BCPST 1B

Feuille de cours 6.2 : calculs de dérivées

1 Dérivées des fonctions usuelles

Pour chacune des fonctions $f:\mathcal{D}_f\longrightarrow\mathbb{R}$ suivantes, on rappelle son ensemble de dérivabilité \mathcal{D}_f' et l'expression de sa dérivée f':

f(x)	\mathcal{D}_f	\mathcal{D}_f'	f'(x)
$x^n \ (n \in \mathbb{N})$	\mathbb{R}	\mathbb{R}	$n x^{n-1}$
$x^n \ (n \in \mathbb{Z} \backslash \mathbb{N})$	R *	\mathbb{R}^*	$n x^{n-1}$
$x^{\alpha} \ (\alpha \in \mathbb{R})$	\mathbb{R}^+_*	\mathbb{R}^+_*	$\alpha x^{\alpha-1}$
\sqrt{x}	\mathbb{R}^+	\mathbb{R}^+_*	$\frac{1}{2\sqrt{x}}$
$\ln x$	\mathbb{R}_*^+	\mathbb{R}^+_*	$\frac{1}{x}$
$\exp(x)$	\mathbb{R}	\mathbb{R}	$\exp(x)$
$\sin x$	\mathbb{R}	\mathbb{R}	$\cos(x)$
$\cos x$	\mathbb{R}	\mathbb{R}	$-\sin(x)$
$\tan x$	$\mathbb{R} \setminus \{ \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z} \}$	$\mathbb{R} \setminus \{ \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z} \}$	$1 + \tan^2(x) = \frac{1}{\cos^2(x)}$
$\arctan x$	\mathbb{R}	\mathbb{R}	$\frac{1}{1+x^2}$

Exemples:

- Soit $f: x \mapsto \frac{1}{x^4}$. Comme $\forall x \in \mathbb{R}^*, \ f(x) = x^{-4}$, la dérivée de f est donnée par : $\forall x \in \mathbb{R}^*, \ f'(x) = -4x^{-4-1} = -\frac{4}{x^5}$.
- Soit $g: x \longmapsto x^{\pi}$. La dérivée de g est donnée par : $\forall x \in \mathbb{R}^+_*, \ g'(x) = \pi x^{\pi-1}$.

$\mathbf{2}$ **Opérations**

Proposition 1

Soient $f, g: \mathcal{D} \longrightarrow \mathbb{R}$ deux fonctions numériques dérivables sur \mathcal{D} , et soit $\lambda \in \mathbb{R}$, alors :

- 1. f + g est dérivable sur \mathcal{D} et (f + g)' = f' + g'.
- 2. λf est dérivable sur \mathcal{D} et $(\lambda f)' = \lambda f'$.
- 3. fg est dérivable sur \mathcal{D} et (fg)' = f'g + g'f.
- 4. Si g ne s'annule pas sur \mathcal{D} alors $\frac{1}{g}$ et $\frac{f}{g}$ sont dérivables sur \mathcal{D} et $\left(\frac{1}{g}\right)' = -\frac{g'}{g^2}$ et $\left(\frac{f}{g}\right)' = \frac{f'g - g'f}{g^2}.$

Exemples:

• Soit $h: x \longmapsto \sqrt{x}\cos(x)$. En notant $f: x \longmapsto \sqrt{x}$ et $g: x \longmapsto \cos(x)$, on a:

$$\forall x \in \mathbb{R}_{*}^{+}, \ h'(x) = f'(x)g(x) + g'(x)f(x) = \frac{1}{2\sqrt{x}}\cos(x) - \sin(x)\sqrt{x}.$$

• Soit $k: x \longmapsto \frac{\sqrt{x}}{\cos(x)}$. En notant $f: x \longmapsto \sqrt{x}$ et $g: x \longmapsto \cos(x)$, on a:

$$\forall x \in \mathbb{R}_*^+, \ k'(x) = \frac{f'(x)g(x) - g'(x)f(x)}{g(x)^2} = \frac{\frac{1}{2\sqrt{x}}\cos(x) - (-\sin(x)\sqrt{x})}{\cos^2(x)} = \frac{\cos(x) + 2x\sin(x)}{2\sqrt{x}\cos^2(x)}.$$

• Soit $u: x \longmapsto \frac{1}{x^2+3}$. En notant $f: x \longmapsto x^2+3$, on a :

$$\forall x \in \mathbb{R}, \ u'(x) = \frac{-f'(x)}{f(x)^2} = \frac{-2x}{(x^2+3)^2}.$$

Exercice 1

Dérivez les fonctions suivantes (on ne s'intéressera pas aux ensembles de dérivabilité).

