Feuille de cours 5.2 : sommes doubles

Dans tout ce document, $n, p, n_0, n_1, p_0, p_1, \ldots$ désignent des entiers ad hoc, et on considère pour tous $i, j \in \mathbb{Z}$ des nombres réels (ou complexes) $a_{i,j} \in \mathbb{R}$ (ou \mathbb{C}).

1 Sommes doubles "rectangulaires"

Dans ce paragraphe, on cherche à calculer des sommes du type $\sum_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}} a_{i,j}$. C'est-à-dire qu'on cherche à déterminer la somme de tous les $a_{i,j}$ pour $i \in [\![1,n]\!]$ et $j \in [\![1,p]\!]$.

Notation : lorsque
$$n = p$$
 on note $\sum_{\substack{1 \le i \le n \\ 1 \le j \le p}} a_{i,j} = \sum_{1 \le i,j \le n} a_{i,j}$

1.1 Sommations par lignes et par colonnes

Rangeons les nombres $a_{i,j}$ dans un tableau à n lignes et p colonnes dans lequel $a_{i,j}$ est placé à la ligne i, colonne j.

Pour calculer $\sum_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}} a_{i,j}$, on peut d'abord faire la somme sur chacune des lignes :

$$a_{1,1} \quad \cdots \quad a_{1,j} \quad \cdots \quad a_{1,p} \quad \longrightarrow \quad a_{1,1} + \ldots + a_{1,j} + \ldots + a_{1,p} = \sum$$

$$\vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$a_{i,1} \quad \cdots \quad a_{i,j} \quad \cdots \quad a_{i,p} \quad \longrightarrow \quad a_{i,1} + \ldots + a_{i,j} + \ldots + a_{i,p} = \sum$$

$$\vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$a_{n,1} \quad \cdots \quad a_{n,j} \quad \cdots \quad a_{n,p} \quad \longrightarrow \quad a_{n,1} + \ldots + a_{n,j} + \ldots + a_{n,p} = \sum$$

Conclusion: en sommant ligne par ligne, on obtient

$$\sum_{\substack{1 \le i \le n \\ 1 \le j \le p}} a_{i,j} = \sum_{j=1}^p a_{1,j} + \ldots + \sum_{j=1}^p a_{i,j} + \ldots + \sum_{j=1}^p a_{n,j} = \sum \left(\sum_{j=1}^p a_{i,j}\right)$$

Pour calculer $\sum_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}} a_{i,j}$, on peut aussi faire la somme sur chacune des colonnes :

Conclusion: en sommant colonne par colonne, on obtient

$$\sum_{\substack{1 \le i \le n \\ 1 \le j \le p}} a_{i,j} = \sum_{i=1}^n a_{i,1} + \ldots + \sum_{i=1}^n a_{i,j} + \ldots + \sum_{i=1}^n a_{i,p} = \sum_{i=1}^n \left(\sum_{i=1}^n a_{i,j}\right).$$

Finalement :
$$\sum_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}} a_{i,j} =$$

Remarque: Les indices ne commencent pas forcément à 1. Plus généralement, on a :

$$\sum_{\substack{n_0 \le i \le n_1 \\ p_0 \le j \le p_1}} a_{i,j} = \sum_{i=n_0}^{n_1} \left(\sum_{j=p_0}^{p_1} a_{i,j} \right) = \sum_{j=p_0}^{p_1} \left(\sum_{i=n_0}^{n_1} a_{i,j} \right)$$

Plus généralement encore, on peut sommer sur des indices (i, j) appartenant à n'importe quel produit cartésien : $I \times J$ (c'est-à-dire pour tous les couples (i, j) avec $i \in I$ et $j \in J$) et alors

$$\sum_{(i,j)\in I\times J} a_{i,j} = \sum_{i\in I} \left(\sum_{j\in J} a_{i,j}\right) = \sum_{j\in J} \left(\sum_{i\in I} a_{i,j}\right)$$

