Boucles while (2)

TP7

Exercice 1 Pour s'échauffer

O 20 min

Q1 Soit (u_n) la suite définie par $u_1 = 1$ et pour tout $n \in \mathbb{N}^*$, $u_{n+1} = \frac{3 - u_n}{2}$. Écrire deux fonctions prenant en argument $n \in \mathbb{N}^*$ et renvoyant u_n . La première utilisera une boucle for, la deuxième, une boucle while.

Q2 Pour tout $n \geq 2$ on note $S_n = \sum_{k=2}^n \sqrt{k}$. Écrire deux fonctions prenant en argument $n \geq 2$ et renvoyant S_n . La première utilisera une boucle for, la deuxième, une boucle while.

Q3 Soient (u_n) et (v_n) les suites définies par $u_0 = 3$, $v_0 = 2$ et pour tout $n \in \mathbb{N}$,

$$u_{n+1} = -2u_n + v_n$$
, et $v_{n+1} = u_n + 2v_n$.

Écrire une fonction prenant en argument un réel M et renvoyant le premier couple (u_n, v_n) tel que $|u_n - v_n| > M$. Quel type de boucle doit-on utiliser ici et pourquoi?

Exercice 2 Approximation de ln(2)

O 15 min

Dans cet exercice, on souhaite écrire une fonction Python prenant en argument une valeur ε et renvoyant une approximation de $\ln(2)$ qui soit d'autant meilleure que ε est petite.

Pour cela, on va utiliser la quantité $S_n = \sum_{k=0}^n \frac{(-1)^k}{k+1}$. On peut démontrer (mais on ne demande pas de le faire) que : $\lim_{n \to +\infty} S_n = \ln(2)$.

On souhaite donc écrire une fonction Python renvoyant une valeur de S_N qui soit proche de $\ln(2)$. Pour savoir si S_N est proche de $\ln(2)$, on choisit de fixer $\varepsilon > 0$ petit, et de dire sur S_N est proche de $\ln(2)$ lorsque $|S_{N+1} - S_N| \le \varepsilon$.

Q1 (Sans ordinateur) Simplifier $S_{N+1} - S_N$ et reformuler la condition $|S_{N+1} - S_N| \le \varepsilon$ de manière plus simple.

 \mathbb{Q}^2 Écrire une fonction Python prenant en argument ε et renvoyant l'approximation de $\ln(2)$ correspondante calculée par la méthode décrite ci-dessus.

Remarque

Pour obtenir la valeur de ln(2) en Python, on utilisera la commande np.log(2) après avoir importé la bibliothèque numpy via la commande import numpy as np.

Exercice 3 Approximation de π

() 15 min

La formule de Brent-Salamin (des noms de deux mathématiciens des années 1970) permet d'obtenir rapidement une bonne approximation de π (elle fut utilisée en 1999 pour obtenir plus de 206 millions de décimales de π !).

Cette méthode consiste à définir $a_0=1,\ b_0=\frac{1}{\sqrt{2}},\ t_0=\frac{1}{4}$ et $p_0=1$ puis pour tout $n\geq 0,$

$$t_{n+1} = t_n - p_n \left(\frac{a_n - b_n}{2}\right)^2$$
, $a_{n+1} = \frac{a_n + b_n}{2}$, $b_{n+1} = \sqrt{a_n b_n}$, et $p_{n+1} = 2p_n$.

Un théorème affirme alors que, lorsque a_n et b_n sont "proches", la valeur

$$\frac{(a_n + b_n)^2}{4t_n}$$

est une "bonne" approximation de π .

Écrire une fonction approx prenant en argument un réel epsilon et renvoyant l'approximation de π obtenue par cette méthode lorsque l'on s'arrête dès que $|a_n - b_n| \le \text{epsilon}$.

Testez votre fonction, puis écrivez une fonction approx_bis pour savoir également combien d'itérations ont été nécessaires pour obtenir le résultat.

Exercice 4 Conjecture de Syracuse

▼ (temps restant)

Soit $f: \mathbb{N}^* \longrightarrow \mathbb{N}^*$ la fonction définie par

$$f(k) = \begin{cases} \frac{k}{2} & \text{si } k \text{ est pair} \\ 3k + 1 & \text{si } k \text{ est impair} \end{cases}$$

On appelle «suite de Syracuse d'un entier N» la suite (u_n) définie par $u_0 = N$ et $u_{n+1} = f(u_n)$ pour tout $n \ge 0$.

Q1 Calculer à la main la suite de Syracuse de 3. Que se passe-t-il lorsque la suite atteint la valeur 1?

Remarque

La conjecture de Syracuse affirme que toutes les suites de Syracuse des entiers positifs atteignent la valeur 1 au bout d'un certain temps. Cette conjecture a été vérifiée pour tous les entiers naturels N inférieurs à 2^{62} , mais on ignore encore si elle est vraie.

Q2 Écrire une fonction f prenant en argument un entier $k \ge 1$ et renvoyant f(k).

Q3 Écrire une fonction syracuse prenant en argument deux entiers N et n et renvoyant la valeur syracuse (N, n) = u_n où (u_n) est la suite de Syracuse de N. On vérifiera que syracuse (15, 9) renvoie la valeur 40.

 $\mathbb{Q}4$ Écrire une fonction TempsVol prenant en argument un entier N et renvoyant la plus petite valeur de n telle que le n-ème terme de la suite de Syracuse de l'entier N vaut 1 (on suppose que ce terme existe, c'est-à-dire que la conjecture est vérifiée). On vérifiera que TempsVol (15) renvoie la valeur 17.

Q5 Que se passe-t-il si on choisit N < 0? On pourra consulter la vidéo du youtuber "El Jj" sur le sujet : https://www.youtube.com/watch?v=BP2G28694z8.