- 1. $f_1: x \longmapsto 3e^x \sqrt{x} + \arctan(x)$
- 2. $f_2: x \longmapsto x^2 \cos(x)$
- 3. $f_3: x \longmapsto \frac{2x-1}{-x+2}$
- 4. $f_4: x \longmapsto \frac{1}{e^x + x^2}$ (sans utiliser la formule pour le quotient)
- 5. $f_5: x \longmapsto \frac{1}{x^3}$ (sans utiliser la formule pour l'inverse)
- 6. $f_6: x \longmapsto \frac{\sin(x)}{e^x}$ 7. $f_7: x \longmapsto \frac{3}{x^4}$

$$8. \ f_8: x \longmapsto \frac{e^x + x}{2}$$

9.
$$f_9: x \longmapsto \frac{1-x^2}{3x-2x^2}$$

10.
$$f_{10}: x \longmapsto \frac{1}{-2x^2 + 3x - 1}$$

11.
$$f_{11}: x \longmapsto x - \ln(x)$$

12.
$$f_{12}: x \longmapsto x \ln(x)$$

13.
$$f_{13}: x \longmapsto \frac{\ln(x)}{x}$$

14.
$$f_{14}: x \longmapsto \frac{x \ln(x)}{1+x}$$

15. $f_{15}: x \longmapsto \frac{\cos(x)e^x}{x^2}$

15.
$$f_{15}: x \longmapsto \frac{\cos(x)e^{x}}{x^2}$$

BCPST 1B

3 Dérivées des composées usuelles

Soit $u: \mathcal{D}_u \longrightarrow \mathbb{R}$ une fonction numérique dérivable sur \mathcal{D}_u . Pour chacune des fonctions composées suivantes, on donne l'équation à résoudre pour connaître son ensemble de définition \mathcal{D} , son ensemble de dérivabilité \mathcal{D}' , et on donne sa dérivée :

composée	\mathcal{D}	\mathcal{D}'	dérivée
$(u(x))^n \ (n \in \mathbb{N})$	\mathcal{D}_u	\mathcal{D}_u	$n u'(x) (u(x))^{n-1}$
$(u(x))^n \ (n \in \mathbb{Z} \backslash \mathbb{N})$	$u \neq 0$	$u \neq 0$	$n u'(x) (u(x))^{n-1}$
$(u(x))^{\alpha} \ (\alpha \in \mathbb{R})$	u > 0	u > 0	$\alpha u'(x) (u(x))^{\alpha-1}$
$\frac{1}{u(x)}$	$u \neq 0$	$u \neq 0$	$-\frac{u'(x)}{u(x)^2}$
$\sqrt{u(x)}$	$u \ge 0$	u > 0	$\frac{u'(x)}{2\sqrt{u(x)}}$
$\ln(u(x))$	u > 0	u > 0	$\frac{u'(x)}{u(x)}$
$\exp(u(x))$	\mathcal{D}_u	\mathcal{D}_u	$u'(x) \exp(u(x))$
$\sin(u(x))$	\mathcal{D}_u	\mathcal{D}_u	$u'(x) \cos(u(x))$
$\cos(u(x))$	\mathcal{D}_u	\mathcal{D}_u	$-u'(x) \sin(u(x))$
$\tan(u(x))$	$u \notin \{\frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}\}$	$u \notin \{\frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}\}$	$u'(x) (1 + \tan^2(u(x))) = \frac{u'(x)}{\cos^2(u(x))}$
$\arctan(u(x))$	\mathcal{D}_u	\mathcal{D}_u	$\frac{u'(x)}{1 + (u(x))^2}$

D'où viennent toutes ces formules et comment les retrouver rapidement? Grâce à la proposition suivante :

