Mathématiques - Devoir maison nº1 À rendre le lundi 3 novembre 2025 Une copie par groupe de colle

Exercice 1.

Dans cet exercice, on étudie de deux manières différentes la suite complexe $(z_n)_{n\geq 0}$ définie par :

$$z_0 = 2$$
 et $\forall n \in \mathbb{N}, \ z_{n+1} = iz_n + 3 - i.$

1. En revenant aux suites réelles.

Pour $n \in \mathbb{N}$, on note $x_n = \mathcal{R}e(z_n)$, $y_n = \mathcal{I}m(z_n)$ et $a_n = x_n - 2$.

- (a) Pour $n \in \mathbb{N}$, exprimer x_{n+1} et y_{n+1} en fonction de x_n et de y_n .
- (b) Montrer que $(a_n)_{n\geq 0}$ vérifie la relation de récurrence linéaire d'ordre deux suivante : $\forall n \in \mathbb{N}, \ a_{n+2} = -a_n.$
- (c) En déduire que : $\forall n \in \mathbb{N}, \ z_n = 2 + \sin\left(\frac{n\pi}{2}\right) + i\left(1 \cos\left(\frac{n\pi}{2}\right)\right).$
- 2. En s'inspirant des suites arithmético-géométriques.
 - (a) Résoudre sur \mathbb{C} l'équation z=iz+3-i. On note ℓ la solution trouvée, qu'on exprimera sous forme algébrique.
 - (b) Que peut-on dire de la suite $(w_n)_{n>0} = (z_n \ell)_{n>0}$?
 - (c) En déduire que : $\forall n \in \mathbb{N}, \ z_n = 2 + i i^{n+1}$, puis retrouver le résultat de la question 1(c).

Exercice 2.

- 1. Soient $n \in \mathbb{N}^*$ et $x \in]0, \pi[$.
 - (a) Montrer que : $\sum_{k=0}^{n-1} e^{(2k+1)ix} = e^{ix} \frac{e^{2inx} 1}{e^{2ix} 1}.$
 - (b) En déduire que : $\sum_{k=0}^{n-1} \sin((2k+1)x) = \frac{\sin^2(nx)}{\sin(x)}$.
- 2. En déduire les solutions sur $]0,\pi[$ de l'équation :

$$\sin(x) + \sin(3x) - \sin(4x) + \sin(5x) + \sin(7x) = 0.$$