prévoir l'existence ou non d'un moment dipolaire permanent d'une molécule ou d'un ion	
polaire	et représenter, le cas échéant, la direction et le sens du moment dipolaire.	
Pourcentage d'ionicité d'une liaison, limites du	Déduire de l'électroneutralité de la matière la stœchiométrie d'un solide ionique.	
modèle de la liaison covalente localisée et du		
modèle de la liaison ionique.		
	opique d'entités chimiques organiques et intervenant dans la chimie du vivant	
Familles d'entités chimiques organiques		
Familles fonctionnelles en chimie organique :	Reconnaître et nommer les familles fonctionnelles présentes dans la représentation d'une	
amine, amide, cétone, aldéhyde, alcool, thiol, ester, acide carboxylique, hémiacétal et acétal,	entité chimique.	
anhydride phosphorique.		
Familles d'entités chimiques intervenant dans	Reconnaître et nommer la famille à laquelle appartient une entité chimique intervenant	
la chimie du vivant :	dans la chimie du vivant. Reconnaître et nommer la famille à laquelle appartient.	
o sucres (ou oses) et autres glucides;		
o acides gras, triglycérides,		
phosphoglycérides et autres lipides;		
o acides aminés, peptides et protéines;		
o nucléosides, nucléotides, acides nucléiques.		

S.2 Signaux électriques en régime stationnaire	
Notions et contenus	Capacités exigibles
Charge électrique, intensité du	Relier l'intensité d'un courant électrique au débit de charges électriques.
courant électrique. Régime variable	Utiliser la loi des nœuds et la loi des mailles.
et régime stationnaire. Potentiel	Algébriser les grandeurs électriques et utiliser les conventions récepteur et générateur.
électrique, référence de potentiel,	Citer les ordres de grandeur d'intensité et de tension électriques dans différents domaines
tension électrique. Mise à la terre.	d'application, et en particulier en lien avec la prévention du risque électrique.
Source de tension.	Modéliser une source de tension en utilisant la représentation de Thévenin.
Dipôle résistif, résistance, loi d'Ohm.	Remplacer une association série ou parallèle de deux résistances par une résistance équivalente.
Associations de deux résistances.	Exploiter des ponts diviseurs de tension.

Pont diviseur de tension.	
Puissance et énergie électriques.	Établir un bilan de puissance dans un circuit électrique.
Effet Joule.	

Plan des chapitres

<u>Chap C2 : Cohésion au sein des molécules et</u> ions

- I. Caractéristiques de la liaison covalente
 - 1. De l'atome aux édifices polyatomiques : origine de la liaison chimique ?
 - 2. Longueur et énergie de la liaison covalente
 - a. Longueur
 - b. Energie
- II. Modèles de la liaison covalente
 - 1. Modèle de Lewis de la liaison covalente localisée
 - 2. Modèle quantique de la liaison covalente : orbitales moléculaires (OM) σ ou π
- III. Représentation de Lewis des molécules
 - Méthode de détermination de la formule de Lewis
 - 2. Exceptions à la règle de l'octet
 - a. Cas des radicaux
 - b. Cas des composés déficients en électrons
 - c. Hypervalence, au-delà de la troisième période de la classification périodique des éléments

IV. Modèle de la liaison covalente délocalisée : mésomérie

- 1. Mise en évidence de la mésomérie sur l'exemple de l'ozone
- 2. Différents systèmes de délocalisation
- 3. Degré de contribution des formes mésomères
- V. Géométrie des édifices polyatomiques
 - 1. Méthode VSEPR (1958)
 - a. Principe
 - b. Etablir la géométrie d'une molécule
 - 2. Ecarts au modèle
 - a. Influence des doublets non liants
 - b. Influence des liaisons multiples
 - c. Cas d'un électron célibataire
 - 3. Géométrie des édifices admettant plusieurs formes mésomères
- VI. Polarité des liaisons et des édifices polyatomiques
 - 1. Liaison polarisée
 - 2. Moment dipolaire de molécule ou ion
 - a. Définition
 - b. Mise en évidence par addition des moments dipolaires de liaisons
 - c. Mise en évidence par étude des barycentres de charges

Chap S3 : Signaux électriques

- I. Grandeurs caractéristiques
 - 1. Régime continu/variable
 - 2. Intensité du courant électrique
 - a. Courant électrique
 - b. Intensité
 - 3. Tension électrique
 - a. Potentiel électrique
 - b. Tension électrique
 - c. Notion de référence des potentiels
- II. Lois de KIRCHHOFF

- 1. Préambule : quelques définitions
- 2. Loi des nœuds (LDN)
- 3. Loi des mailles (LDM)
- III. Dipôles électrocinétiques
 - 1. Définitions et conventions
 - 2. Dipôle passif linéaire
 - a. Conducteur ohmique
 - b. Fils conducteur et interrupteurs
 - 3. Dipôles actifs linéaires
 - a. Générateur idéal de tension
 - b. Modélisation des générateurs réels
- IV. Associations de dipôles
 - 1. Associations série/parallèle de dipôles
 - 2. Dipôles équivalents
 - a. Association en série de conducteurs ohmiques
 - b. Association en parallèle de conducteurs ohmiques
 - 3. Pont diviseur de tension
- V. Puissance et énergie
 - 1. Définitions
 - 2. Applications à certains dipôles
 - a. Puissance reçue par le conducteur ohmique :
 - b.—Puissance reçue par un générateur idéal de tension
 - 3. Bilan énergétique

