Feuille de cours 16 : preuve du TVI par méthode de la dichotomie

Théorème 1 (TVI)

Soient a < b deux réels et soit $f : [a, b] \longrightarrow \mathbb{R}$ une fonction continue. On suppose que f(a) > 0 > f(b). Alors il existe $c \in [a, b]$ tel que f(c) = 0.

Remarque: Comment retrouve-t-on le théorème usuel à partir de celui-ci?

Démonstration: On construit des suites (a_n) et (b_n) telles que pour tout $n \in \mathbb{N}$, $f(a_n) > 0 > f(b_n)$ et (a_n) et (b_n) convergent vers c tel que f(c) = 0.

L'idée consiste à encadrer un zéro $c \in [a, b]$ de la fonction f par des valeurs a_n et b_n de plus en plus proches : $a_n < c < b_n$ et $a_n - b_n \xrightarrow[n \to +\infty]{} 0$.

Pour cela on définit les suites (a_n) et (b_n) de la manière suivante : $a_0 = a$, $b_0 = b$ puis pour tout $n \in \mathbb{N}$, on coupe l'intervalle $[a_n, b_n]$ en deux parties égales (notées ci-dessous $[a_n, c_n]$ et $[c_n, b_n]$).

La fonction f s'annule au moins sur un de ces deux intervalles : en effet, comme $f(a_n) > 0$ et $f(b_n) < 0$, f s'annule forcément sur $[a_n, c_n]$ si ; et f s'annule forcément sur $[c_n, b_n]$ si

On définit alors a_{n+1} et b_{n+1} de sorte que $[a_{n+1}, b_{n+1}]$ soit égal à cet intervalle contenant un zéro de f.



Formellement : $a_0 = a$, $b_0 = b$ puis pour tout $n \in \mathbb{N}$: on définit $c_n = \frac{a_n + b_n}{2}$ et

- Si $f(c_n) = 0$ alors Dans toute la suite de la preuve, on suppose que : $\forall n \in \mathbb{N}, \ f(c_n) \neq 0.$
- Si $f(c_n) > 0$ alors $a_{n+1} =$ et $b_{n+1} =$
- Si $f(c_n) < 0$ alors $a_{n+1} =$ et $b_{n+1} =$

On va montrer ci-dessous que les suites (a_n) et (b_n) convergent vers un point $c \in [a, b]$ tel que f(c) = 0.

Proposition 2

Pour tout $n \in \mathbb{N}$ on a :

- 1. $a_n \le a_{n+1} \le b_{n+1} \le b_n$
- 2. $f(a_n) > 0$ et $f(b_n) < 0$

 $D\acute{e}monstration:$ S'en convaincre sur le dessin. Formellement, faire une récurrence en utilisant que si $x \leq y$ alors $x \leq \frac{x+y}{2} \leq y$.

Proposition 3

Pour tout $n \in \mathbb{N}$, $|a_n - b_n| \le \frac{|a - b|}{2^n}$.

Démonstration :

Fin de la démonstration du TVI :

Remarque: Il faut savoir implémenter cette méthode en Python, voir TP numéro . Il s'agira donc de construire une fonction dichotomie prenant en arguments :

et renvoyant une approximation

d'une solution de l'équation :