Feuille de cours 12 : limites de fonctions réelles de la variable réelle

Pour les calculs pratiques de limites de fonctions, on renvoie aux feuilles de remédiation.

1 Définitions

Dans tout le chapitre, I désigne un intervalle de \mathbb{R} , privé éventuellement d'un nombre fini de points et on considère une fonction à valeurs réelles $f:I\longrightarrow\mathbb{R}$.

1.1 Limites à l'infini

Rappel: Pour une suite réelle $(u_n) \in \mathbb{R}^{\mathbb{N}}$ et $\ell \in \mathbb{R}$ on a donné les définitions suivantes :

- $u_n \xrightarrow[n \to +\infty]{} \ell$ lorsque :
- $u_n \xrightarrow[n \to +\infty]{} +\infty$ lorsque:
- $u_n \xrightarrow[n \to +\infty]{} -\infty$ lorsque:

On adapte cette définition en faisant jouer à $x \in I$ le rôle de $n \in \mathbb{N}$ pour obtenir la définition de la limite en $+\infty$ d'une fonction réelle :

Définition 1

Soit $f: I \longrightarrow \mathbb{R}$ et soit $\ell \in \mathbb{R}$. On suppose qu'il existe $A_0 \in \mathbb{R}$ tel que $[A_0, +\infty[\subset I]]$. On dit que :

- f a pour limite ℓ en $+\infty$ et on note $f(x) \xrightarrow[x \to +\infty]{} \ell$ ou $\lim_{x \to +\infty} f(x) = \ell$ ou $\lim_{x \to +\infty} f = \ell$ lorsque :
- f a pour limite $+\infty$ en $+\infty$ et on note $f(x) \xrightarrow[x \to +\infty]{} +\infty$ ou $\lim_{x \to +\infty} f(x) = +\infty$ ou $\lim_{x \to +\infty} f = +\infty$ lorsque :
- f a pour limite $-\infty$ en $+\infty$ et on note $f(x) \xrightarrow[x \to +\infty]{} -\infty$ ou $\lim_{x \to +\infty} f(x) = -\infty$ ou $\lim_{x \to +\infty} f = -\infty$ lorsque : $\forall B \in \mathbb{R}, \ \exists M \in \mathbb{R} : \ \forall x \in I, \ (x \ge M \implies f(x) \le B)$

Exemple:

1.
$$\lim_{x \to +\infty} \frac{1}{x} = 0$$
, en effet :

2. $\lim_{x\to+\infty} \sqrt{x} = +\infty$, en effet :

Contrairement au cadre des suites, on peut s'intéresser à d'autres limites que $x \to +\infty$, à commencer par $x \to -\infty$. Les définitions sont similaires :

Définition 2

Soit $f: I \longrightarrow \mathbb{R}$ et soit $\ell \in \mathbb{R}$. On suppose qu'il existe $A_0 \in \mathbb{R}$ tel que $]-\infty, A_0] \subset I$. On dit que :

- f a pour limite ℓ en $-\infty$ et on note $f(x) \xrightarrow[x \to -\infty]{} \ell$ ou $\lim_{x \to -\infty} f(x) = \ell$ ou $\lim_{x \to \infty} f = \ell$ lorsque :
- f a pour limite $+\infty$ en $-\infty$ et on note $f(x) \xrightarrow[x \to -\infty]{} +\infty$ ou $\lim_{x \to -\infty} f(x) = +\infty$ ou $\lim_{-\infty} f = +\infty$ lorsque : $\forall A \in \mathbb{R}, \ \exists M \in \mathbb{R} : \ \forall x \in I, \ \left(x \leq M \implies f(x) \geq A\right)$
- f a pour limite $-\infty$ en $-\infty$ et on note $f(x) \xrightarrow[x \to -\infty]{} -\infty$ ou $\lim_{x \to -\infty} f(x) = -\infty$ ou $\lim_{x \to -\infty} f = -\infty$ lorsque :

Une variante plus profondément différente consiste à s'intéresser à la limite $x \to x_0$ pour $x_0 \in \mathbb{R}$.