Chap C3: Familles de molécules organiques

Introduction

- I. Représentation des molécules
 - 1. Information de composition moléculaire
 - 2. Information sur les liaisons chimiques
- II. Familles fonctionnelles en chimie organique
 - 1. Les hydrocarbures
 - a. Les alcanes
 - b. Les hydrocarbures insaturés : alcènes et alcynes
 - c. Les composés aromatiques
 - d. Nomenclature
 - 2. Les principales fonctions organiques
 - a. Les fonctions monovalentes
 - b. Les fonctions divalentes
 - c. Les fonctions trivalentes
 - d. Nomenclature
 - 3. Application

III. Les grandes familles de molécules du vivant

- 1. Glucides
 - a. Les oses
 - b. Les diosides (ou disaccharides)
 - c. Les polyosides (ou polysaccharides)
- 2. Lipides
 - a. Acides gras
 - b. Triglycérides
 - c. Phosphoglycérides
- 3. Protides
 - a. Acides α -aminés
 - b. Peptides et protéines
- 4. Des nucléosides aux acides nucléiques
 - a. Nucléoside = Base + ose
 - b. Nucléotide = Base + ose + phosphate
 - c. Acides nucléiques : ADN et ARN

Annexe: Nomenclature

Exemples de questions de cours et savoir-faire...

♦ C2:

Questions de cours :

- Caractéristiques de la liaison covalente : longueur, énergie (définitions + ordre de grandeur)
- × Modèle de Lewis de la liaison covalente
- * Hypervalence : définition, éléments concernés
- Mésomérie (définition, enchaînements donnant lieu à délocalisation, critère du degré de contribution des formes mésomères, proposer des exemples)
- Méthode VSEPR (signification de l'acronyme, principe sur lequel repose la méthode, application à quelques exemples simples)
- ✗ Moment dipolaire de liaison (définition)
- Pourcentage d'ionicité d'une liaison (définition, limite du modèle de la liaison covalente et du modèle de la liaison ionique)
- Moment dipolaire de molécule. Molécule polaire ou apolaire. (définitions, méthodes de calculs)

Savoir-faire

- ➤ Savoir déterminer la formule de Lewis d'une molécule ou ion
- Mettre en évidence la délocalisation électronique dans une entité (si elle existe) conventions d'écriture des formules mésomères
- × Prévoir la géométrie des molécules.
- Interpréter les écarts entre la géométrie prévue par le modèle et les données expérimentales.
- ➤ Déduire de l'électroneutralité de la matière la stœchiométrie d'un solide ionique.

❖ S3:

Questions de cours :

- Définitions des différents régimes d'un signal : stationnaire, variable, permanent, transitoire.
- Définitions : ARQS
- Définitions : courant électrique, charge électrique,
- Intensité du courant électrique (définition, propriété, mesure, ordres de grandeurs)
- Potentiel électrique (notion, unité, référence, mise à la Terre)
- Tension (définition, propriété, mesure, ordres de grandeurs)
- Lois de Kirchhoff : loi des nœuds + loi des mailles (énoncés en français)
- Conventions d'orientation récepteur ou générateur
- Définitions des termes caractérisants des dipôles : linéaire, actif/passif, symétrique/polarisé (définitions, lien avec la caractéristique d'un dipôle)
- Conducteur ohmique (définition, schéma, grandeur caractéristique, loi d'Ohm, caractéristique)
- Interrupteur (intensité et tension selon qu'il est ouvert ou fermé)
- Générateur idéal de tension (définition, schéma, grandeur caractéristique, caractéristique)
- Modèle de Thévenin d'un générateur réel (schéma, relation tension-intensité, caractéristique)
- Définition : dipôles équivalents.
- Définition : association en série ou parallèle de dipôles
- Résistance équivalente à l'association série de deux conducteurs ohmiques (formule + démonstration)
- Résistance équivalente à l'association parallèle de deux conducteurs ohmiques (formule + démonstration)
- Pont diviseur de tension (définition, schéma, formule, démonstration)
- Puissance et énergie (définitions, algébrisation)
- Effet Joule (définition, formule, applications)
- Bilan énergétique sur un circuit

Savoir-faire

- Définir et placer toutes les notations nécessaires sur un schéma électrique
- Appliquer la loi des nœuds
- Orienter une maille et appliquer la loi des mailles
- Identifier la convention d'orientation aux bornes d'un dipôle
- Identifier la nature des associations des dipôles dans un circuit (série ? parallèle ? aucun des deux ?)

- Écrire la résistance équivalente à des résistances associées en série ou en parallèle afin de simplifier les circuits.
- Identifier un pont diviseur de tension dans un circuit pour écrire une relation entre tensions électriques
- Établir un bilan de puissance dans un circuit

❖ C3:

Questions de cours :

- Définition d'un alcane, d'un alcène, d'un alcool*, d'un aldéhyde*, d'une cétone*, d'un acide carboxylique*, d'une amine*, d'un amide*, d'un ester*, d'un thiol*, d'un hémiacétal, d'un acétal, d'un anhydride phosphorique. (le nom du groupe caractéristique des familles marquées d'une * doit être connu) (la nomenclature peut être demandée pour toutes ces familles sauf pour hémiacétal et acétal)
- Définir un ose, un dioside, un polyoside (et donner en exemple le nom de l'un d'entre eux (formule horsprogramme)).
- Définir un acide gras, un triglycéride et un phosphoglycéride + formule générale d'un triglycéride.
- Définir un acide aminé, un acide α -aminé, un peptide, une protéine + formule générale d'un acide α -aminé + formule générale d'un dipeptide.
- Définir un nucléoside, un nucléotide, les deux types d'acides nucléiques et écrire le groupe anhydride phosphorique.

Savoir-faire

- Savoir reconnaître et nommer les groupes fonctionnels présents dans la représentation d'une entité chimique, et dire à quelle famille de chimie elle appartient.
- Savoir reconnaître et nommer la famille à laquelle appartient une entité chimique dans la chimie du vivant.