Feuille de cours 6.1 : parité, périodicité

On considère des fonctions définies sur un sous-ensemble D de \mathbb{R} et à valeurs dans \mathbb{R} . Le graphe de f est le sous-ensemble de \mathbb{R}^2 suivant : $\{(x, f(x)), x \in D\}$.

On s'intéresse aux liens entre le graphe de f et deux propriétés de f : la parité et la périodicité.

1 Symétries et parité

1.1 Fonctions paires

Définition 1

Un sous-ensemble D de \mathbb{R} est dit symétrique par rapport à 0 lorsque : $\forall x \in D, -x \in D$.

Par exemple, [-2,2] et \mathbb{R}^* sont symétriques par rapport à 0; mais]-3,3] et \mathbb{R}^+ ne le sont pas.

Définition 2

Une fonction $f: D \longrightarrow \mathbb{R}$ est dite paire lorsque :

- D est symétrique par rapport à 0, et
- $\forall x \in D, \ f(-x) = f(x)$

Remarque 3

Attention, lorsqu'on vous demande la définition de "f est paire" ne répondez pas simplement "f(-x) = f(x)": il faut quantifier la variable x (à défaut, on pourra vous demander "pour quel x?") et préciser que l'ensemble de définition est symétrique par rapport à 0 (pour que l'expression f(-x) ait bien un sens pour tout $x \in D$).

Par exemple la fonction valeur absolue définie sur \mathbb{R} par $|x|=\left\{\begin{array}{cc} x & \text{si } x\geq 0 \\ -x & \text{si } x<0 \end{array}\right.$ est paire car :

Exercice 1

Les fonctions suivantes sont-elles paires?

1.
$$\begin{array}{ccccc}
f_1 & : & \mathbb{R}^+ & \longrightarrow & \mathbb{R} \\
& : & x & \longmapsto & x^2
\end{array}$$

2.
$$f_2 : \mathbb{R} \setminus \{-1, 1\} \longrightarrow \mathbb{R}$$

 $: x \longmapsto \frac{x}{1+x} - \frac{x}{1-x}$

Interprétation graphique : Une fonction f est paire lorsque son graphe est symétrique par rapport à l'axe des ordonnées.

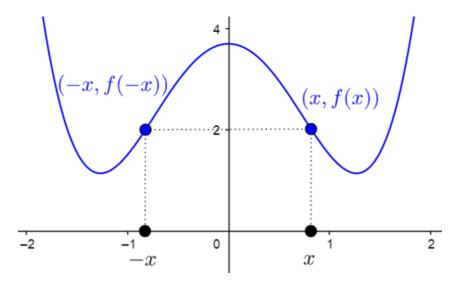


FIGURE 1 – Graphe d'une fonction paire (repérez que f(-x) = f(x))

1.2 Fonctions impaires

Définition 4

Une fonction $f: D \longrightarrow \mathbb{R}$ est dite impaire lorsque :

- D est symétrique par rapport à 0, et
- $\forall x \in D, \ f(-x) = -f(x).$

Remarque 5

La remarque 3 s'applique également ici.

Par exemple, la fonction $f: x \longmapsto e^x - e^{-x}$ est impaire puisque :

Proposition 6

Si $f: D \longrightarrow \mathbb{R}$ est une fonction impaire et si $0 \in D$ alors f(0) = 0.

 $D\'{e}monstration$:

Proposition 7

La fonction nulle est la seule fonction à la fois paire et impaire.

Démonstration :

Interprétation graphique : Une fonction f est impaire lorsque son graphe est symétrique par rapport à l'origine O.

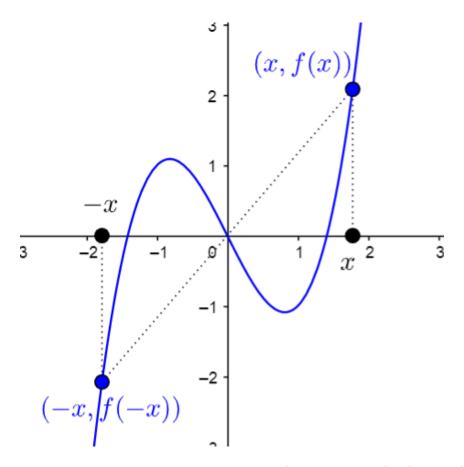


FIGURE 2 – Graphe d'une fonction impaire (repérez que f(-x) = -f(x))

Exercice 2

Tracer les graphes de $f_1: x \longmapsto x, f_2: x \longmapsto x^2$ et $f_3: x \longmapsto x^3$. Quelles fonctions sont paires?

Exemple fondamental : L'exemple précédent explique la terminologie choisie : pour tout $n \in \mathbb{Z}$ notons $f_n : x \longmapsto x^n$ la fonction définie sur \mathbb{R} si $n \geq 0$ et sur \mathbb{R}^* si n < 0. Alors :

- \bullet la fonction f_n est paire lorsque
- \bullet la fonction f_n est impaire lorsque

2 Translations et périodicité

2.1 Périodicité

Définition 8

Soit $T \in \mathbb{R}$. Une fonction $f : \mathbb{R} \longrightarrow \mathbb{R}$ est dite T-périodique lorsque :

$$\forall x \in \mathbb{R}, \ f(x+T) = f(x).$$

Interprétation graphique : Une fonction f est T-périodique lorsque le graphe de f est stable par translation horizontale de longueur T.

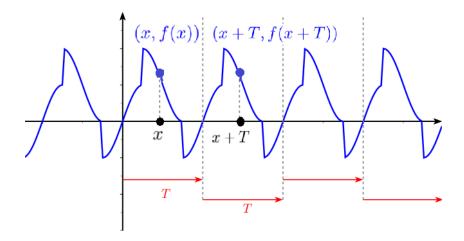


FIGURE 3 – Graphe d'une fonction périodique (repérez que f(x+T)=f(x))

Par exemple, les fonctions cos et sin sont 2π -périodiques car :

$$\forall x \in \mathbb{R}, \cos(x+2\pi) = \cos(x) \text{ et } \sin(x+2\pi) = \sin(x).$$

Remarque 9

Pour simplifier on a seulement donné ici la définition dans le cas où l'ensemble de définition est \mathbb{R} . Toutefois on pourra être amené à considérer des fonctions périodiques dont l'ensemble de définition n'est pas \mathbb{R} tout entier, comme par exemple la fonction tangente qui est π -périodique et définie seulement sur $D_{\tan} = \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}\}$. Il faut alors ajouter une condition sur l'ensemble de définition : une fonction $f: D \longrightarrow \mathbb{R}$ est dite T-périodique lorsque :

- $\forall x \in D, x + T \in D$, et
- $\forall x \in D, \ f(x+T) = f(x).$

Par exemple pour la fonction tangente on a bien pour tout $x \in D_{tan}$, $x + \pi \in D_{tan}$.

Exercice 3

Montrer que la fonction $f: x \longmapsto \cos(2x+5)$ est π -périodique.

La période d'une fonction périodique n'est pas unique. On essaiera toujours de donner la plus petite période possible.

Proposition 10

Si $f: D \longrightarrow \mathbb{R}$ est une fonction T-périodique alors f est aussi kT-périodique pour tout $k \in \mathbb{Z}$.

Démonstration :

Le cas k=0 ne nécessite même pas d'utiliser l'hypothèse : toutes les fonctions sont 0-périodiques. Pour $k \in \mathbb{N}^*$, on procède par récurrence : l'initialisation à k=1 est donnée par l'hypothèse. Pour l'hérédité : supposons que f soit k-périodique pour un certain $k \in \mathbb{N}^*$ et fixons $x \in D$. Puisque f est T-périodique et k-périodique on a :

$$f(x + (k+1)T) = f((x+kT) + T) = f(x+kT) = f(x)$$

Ainsi f est (k+1)T-périodique, ce qu'il fallait démontrer.

Par ailleurs, si f est T-périodique alors elle est aussi (-T)-périodique. En effet, pour tout $x \in D$ on a :

$$f(x) = f((x - T) + T) = f(x - T).$$

Un raisonnement par récurrence montre alors que f est (-kT)-périodique pour tout $k \in \mathbb{N}^*$. \square

Exercice 4

Déterminer la plus petite période de $f: x \longmapsto \cos(8\pi x)$.