1.2 Limite en un point

La notion de limite d'une fonction $f:I\longrightarrow \mathbb{R}$ en un point $x_0\in \mathbb{R}$ n'a de sens que si $x_0\in I$ ou si x_0 appartient $au\ bord$ de I. Par exemple si $I=]-\infty,2[\cup[3,5[$ alors on peut s'intéresser à une limite en tout $x_0\in I$ mais aussi en $x_0=$ ou $x_0=$.

Interprétation graphique : Quand dit-on que $f(x) \xrightarrow[x \to x]{} \ell$?

Définition 3

Soit $f: I \longrightarrow \mathbb{R}$ et soit $\ell \in \mathbb{R}$. Soit $x_0 \in \mathbb{R}$ un élément de I ou du bord de I. On dit que f a pour limite ℓ en x_0 , et on note $f(x) \xrightarrow[x \to x_0]{} \ell$ ou $\lim_{x \to x_0} f(x) = \ell$ ou $\lim_{x_0} f = \ell$ lorsque :

Exemple : Montrons que $\lim_{x\to 0} 2x + 1 = 1$.

Remarque 4

- La valeur de η dépend de ε comme l'indique l'ordre des quantificateurs. Intuitivement, plus ε est petit plus $\eta = \eta(\varepsilon)$ est .
- Si f est définie en x_0 , i.e. $x_0 \in I$, et si $\lim_{x_0} f = \ell$ alors $f(x_0) = \ell$. En effet,

Les définitions sont analogues dans le cas d'une limite infinie :

Définition 5

Soit $f: I \longrightarrow \mathbb{R}$ et soit $\ell \in \mathbb{R}$. Soit $x_0 \in \mathbb{R}$ un élément de I ou du bord de I. On dit que :

• f a pour limite $+\infty$ en x_0 , et on note $f(x) \xrightarrow[x \to x_0]{} +\infty$ ou $\lim_{x \to x_0} f(x) = +\infty$ ou $\lim_{x \to x_0} f = +\infty$ lorsque:

$$\forall A \in \mathbb{R}, \ \exists \eta > 0 : \ \forall x \in I, \ (|x - x_0| \le \eta \implies f(x) \ge A)$$

• f a pour limite $-\infty$ en x_0 , et on note $f(x) \xrightarrow[x \to x_0]{} -\infty$ ou $\lim_{x \to x_0} f(x) = -\infty$ ou $\lim_{x \to x_0} f = -\infty$ lorsque:

$$\forall B \in \mathbb{R}, \ \exists \eta > 0 : \ \forall x \in I, \ (|x - x_0| \le \eta \implies f(x) \le B)$$

Exemple : Montrons que $\lim_{x\to 0} \ln x = -\infty$.

1.3 Limite à gauche/à droite en un point

Exemple : Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ donnée par $f(x) = \begin{cases} 0 & \text{si} & x < 0 \\ 1/2 & \text{si} & x = 0 \end{cases}$. Peut-on avoir $\lim_{x \to 0} f(x) = \ell$ pour un certain $\ell \in \mathbb{R}$?

Dans ce cas de figure, on a tout de même envie de parler de limites de f en $x_0 = 0$. Mais il faut pour cela préciser que l'on restreint f à \mathbb{R}^-_* ou \mathbb{R}^+_* .

Définition 6

Soit $f: I \longrightarrow \mathbb{R}$ et soit $\ell \in \mathbb{R} \cup \{-\infty, +\infty\}$. Soit $x_0 \in \mathbb{R}$ un élément de I ou du bord de I. On dit que :

- f admet ℓ pour limite à gauche en x_0 , et on note $f(x) \xrightarrow[x < x_0]{x \to x_0} \ell$, $\lim_{\substack{x \to x_0 \\ x < x_0}} f(x) = \ell$ ou $\lim_{x \to x_0^-} f(x) = \ell$ lorsque $f_{|I\cap]} \infty$, $x_0[$ admet ℓ pour limite en x_0 .
- f admet ℓ pour limite \grave{a} droite en x_0 , et on note $f(x) \xrightarrow[x>x_0]{x \to x_0} \ell$, $\lim_{\substack{x \to x_0 \\ x>x_0}} f(x) = \ell$ ou $\lim_{x \to x_0^+} f(x) = \ell$ lorsque $f_{|I\cap]x_0, +\infty[}$ admet ℓ pour limite en x_0 .

