Feuille de cours 5.1: coefficents binomiaux

Définitions 1

Rappel: pour $n \in \mathbb{N}$, $n! = 1 \times 2 \times 3 \times \cdots \times (n-1) \times n$ et 0! =

Rappel : pour $p \in \mathbb{N}^*$ on a la propriété utile suivante : $(p-1)! \times p =$

Exemple: $\frac{(p+2)!}{n!} =$

Définition 1

Soient $n \in \mathbb{N}$ et $k \in \mathbb{Z}$, on définit le coefficient binomial $\binom{n}{k}$ (lire :) par :

$$\binom{n}{k} = \begin{cases} \frac{n!}{k! \ (n-k)!} & \text{si } k \in [0, n] \\ 0 & \text{sinon} \end{cases}$$

Exemple: $\binom{5}{2}$ =

Remarque: de manière générale, le quotient définissant $\binom{n}{k}$ se simplifie sous la forme :

$$\binom{n}{k} = \frac{n!}{k! (n-k)!} = \frac{(n-k)! \times (n-k+1) \times (n-k+2) \times \dots \times (n-1) \times n}{k! \times (n-k)!}$$
$$= \frac{(n-k+1) \times (n-k+2) \times \dots \times (n-1) \times n}{k!}$$

Proposition 2 Pour $n \in \mathbb{N}$ on a : $\binom{n}{0} = 1$ et $\binom{n}{1} = n$.

 $D\'{e}monstration$:

Exercice: Simplifier $\binom{n+1}{2}$ =

2 Propriétés

Proposition 3 (symétrie) Soit $n \in \mathbb{N}$ et soit $k \in [0, n]$ alors $\binom{n}{k} = \binom{n}{n-k}$.

Démonstration :

Exemple: en utilisant la proposition 2 on a donc:

$$\binom{n}{n} = \binom{n}{n-n} = \binom{n}{0} =$$
 et $\binom{n}{n-1} = \binom{n}{1} =$

Proposition 4 (absorption) Soit $n \in \mathbb{N}^*$ et soit $k \in [1, n]$ alors $\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$.

Remarque: dans cette formule $k \in [1, n]$ et non pas $k \in [0, n]$ car

Démonstration :

Exercice: en utilisant la formule d'absorption, compléter les formules suivantes

$$\binom{n+1}{k-1} = \frac{n+1}{\dots} \binom{n}{k-2} \qquad \text{et} \qquad (k+1) \binom{n-1}{k+1} = \dots \binom{n-2}{\dots}$$

Proposition 5 (formule de Pascal) Soit $n \in \mathbb{N}^*$ et soit $k \in [1, n-1]$ alors $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$.

Démonstration :

Remarque:

Grâce à cette formule on peut démontrer par récurrence que $\forall n \in \mathbb{N}, \ \forall k \in [0, n], \ \binom{n}{k} \in \mathbb{N}.$ Pour s'en convaincre, on peut représenter les coefficients binomiaux sous forme d'un tableau triangulaire : le <u>triangle de Pascal</u>. On place le coefficient $\binom{n}{k}$ sur la *n*-ème ligne et la *k*-ème colonne. Il faut connaître sans hésiter les premières lignes du tableau.

- Remarques : $\bullet \text{ valeurs extrêmes : } \binom{n}{0} = \binom{n}{n} =$ • la formule de Pascal s'illustre ainsi :

• les lignes sont symétriques car

3 Binôme de Newton

On connaît l'identité remarquable $(a+b)^2 =$

On peut en déduire que puis que $(a+b)^3 = (a+b)^2(a+b)$ $= (a^2+2ab+b^2)(a+b)$ $= a^3+2a^2b+ab^2+ba^2+2ab^2+b^3$ $= a^3+3a^2b+3b^2a+b^3$ $= a^4+4a^3b+6a^2b^2+4ab^3+b^4.$ puis que $(a+b)^4 = (a+b)^3(a+b)$ $= (a^3+3a^2b+3b^2a+b^3)(a+b)$ $= a^4+3a^3b+3b^2a^2+ab^3+ba^3+3a^2b^2+b^4$ $= a^4+4a^3b+6a^2b^2+4ab^3+b^4.$

On remarque que les coefficients apparaissant dans le développement de $(a+b)^n$ sont en fait les

De manière générale, on a la propriété suivante :

Proposition 6 (binôme de Newton)

Soient $a, b \in \mathbb{C}$ et $n \in \mathbb{N}$ alors : $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$.

Remarque : en effectuant le retournement j=n-k sur la somme précédente, on obtient aussi que $(a+b)^n = \sum_{k=0}^n \binom{n}{k} b^k a^{n-k}$.

En effet,
$$\sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k} = \sum_{j=0}^{n} \binom{n}{n-j} a^{n-j} b^j = \sum_{j=0}^{n} \binom{n}{j} a^{n-j} b^j = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k$$
.

Exercice: en appliquant la formule du binôme de Newton (version de la remarque), retrouver les identités remarquables pour $(a + b)^2$ et $(a + b)^3$.

Démonstration du binôme de Newton : on fixe $a,b\in\mathbb{C}$ et on démontre par récurrence que : $\forall n\in\mathbb{N},\ (a+b)^n=\sum_{k=0}^n\binom{n}{k}a^kb^{n-k}.$

Initialisation : pour n = 0, d'une part $(a + b)^0 = 1$, d'autre part $\sum_{k=0}^{0} {0 \choose k} a^k b^{0-k} = {0 \choose 0} a^0 b^0 = 1$. Donc la propriété est vraie au rang n = 0.

Hérédité : supposons que, pour un certain $n \in \mathbb{N}$, on a $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$. Alors

$$(a+b)^{n+1} = (a+b) \times (a+b)^n \\ = (a+b) \times \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} \\ \text{(hypothèse de récurrence)} \\ = \sum_{k=0}^n \binom{n}{k} a^{k+1} b^{n-k} + \sum_{k=0}^n \binom{n}{k} a^k b^{n+1-k} \\ \text{(on développe)} \\ = \sum_{j=1}^{n+1} \binom{n}{j-1} a^j b^{n-(j-1)} + \sum_{k=0}^n \binom{n}{k} a^k b^{n+1-k} \\ \text{(via } j = k+1 \text{ pour la 1ère somme)} \\ = \sum_{k=1}^{n+1} \binom{n}{k-1} a^k b^{n+1-k} + \sum_{k=0}^n \binom{n}{k} a^k b^{n+1-k} \\ \text{(} j \text{ remplacé par } k \text{ (variable muette))} \\ = \binom{n}{k-1} a^k b^{n+1-k} + \binom{n}{n} a^{n+1} b^0 + \binom{n}{0} a^0 b^{n+1} + \sum_{k=1}^n \binom{n}{k} a^k b^{n+1-k} \\ \text{(séparation des termes } k = n+1 \text{ pour la 1ère somme et } k = 0 \text{ pour la 2ème)} \\ = \sum_{k=1}^n \binom{n}{k-1} + \binom{n}{k} a^k b^{n+1-k} + a^{n+1} b^0 + a^0 b^{n+1} \\ \text{(rassemblement des termes pour } k \in [\![1,n]\!]) \\ = \sum_{k=1}^n \binom{n+1}{k} a^k b^{n+1-k} + \binom{n+1}{n+1} a^{n+1} b^0 + \binom{n+1}{0} a^0 b^{n+1} \\ \text{(formule de Pascal et } \binom{n+1}{n+1} = \binom{n+1}{n+1} = 1) \\ = \sum_{k=1}^{n+1} \binom{n+1}{k} a^k b^{n+1-k}$$

donc la propriété est vraie au rang n+1, ce qui achève la preuve par récurrence.

(réintégration des termes en k = 0 et k = n + 1 dans la somme)

Méthode pour développer rapidement $(a+b)^n$ pour de petites valeurs de n:

- 1. placer les coefficients binomiaux $\binom{n}{k}$ (lus sur la n-ème ligne du triangle de Pascal)
- 2. placer les puissances de a en croissant de a^0 à a^n (ou, respectivement, en décroissant de a^n à a^0)
- 3. placer les puissances de b en décroissant de b^n à b^0 (ou, respectivement, en croissant de b^0 à b^n)

Et pour $(a-b)^n$?: écrire que $(a-b)^n$ =

puis utiliser que $(-b)^k =$

Exercice: développer rapidement $(a+b)^4$, $(a-b)^4$, $(1+x)^3$, $(x-1)^5$.

Pour finir, un exercice classique consiste à devoir introduire artificiellement un terme en 1^k ou 1^{n-k} pour simplifier une somme grâce à un binôme de Newton, ou de devoir modifier l'écriture de la quantité sommée pour faire apparaître du a^kb^{n-k} .

Exercice: calculer les sommes suivantes:

$$1. S_1 = \sum_{k=0}^n \binom{n}{k}$$

2.
$$S_2 = \sum_{k=0}^{n} \binom{n}{k} (-1)^k$$

3.
$$S_3 = \sum_{k=0}^{n} {n \choose k} 2^{k+2} 3^{k-n+1}$$