Remarque : Il faut ensuite utiliser les outils usuels des sommes simples, en particulier : Si $a_{i,j} = \tilde{a}_j$ ne dépend pas de i on peut simplifier la somme $\sum_{i=1}^n a_{i,j} = \sum_{i=1}^n \tilde{a}_j = \sum_{i=1}^n \tilde{a}_i$

De même, Si $a_{i,j} = \tilde{a}_i$ ne dépend pas de j on peut simplifier la somme $\sum_{j=1}^p a_{i,j} = \sum_{j=1}^p \tilde{a}_i = \sum_{j=1}^p a_{i,j}$

Exercice 1

Calculer
$$S_1 = \sum_{\substack{1 \le i \le n \\ 1 \le j \le p}} 1$$
, $S_2 = \sum_{\substack{1 \le i \le n \\ 1 \le j \le p}} i$, $S_3 = \sum_{1 \le i, j \le n} i + j$ et $S_4 = \sum_{1 \le i, j \le n} ij$.

1.2 Cas des termes séparables

On s'intéresse au cas particulier où $a_{i,j}$ s'écrit $a_{i,j} = a_i b_j$.

Proposition 1

Soient $a_1, \ldots a_n, b_1, \ldots, b_p \in \mathbb{R}$ (ou \mathbb{C}). On a :

$$\sum_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}} a_i b_j = \left(\sum_{i=1}^n a_i\right) \times \left(\sum_{j=1}^p b_j\right)$$

Démonstration:

Exercice 2

Exercice 2 Écrire sous forme d'une somme double : $\left(\sum_{k=1}^{n} k\right)^2$

Exercice 3

Calculer pour
$$n, p \in \mathbb{N}^*$$
 et $a \in \mathbb{R} \setminus \{1\}$: $S_5 = \sum_{\substack{0 \le i,j \le n \\ 0 \le i \le n}} a^{i+j}$, $S_6 = \sum_{\substack{1 \le i \le n \\ 0 \le i \le n}} i \, a^j$, et $P = \prod_{1 \le i,j \le n} ij$.

Et en Python? 1.3

Pour faire une somme double du type $\sum_{\substack{a \leq i \leq b \\ c \leq j \leq d}}$ on utilise 2 boucles for imbriquées : $c \leq j \leq d$

Exercice 4

Écrire une fonction Python prenant en argument deux entiers n et m et renvoyant la valeur de :

$$1. \sum_{\substack{1 \le i \le n \\ 0 \le i \le m}} \frac{i}{i+j}$$

1.
$$\sum_{\substack{1 \le i \le n \\ 0 \le j \le m}} \frac{i}{i+j}$$
2.
$$\prod_{\substack{2 \le i \le n+1 \\ 0 \le j \le m}} (i+2^j)$$

2 Sommes doubles "triangulaires"

On se place dans le cas "carré" n = p. On range à nouveau les nombres $a_{i,j}$ dans un tableau (à n lignes et n colonnes). Le nombre $a_{i,j}$ est placé ligne i colonne j.

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,j} & \cdots & a_{1,n} \\ \vdots & & \vdots & & \vdots \\ a_{i,1} & \cdots & a_{i,j} & \cdots & a_{i,n} \\ \vdots & & \vdots & & \vdots \\ a_{n,1} & \cdots & a_{n,j} & \cdots & a_{n,n} \end{pmatrix}.$$

On souhaite calculer la somme des coefficients du tableau placés au-dessus ou en-dessous de la diagonale (diagonale incluse), c'est-à-dire les sommes :

- $\bullet \quad \sum \quad a_{i,j}$ (termes au-dessus de la diagonale), ou
- $\sum a_{i,j}$ (termes en-dessous de la diagonale).

Dans la suite, on s'intéresse à la deuxième somme, les résultats sont bien sûr similaires dans le cas de la première.