Notation : dans le cas où ℓ est une limite finie, on note $f(x_0^-) = \lim_{\substack{x \to x_0 \\ x < x_0}} f(x)$ la limite à et $f(x_0^+) = \lim_{\substack{x \to x_0 \\ x > x_0}} f(x)$ la limite à .

Exemple : Pour la fonction f de l'exemple précédent, $f(0^-) = \lim_{\substack{x \to 0 \\ x}} f(x) = \text{ et } f(0^+) = \lim_{\substack{x \to 0 \\ x}} f(x) = \text{ .}$

Remarque 7

La notion de limite à gauche (resp. à droite) en x_0 n'a de sens que s'il est possible d'arriver vers x_0 sous la contrainte $x < x_0$ (resp. $x > x_0$) en restant dans I. Cela n'a par exemple pas de sens de chercher la limite à gauche en 0 de la fonction ln.

Proposition 8

Soient $f: I \longrightarrow \mathbb{R}$, x_0 un élément de I ou de son bord et $\ell \in \mathbb{R} \cup \{-\infty, +\infty\}$. On suppose que f est définie "à gauche et à droite de x_0 " de sorte qu'il y a un sens à parler de ses éventuelles limites à gauche et à droite en x_0 .

1. Si $x_0 \not\in I$ i.e. si f n'est pas définie en x_0 alors :

f admet une limite en x_0 si et seulement si f admet une limite à gauche et une limite à droite en x_0 et que ces deux limites sont égales.

$$\lim_{x \to x_0} f(x) = \ell \Longleftrightarrow \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = \ell$$

2. Si $x_0 \in I$ i.e. si f est définie en x_0 alors :

f admet une limite en x_0 si et seulement si f admet une limite à gauche et une limite à droite en x_0 et que ces deux limites sont égales à $f(x_0)$.

$$\lim_{x \to x_0} f(x) = f(x_0) \iff \lim_{x \to x_0^+} f(x) = f(x_0) = \lim_{x \to x_0^-} f(x)$$

Exemple:

- 1. Valeur absolue sur $I = \mathbb{R}$: $|x| = \begin{cases} x & \text{si } x \geq 0 \\ -x & \text{si } x < 0 \end{cases}$ Étudiez la limite en $x_0 = 0$.
- 2. Partie entière sur $I = [-1, 1[: \lfloor x \rfloor = \begin{cases} 0 & \text{si } x \in [0, 1[\\ -1 & \text{si } x \in [-1, 0[\end{cases}] \text{ Étudiez la limite en } x_0 = 0.$
- 3. La fonction f définie sur \mathbb{R} par $f(x) = \begin{cases} ax & \text{si } x < 1 \\ 1 & \text{si } x = 1 \\ ax^2 & \text{si } x > 1 \end{cases}$ Étudiez la limite en $x_0 = 1$.

1.4 Caractérisation séquentielle de la limite

Proposition 9

Soient $f: I \longrightarrow \mathbb{R}$, x_0 un élément de I ou de son bord (éventuellement $x_0 = \pm \infty$) et $\ell \in \mathbb{R} \cup \{-\infty, +\infty\}$. Alors f a pour limite ℓ en x_0 si et seulement si pour toute suite $(u_n) \in I^{\mathbb{N}}$ tendant vers x_0 , la suite $(f(u_n))$ tend vers ℓ .

 $D\acute{e}monstration : \Leftarrow admis.$

 \implies Montrons que : si (u_n) tend vers x_0 et si la limite de f en x_0 est ℓ alors la suite $(f(u_n))$ tend vers ℓ . On traite uniquement le cas où ℓ et x_0 sont réels (les autres cas, similaires, sont à faire en exercice en travaillant le cours).

Soit $\varepsilon > 0$, comme $\lim_{x \to x_0} f(x) = \ell$, il existe Or $\lim_{n \to +\infty} u_n = x_0$ donc il existe

Ainsi pour tout $n \geq N$ on a $|u_n - x_0| \leq \eta$ donc $|f(u_n) - \ell| \leq \varepsilon$ ce qu'il fallait démontrer.

