Exercice 1

Pour chacune des fonctions suivantes, déterminer son ensemble de définition puis justifier par une phrase qu'elle est continue sur cet ensemble.

1.
$$f: x \longmapsto \frac{1}{x} + 2e^x$$

2.
$$g: x \longmapsto \sqrt{x} \ln(x)$$

3.
$$h: x \longmapsto \frac{x^4 - 1}{3 + 2x + x^2}$$

4.
$$u: x \longmapsto \sqrt{1+|x|}$$

5.
$$v: x \longmapsto \sqrt{1 - \ln(x)}$$

Exercice 2

Les fonctions suivantes sont-elles continues en x_0 ?

1.
$$f: x \longmapsto \begin{cases} x^2 + 2x - 6 & \text{si } x \le 2 \\ \sqrt{x+2} & \text{si } x > 2 \end{cases}$$
 en $x_0 = 2$.

2.
$$g: x \longmapsto \begin{cases} \frac{1}{\ln(x)} & \text{si } x \in \mathbb{R}^+ \setminus \{0, 1\} \\ 0 & \text{si } x \in \{0, 1\} \end{cases}$$
 en $x_0 \in \{0, 1\}$.

Exercice 3

Déterminer le plus grand ensemble sur lequel les fonctions suivantes sont continues, puis préciser si elles sont prolongeables par continuité en x_0 .

1.
$$f_1: x \longmapsto \exp\left(-\frac{1}{(x-1)^2}\right) \text{ en } x_0 = 1$$

2.
$$f_2: x \longmapsto \frac{x^2 - 9}{x + 3}$$
 en $x_0 = 3$.

3.
$$f_3: x \longmapsto \sqrt{\frac{x+1}{2-x}} \text{ en } x_0 = 2$$

4.
$$f_4: x \longmapsto (x-1)\ln(x^2-1)$$
 en $x_0 \in \{-1, 1\}$

5.
$$f_5: x \longmapsto \frac{\sqrt{1+x}-1}{x}$$
 en $x_0 = 0$.

6.
$$f_6: x \longmapsto \frac{\ln(x)}{x-1} \text{ en } x_0 = 1.$$

Exercise 4 Soit
$$f: x \longmapsto \frac{1}{2} \ln \left(\frac{1-x}{1+x} \right)$$
.

- 1. Déterminer l'ensemble de définition I de f.
- 2. Montrer que f réalise une bijection de I sur un intervalle J à déterminer.
- 3. Déterminer f^{-1} .

Exercice 5

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction continue en 0 et telle que

$$\forall x \in \mathbb{R}, \ f(x) = f(2x).$$

Soit $x \in \mathbb{R}$. On note $\forall n \in \mathbb{N}, \ u_n = f\left(\frac{x}{2^n}\right)$.

- 1. Montrer que la suite (u_n) est constante.
- 2. Étudier la limite de (u_n) .
- 3. Conclure que f est constante.

Exercice 6

1. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction continue telle que

$$\forall x \in \mathbb{R}, |f(x)| = e^x.$$

Montrer que $f = \exp \text{ ou } f = -\exp$.

2. Soit $g: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction continue telle que

$$\forall x \in \mathbb{R}, \ g(x) = g(x)^2.$$

Montrer que q est constante.

Exercice 7

Soit $f: \mathbb{R}^+_* \longrightarrow \mathbb{R}$ donnée par :

$$\forall x > 0, \ f(x) = x^2 + \ln(x).$$

- 1. Montrer que l'équation f(x) = 0 admet une unique solution $\alpha > 0$.
- 2. Montrer que $\frac{1}{2} < \alpha < 1$.

Exercice 8

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ la fonction donnée par

$$\forall x \in \mathbb{R}, \ f(x) = e^x + x.$$

Pour $n \in \mathbb{N}$ on considère l'équation

$$(E_n)$$
: $f(x) = n$.

- 1. Montrer que (E_n) admet une unique solution sur \mathbb{R} que l'on notera x_n .
- 2. Déterminer le sens de variation de (x_n) .

3. Montrer que pour tout $n \in \mathbb{N}^*$,

$$\ln n \ge x_n \ge \ln(n - \ln n).$$

4. En déduire la limite de (x_n) puis montrer que $x_n \sim \ln(n)$.

Exercice 9

Pour tout $n \in \mathbb{N}^*$, on considère la fonction $f_n : \mathbb{R}^+ \longrightarrow \mathbb{R}$ donnée par :

$$\forall x \ge 0, \ f_n(x) = e^{-x} - x^{2n-1}$$

- 1. Montrer que l'équation $f_n(x) = 0$ admet une unique solution $u_n \in \mathbb{R}^+$.
- 2. Montrer que : $\forall n \in \mathbb{N}^*, \ 0 < u_n < 1.$
- 3. Montrer que : $\forall n \in \mathbb{N}^*, f_n(u_{n+1}) < 0.$
- 4. En déduire que (u_n) est croissante puis qu'elle converge.
- 5. Montrer que:

$$\forall n \in \mathbb{N}^*, \ \ln(u_n) = -\frac{u_n}{2n-1}.$$

6. En déduire la valeur de $\lim_{n\to\infty} u_n$.

Exercice 10

Pour tout $n \in \mathbb{N}^*$, on considère $g_n : \mathbb{R} \longrightarrow \mathbb{R}$ donnée par :

$$\forall x \in \mathbb{R}, \ g_n(x) = nx - e^{-x}.$$

- 1. Montrer que l'équation $g_n(x) = 0$ admet une unique solution $v_n \in \mathbb{R}$.
- 2. Montrer que pour tout $n \in \mathbb{N}^*$,

$$0 < v_n < \frac{1}{n}.$$

- 3. Qu'en déduit-on sur (v_n) ?
- 4. Montrer que pour tout $n \in \mathbb{N}^*$, $v_n = \frac{e^{-v_n}}{n}$.
- 5. En déduire un équivalent de v_n quand $n \to +\infty$.