NOM:

PRENOM:

/1 pt). Dériver la fonction suivante. On ne demande pas de préciser l'ensemble de dérivabilité.

$$f: x \longmapsto (\ln(x+1))^5$$

/2 pts). Développer rapidement et simplifier pour $a \in \mathbb{R}^*$ la quantité $\left(a - \frac{1}{a}\right)^3$.

Question 3 (/7 pts). Calculer les sommes suivantes pour $p \in \mathbb{R} \setminus \{0,1\}$ et $n \in \mathbb{N}^*$:

1.
$$S_1 = \sum_{k=0}^{n} \binom{n}{k} 2^{2n-k}$$

1.
$$S_1 = \sum_{k=0}^{n} \binom{n}{k} 2^{2n-k}$$
 2. $S_2 = \sum_{k=1}^{n} p (1-p)^{k-1}$ 3. $S_3 = \sum_{k=1}^{n} \binom{n+1}{k}$ 4. $S_4 = \sum_{0 \le i \le j \le n} 2^{i+j}$

3.
$$S_3 = \sum_{k=1}^{n} \binom{n+1}{k}$$

4.
$$S_4 = \sum_{0 \le i \le j \le n} 2^{i+j}$$

NOM:

PRENOM:

/1 pt). Dériver la fonction suivante. On ne demande pas de préciser l'ensemble de dérivabilité.

$$g: x \longmapsto \frac{1}{x \ln(x)}$$

/2 pts). Développer rapidement et simplifier pour $b \in \mathbb{R}^*$ la quantité $\left(b + \frac{1}{b}\right)^4$.

/7 pts). Calculer les sommes suivantes pour $p \in \mathbb{R} \setminus \{0,1\}$ et $n \in \mathbb{N}^*$:

1.
$$S_1 = \sum_{k=1}^{n} p (1-p)^{k-1}$$

1.
$$S_1 = \sum_{k=1}^{n} p (1-p)^{k-1}$$
 2. $S_2 = \sum_{k=1}^{n+1} (-1)^k \binom{n+1}{k}$ 3. $S_3 = \sum_{k=-1}^{n-1} \binom{n}{k+1} 2^k$ 4. $S_4 = \sum_{1 \le i \le j \le n} j^2$

3.
$$S_3 = \sum_{k=-1}^{n-1} \binom{n}{k+1} 2^k$$

4.
$$S_4 = \sum_{1 \le i \le j \le n} j^2$$