On utilise souvent la contraposée du sens que nous avons démontré pour prouver qu'il est faux que $\lim_{x \to \infty} f(x) = \ell :$

Méthode pour montrer qu'une limite n'existe pas :

Soit $f: I \longrightarrow \mathbb{R}$ et x_0 un élément de I ou de son bord (éventuellement $x_0 = \pm \infty$). Pour montrer que $\lim_{x\to x_0} f(x)$ n'existe pas, on exhibe deux suites (u_n) et (v_n) d'éléments de I telles que :

- $u_n \xrightarrow[n \to +\infty]{} x_0$ et $v_n \xrightarrow[n \to +\infty]{} x_0$,
- mais $(f(u_n))$ et $(f(v_n))$ n'ont pas le même comportement quand $n \to +\infty$. Par exemple $f(u_n) \xrightarrow[n \to +\infty]{} \ell_1$ et $f(v_n) \xrightarrow[n \to +\infty]{} \ell_2 \neq \ell_1$.

Exemple: Montrons que la fonction sinus n'a pas de limite en $+\infty$.

2 Théorèmes concernant les limites

2.1 Comportement au voisinage d'une limite finie

Proposition 10

Soient $f: I \longrightarrow \mathbb{R}$, x_0 un élément de I ou de son bord (éventuellement $x_0 = \pm \infty$) et $\ell \in \mathbb{R}$. On suppose que $\lim_{x \to x_0} f(x) = \ell$ (limite **finie**), alors :

- 1. La limite ℓ est unique.
- 2. f est bornée sur un voisinage de x_0 :
 - dans le cas $x_0 \in \mathbb{R} : \exists \eta > 0 \ \exists M > 0 : \ \forall x \in I \cap]x_0 \eta, x_0 + \eta[, |f(x)| \leq M.$
 - dans le cas $x_0 = +\infty$: $\exists A \in \mathbb{R}, \exists M > 0$: $\forall x \in I \cap A, +\infty, |f(x)| \leq M$.
 - dans le cas $x_0 = -\infty$: $\exists B \in \mathbb{R}, \exists M > 0$: $\forall x \in I \cap]-\infty, B[, |f(x)| \leq M$.
- 3. Si $a < \ell < b$ alors on a a < f(x) < b sur voisinage de x_0 :
 - dans le cas $x_0 \in \mathbb{R}$: $\exists \eta > 0$: $\forall x \in I \cap [x_0 \eta, x_0 + \eta], \ a < f(x) < b$.
 - dans le cas $x_0 = +\infty$: $\exists A \in \mathbb{R}$: $\forall x \in I \cap]A, +\infty[, a < f(x) < b.$
 - dans le cas $x_0 = -\infty : \exists B \in \mathbb{R} : \forall x \in I \cap] \infty, B[, a < f(x) < b.$

En particulier si $\ell > 0$ alors f est strictement positive au voisinage de x_0 .

Remarque 11

La réciproque de 2. est fausse : une fonction bornée au voisinage de x_0 n'admet pas forcément de limite en x_0 . Contre-exemple :

2.2 Compatibilité avec la relation d'ordre

Proposition 12

Soient $f, g: I \longrightarrow \mathbb{R}$, et x_0 un élément de I ou de son bord (éventuellement $x_0 = \pm \infty$). On suppose que

- $f \leq g \text{ sur } I$, et
- f et g ont des limites finies en x_0 .

Alors $\lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$.

Remarque 13

- 1. Si f < g sur I, alors en passant à la limite, on ne recupère qu'une inégalité $\operatorname{large} : \lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$.
- 2. Attention, l'existence de la limite finie des fonctions est une **hypothèse** : il faut d'abord savoir que ces limites existent pour pouvoir appliquer ce théorème.