2.1 Sommations par lignes et par colonnes

Pour calculer $\sum_{1 \leq j \leq i \leq n} a_{i,j}$, on peut d'abord faire la somme sur chacune des lignes :

Conclusion: en sommant ligne par ligne, on obtient

$$\sum_{1 \le j \le i \le n} a_{ij} = \sum_{j=1}^{n} a_{1,j} + \dots + \sum_{j=1}^{n} a_{i,j} + \dots + \sum_{j=1}^{n} a_{n,j} = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{i,j} \right)$$

Pour calculer $\sum_{1 \leq j \leq i \leq n} a_{i,j}$, on peut aussi faire la somme sur chacune des colonnes :

$$a_{1,1}$$

$$\vdots$$

$$a_{i,1} \cdots a_{j,j}$$

$$\vdots$$

$$\vdots$$

$$a_{n,1} \cdots a_{n,j} \cdots a_{n,n}$$

$$\downarrow$$

$$\downarrow$$

$$\sum a_{i,1}$$

$$\sum a_{i,j}$$

$$\sum a_{i,n}$$

Conclusion: en sommant colonne par colonne, on obtient

$$\sum_{1 \le j \le i \le n} a_{i,j} = \sum_{i=1}^n a_{i,1} + \ldots + \sum_{i=j}^n a_{i,j} + \ldots + \sum_{i=n}^n a_{i,n} = \sum_{j=1}^n \left(\sum_{i=1}^n a_{i,j} \right).$$

Finalement :
$$\sum_{1 \leq j \leq i \leq n} a_{i,j} =$$

Exercice 5

Calculer
$$S = \sum_{1 \le j \le i \le n} 1$$
.

Important : Attention, la somme à l'intérieur dépend de l'indice de la somme à l'extérieur. Contrairement aux sommes "rectangulaires" il ne suffit donc pas d'échanger les deux symboles sommes. En particulier, les égalités :

$$\sum_{i=1}^{n} \sum_{j=1}^{i} a_{ij} = \sum_{j=1}^{i} \sum_{i=1}^{n} a_{ij} \text{ ou encore } \sum_{j=1}^{n} \sum_{i=j}^{n} a_{ij} = \sum_{i=j}^{n} \sum_{j=1}^{n} a_{ij}$$

sont fausses (et n'ont aucun sens!).

Généralisations: De manière plus générale, pour $m, n \in \mathbb{Z}$ on a :

$$\sum_{m \leq k \leq \ell \leq n} a_{k,\ell} = \sum_{k=} \sum_{\ell=} a_{k,\ell} = \sum_{\ell=} \sum_{k=} a_{k,\ell}$$

On peut aussi traiter des inégalités strictes (cas où la diagonale "i = j" est exclue):

$$\sum_{1 \le i < i \le n} a_{i,j} = \sum_{j=1}^{n-1} \sum_{i=1}^{n} a_{i,j} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j}$$

On rappelle que par convention, toute somme vide est nulle : $\sum_{i=1}^{0} b_i = \sum_{j=n+1}^{n} b_j = 0$, de sorte qu'on peut aussi écrire :

$$\sum_{1 \le j < i \le n} a_{i,j} = \sum_{j=1}^{n} \sum_{i=1}^{n} a_{i,j} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j}$$

à condition de se rappeler que les expressions $a_{n+1,n}$ et $a_{1,0}$ n'ont a priori pas de sens.

Exercice 6

Calculer
$$T = \sum_{1 \le j < i \le n} 1$$
.

2.2 Méthodes

Il faut ensuite utiliser les outils usuels des sommes simples, en particulier :

- Si $a_{i,j} = \tilde{a}_i$ ne dépend pas de j on peut simplifier la somme $\sum_{j=1}^i a_{i,j} = \sum_{j=1}^i \tilde{a}_i =$
- Si $a_{i,j} = \tilde{a}_j$ ne dépend pas de i on peut simplifier la somme $\sum_{i=j}^n a_{i,j} = \sum_{i=j}^n \tilde{a}_i = 1$

Cette utilisation est un peu plus subtile que dans le cas "rectangulaire" car l'indice dont dépend $a_{i,j}$ peut lui-même être une borne...

Important : Le choix de l'ordre de sommation devient donc ici une étape essentielle du calcul : choisir le bon ordre simplifie (voire rend possible) le calcul de la somme.

Exercice 7

Écrire les deux ordres de sommations possibles pour calculer les sommes suivantes, choisir le

bon, et terminer le caclul :
$$S_1 = \sum_{1 \le i \le j \le n} \frac{1}{j}$$
, et $S_3 = \sum_{0 \le j \le k \le n} \binom{n}{k} \binom{k}{j} a^j b^{k-j}$.

Pour conclure, certaines sommes "rectangulaires" se prêtent particulièrement à un "découpage" en sommes "triangulaires". On écrit alors par exemple que :

$$\sum_{1 \le i, j \le n} a_{i,j} = \sum_{1 \le i \le j \le n} a_{i,j} + \sum_{1 \le j < i \le n} a_{i,j}$$

Exercice 8

Calculer
$$S_4 = \sum_{1 \le i,j \le n} \min(i,j)$$
 et $S_5 = \sum_{1 \le i,j \le n} \max(i,j)$

Exercice 9

Calculer pour
$$n \in \mathbb{N}^*$$
: $S_6 = \sum_{0 \le i < j \le n} \frac{i^2}{j^2 - j}, \ S_7 = \sum_{0 \le i \le j \le n} 2^{i - j}$

2.3 Et en Python?

Pour faire une somme double du type $\sum_{0 \le i \le k}$ on utilise 2 boucles for imbriquées :

Exercice 10

Écrire une fonction Python prenant en argument deux entiers n et m et renvoyant la valeur de :

$$1. \sum_{1 \le j \le i \le n} \frac{i}{i+j}$$

$$2. \prod_{m \le j < i \le n} ij$$

Exercice 11

Calculer les sommes et produits suivants pour $n, p \in \mathbb{N}^*$:

1.
$$S_1 = \sum_{1 \le i, j \le n} i^2 j$$

2.
$$S_2 = \sum_{\substack{1 \le i \le n \\ 1 \le j \le p}} 2^{i-j}$$

$$3. P_1 = \prod_{1 \le i \le 5} i^2 j$$

3.
$$P_1 = \prod_{\substack{1 \le i,j \le n \\ 1 \le i \le p \\ 1 \le j \le p}} i^2 j$$

Exercice 12

Calculer les sommes et produits suivants pour $n \in \mathbb{N}^*$:

1.
$$S_1 = \sum_{1 \le j \le i \le n} i + j$$

3.
$$S_3 = \sum_{0 \le i \le j \le n} {j \choose i} {n \choose j}$$

5.
$$S_5 = \sum_{1 \le i, j \le n} |i - j|$$

$$2. S_2 = \sum_{1 \le i \le j \le n} \frac{i}{j}$$

4.
$$S_4 = \sum_{1 \le i \le j \le n} \frac{1}{n-i}$$

1.
$$S_1 = \sum_{1 \le j \le i \le n} i + j$$
 3. $S_3 = \sum_{0 \le i \le j \le n} {j \choose i} {n \choose j}$ 5. $S_5 = \sum_{1 \le i, j \le n} |i - j|$ 2. $S_2 = \sum_{1 \le i \le j \le n} \frac{i}{j}$ 4. $S_4 = \sum_{1 \le i < j \le n} \frac{1}{n - i}$ 6. $P_1 = \prod_{\substack{1 \le i \le j \le n \\ 1 \le k \le j}} {k \choose i}^{1/j}$

Exercice 13

Pour
$$n \ge 1$$
 on note $H_n = \sum_{k=1}^n \frac{1}{k}$ et $u_n = \sum_{k=1}^n H_k$.

Montrer que pour tout $n \ge 1$, $u_n = (n+1)H_n - n$.