Proposition 2

Soient $f: \mathcal{D}_f \longrightarrow \mathbb{R}$ et $g: \mathcal{D}_g \longrightarrow \mathbb{R}$ deux fonctions numériques telles que $g(\mathcal{D}_g) \subset \mathcal{D}_f$. Si f est dérivable sur \mathcal{D}_f et g sur \mathcal{D}_g alors $f \circ g$ est dérivable sur \mathcal{D}_g et

$$(f \circ g)' = g' \times (f' \circ g).$$

En particulier, si $f: \mathbb{R} \longrightarrow \mathbb{R}$ est dérivable alors pour $a, b \in \mathbb{R}$ fixés, la fonction $h: x \longmapsto f(ax+b)$ est dérivable sur \mathbb{R} et :

$$\forall x \in \mathbb{R}, \ h'(x) = a f'(ax + b)$$

Exemples:

• Soit $f: x \longmapsto \cos(\pi x - 4)$. Alors

$$\forall x \in \mathbb{R}, \ f'(x) = \pi \cos'(\pi x - 4) = -\pi \sin(\pi x - 4).$$

• Soit $g: x \longmapsto e^{\sin(x)}$ alors :

$$\forall x \in \mathbb{R}, \ g'(x) = \sin'(x) \exp'(\sin(x)) = \cos(x)e^{\sin(x)}$$

• Soit $h: x \longmapsto \arctan^5(x)$ alors:

$$\forall x \in \mathbb{R}, \ h'(x) = 5\arctan'(x)(\arctan(x))^4 = \frac{5(\arctan(x))^4}{1+x^2}.$$

• Soit $k: x \longmapsto \ln(x^2+1)$. Comme la dérivée de $x \longmapsto x^2+1$ est $x \longmapsto 2x$, on a :

$$\forall x \in \mathbb{R}, \ k'(x) = 2x \times \ln'(x^2 + 1) = \frac{2x}{x^2 + 1}$$

Exercice 2

Dérivez les fonctions suivantes (on ne s'intéressera pas aux ensembles de dérivabilité).

1.
$$f_1: x \longmapsto e^{-5x+2}$$

2.
$$f_2: x \longmapsto \cos(2x+1) - e^{-x-2}$$

3.
$$f_3: x \longmapsto \sin^3(x)$$

4.
$$f_4: x \longmapsto \ln(\cos(x))$$

5.
$$f_5: x \longmapsto \ln(1+e^x)$$

6.
$$f_6: x \longmapsto e^{2x} \tan(4x)$$

7.
$$f_7: x \longmapsto \sqrt{2-x}$$

8.
$$f_8: x \longmapsto \frac{1}{\cos(x)}$$

9.
$$f_9: x \longmapsto \sin(x^3)$$

10.
$$f_{10}: x \longmapsto \sqrt{\ln(x)}$$

11.
$$f_{11}: x \longmapsto \ln(1+e^{-x})$$

12.
$$f_{12}: x \longmapsto \cos^{12}(2x)$$

13.
$$f_{13}: x \longmapsto \sqrt{1-\sqrt{x}}$$

14.
$$f_{14}: x \longmapsto \ln(\ln(x))$$

15.
$$f_{15}: x \longmapsto (x^2 + x + 1)^{\pi}$$

16.
$$f_{16}: x \longmapsto e^{\cos(\cos(x))}$$

17.
$$f_{17}: x \longmapsto \arctan(\frac{1}{x})$$

18.
$$f_{18}: x \longmapsto \ln(\ln(x))$$

19.
$$f_{19}: x \longmapsto \ln\left(\frac{-x^2+1}{2x-4}\right)$$

20.
$$f_{20}: x \longmapsto \cos(\sin(\cos(x)))$$

Exercice 3 (exercice bonus)

Soient f_1, f_2, \ldots, f_n des fonctions dérivables sur \mathbb{R} .

- 1. Rappeler la formule donnant $(f_1f_2)'$.
- 2. Déterminer une formule donnant $(f_1f_2f_3)'$.
- 3. De manière générale, déterminer une formule donnant $\left(\prod_{k=1}^n f_k\right)'$