Proposition 14 (Théorème d'encadrement)

Soient $f, g, h : I \longrightarrow \mathbb{R}$, x_0 un élément de I ou de son bord (éventuellement $x_0 = \pm \infty$) et $\ell \in \mathbb{R}$. On suppose que

- $g \le f \le h \text{ sur } I$, et
- $g(x) \xrightarrow[x \to x_0]{} \ell$ et $h(x) \xrightarrow[x \to x_0]{} \ell$ (limite commune **finie**).

Alors f admet une limite en x_0 et cette limite vaut ℓ : $\lim_{x \to x_0} f(x) = \ell$.

Corollaire : Si $\lim_{x_0} g = 0$ et si f est bornée alors $\lim_{x_0} (fg) = 0$.

Démonstration :

Exemple: $\lim_{x\to 0} x \sin\left(\frac{1}{x}\right)$

Proposition 15 (théorème de comparaison)

Soient $f, g: I \longrightarrow \mathbb{R}$, et x_0 un élément de I ou de son bord (éventuellement $x_0 = \pm \infty$). On suppose que $f \leq g$ sur I. Alors

1. Si
$$\lim_{x \to x_0} = +\infty$$
 alors $\lim_{x \to x_0} = +\infty$.
2. Si $\lim_{x \to x_0} = -\infty$ alors $\lim_{x \to x_0} = -\infty$.

2. Si
$$\lim_{x \to x_0} = -\infty$$
 alors $\lim_{x \to x_0} = -\infty$.

Remarque 16

Une seule inégalité suffit mais elle doit être dans le bon sens!

Exemple: Déterminer les limites suivantes

$$1. \lim_{x \to +\infty} \frac{e^{x^2}}{x}$$

$$2. \lim_{x \to +\infty} \frac{\lfloor x \rfloor + 1}{\sqrt{x}}$$

3.
$$\lim_{x \to +\infty} \frac{\lfloor x \rfloor + 1}{x}$$

2.3 Limite des fonctions monotones

Théorème 17 (théorème de la limite monotone)

On se place sur un intervalle I = [a, b] (a < b), où $a \in \mathbb{R}$ et $b \in \mathbb{R} \cup \{+\infty\}$.

Soit $f:[a,b]\longrightarrow \mathbb{R}$ une fonction monotone alors f admet une limite (finie ou infinie) en b. Plus précisément :

- si f est croissante et majorée sur [a,b[alors $\lim_{x\to b}f(x)$ est finie.
- si f est croissante et non majorée sur [a,b[alors $\lim_{x\to b}f(x)=+\infty.$
- si f est décroissante et minorée sur [a,b[alors $\lim_{x\to b}f(x)$ est finie.
- si f est décroissante et non minorée sur [a,b[alors $\lim_{x\to b}f(x)=-\infty.$

On a bien sûr le résultat analogue pour une limite au bord gauche de l'intervalle :

Théorème 18 (théorème de la limite monotone (redite))

On se place sur un intervalle I = [a, b] (a < b), où $a \in \mathbb{R} \cup \{-\infty\}$ et $b \in \mathbb{R}$.

Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction monotone alors f admet une limite (finie ou infinie) en a. Plus précisément :

sur [a,b] alors $\lim_{x \to a} f(x)$ est finie. • si f est croissante et

• si f est croissante et $sur]a,b] alors <math>\lim_{x\to a} f(x) =$

sur]a,b] alors $\lim_{x\to a} f(x)$ est finie. • si f est décroissante et

• si f est décroissante et $sur]a,b] alors <math>\lim_{x\to a} f(x) =$

Remarque 19

Dans le cas d'une limite finie, ce théorème n'en donne pas la valeur.

Proposition 20

Soient $a < b \in \mathbb{R} \cup \{\pm \infty\}$. Si $f:]a, b[\to \mathbb{R}$ est croissante alors f possède en tout point de $x_0 \in]a, b[$ une limite à gauche et une limite à droite toutes les deux finies et :

$$f(x_0^-) \le f(x_0) \le f(x_0^+)$$
.

Exemple: la fonction partie entière est croissante sur \mathbb{R} et pour tout $n \in \mathbb{Z}$ on a :

Démonstration: Soit $x_0 \in]a,b[$. On applique le théorème de la limite monotone sur l'intervalle $]a,x_0[$: