Exercice 1

Déterminer les ensembles de définition et de dérivabilité des fonctions suivantes :

1. (a)
$$f_a: x \longmapsto \sqrt{2x+4} - \frac{1}{x-3}$$

(b) $f_b: x \longmapsto \ln(x^2 - 2x + 5)$
(c) $f_c: x \longmapsto \ln\left(\frac{x+1}{3-x}\right)$
2. (a) $f_a: x \longmapsto \sqrt{5-x^2}$
(b) $f_b: x \longmapsto \frac{\sqrt{3-x}}{x^2-1}$
(c) $f_c: x \longmapsto \ln\left(\frac{x+1}{3-x}\right)$

(b)
$$f_b: x \longmapsto \ln(x^2 - 2x + 5)$$

(c)
$$f_c: x \longmapsto \ln\left(\frac{x+1}{3-x}\right)$$

(d)
$$f_d: x \longmapsto \sqrt{e^{4x} - 2e^{2x} - 1}$$

2. (a)
$$f_a: x \longmapsto \sqrt{5-x^2}$$

(b)
$$f_b: x \longmapsto \frac{\sqrt{3-x}}{x^2-1}$$

(c)
$$f_c: x \longmapsto \sqrt{\ln(x)}$$

(d)
$$f_d: x \longmapsto \frac{\ln(\ln(x))}{e^x - e^4}$$

Exercice 2

On considère les fonctions suivantes :

$$f : D_f \longrightarrow \mathbb{R}$$
$$: x \longmapsto \frac{e^x - 1}{e^x + 1}$$

$$f: D_f \longrightarrow \mathbb{R}$$
 $g: D_g \longrightarrow \mathbb{R}$
 $: x \longmapsto \frac{e^x - 1}{e^x + 1}$ $: x \longmapsto \ln\left(\frac{1 - x}{1 + x}\right)$

- 1. Déterminer leurs ensembles de définition D_f et D_g .
- 2. Les fonctions f et q sont-elles paires? impaires?
- 3. Vérifier vos réponses en traçant les graphes de f et de g sur Geogebra : https://www. geogebra.org/classic?lang=fr

Exercice 3

On souhaite faire l'étude de la fonction $f: x \longmapsto e^{\cos(x)}$.

- 1. Expliquer pourquoi il est suffisant d'étudier f sur $[0,\pi]$ et expliquer comment obtenir le graphe de f sur \mathbb{R} à partir de celui sur $[0, \pi]$.
- 2. Etudier les variations de f sur $[0,\pi]$. Préciser ensuite les limites et les tangentes de f en 0 et en π .
- 3. Tracer l'allure du graphe de f puis vérifier votre résultat sur Geogebra : https://www. geogebra.org/classic?lang=fr

Exercice 4

Faire l'étude des fonctions suivantes :

1.
$$f: x \longmapsto \ln(-2x^2 + x + 1)$$
. On rappelle que $\lim_{y \to 0} \ln(y) = \dots$

2.
$$g: x \longmapsto \frac{x^3 - 2x}{3 - x^2}$$

$$3. h: x \longmapsto \sqrt{\frac{2 - e^x}{e^{2x} - 9}}$$

4.
$$f: x \longmapsto \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Pour la limite de f en $+\infty$, on écrira $f(x) = \frac{1 - e^{ax}}{1 + e^{ax}}$ pour un nombre a à déterminer.

5.
$$g: x \longmapsto \sqrt{-x^4 + x^2 + 6}$$

Exercice 5

On considère la fonction $f: x \longmapsto \cos(3x)\cos^3(x)$.

- 1. Montrer que f est paire et π -périodique. Sur quel intervalle I peut-on se contenter d'étudier f?
- 2. Montrer que pour $x \in I$, f'(x) est du signe de $-\sin(4x)$.
- 3. En déduire le signe de f' sur I et dresser le tableau de variations de f sur I.
- 4. Tracer le graphe de f sur son ensemble de définition.

Exercice 6

Montrer par étude de fonction que :

1.
$$\forall x > 0$$
, $\arctan(x) \ge \ln\left(\frac{x}{x+1}\right)$

2.
$$\forall x \ge 0, \ \sqrt{1+x} \ge 1 + \frac{x}{2} - \frac{x^2}{8}$$

Exercice 7

Les deux questions de cet exercice sont indépendantes. On vérifiera ses résultats (sans tricher!) en traçant les graphes des fonctions en jeu sur Geogebra: https://www.geogebra.org/classic?lang=fr.

1. Étudier la fonction
$$f: x \longmapsto \frac{\cos(x)}{2\cos(x) - 1}$$
.

2. Montrer par étude de fonction que :
$$\forall x > 0, \ x + \frac{1}{x} \ge 2.$$

Exercice 8

Dans cet exercice, on démande de démontrer les résultats en revenant à la définition de la partie entière (qu'il faut donc connaître!).

- 1. Déterminer la partie entière de $\sqrt{33}$.
- 2. Montrer que pour tous $x, y \in \mathbb{R}, \lfloor x \rfloor + \lfloor y \rfloor \leq \lfloor x + y \rfloor$.

Exercice 9

- 1. Dans cette question, on cherche à montrer que : $\forall x \in \mathbb{R}, \lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{2} \rfloor$.
 - (a) Vérifier que cette formule est vraie pour x = 3, 2 puis pour x = 3, 8.
 - (b) Soit $x \in \mathbb{R}$, on écrit : $x = \lfloor x \rfloor + t$ avec $t \in [0, 1[$. Exprimer $\lfloor x + \frac{1}{2} \rfloor$ en fonction de $\lfloor x \rfloor$. On distinguera deux cas en fonction de la valeur de t.
 - (c) Dans chacun des cas précédents, exprimer $\lfloor 2x \rfloor$ en fonction de $\lfloor x \rfloor$.
 - (d) Conclure.
- $2. \ \,$ En suivant une méthode similaire à celle de la première question, montrer que :

$$\forall x \in \mathbb{R}, \ \lfloor 3x \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{3} \rfloor + \lfloor x + \frac{2}{3} \rfloor$$

Exercice 10

Associez chaque fonction à son graphe. Justifiez votre réponse en identifiant des propriétés satisfaites par les fonctions proposées et les manifestations de ces propriétés sur leurs graphes.

1.
$$x \mapsto (x-1)^2 + 1$$

2.
$$x \mapsto (x+1)^2 - 1$$

3.
$$x \longmapsto \cos(x + \frac{\pi}{4})$$

4.
$$x \longmapsto \cos(x - \frac{\pi}{4})$$

$$5. \ x \longmapsto \sin(x^2)$$

6.
$$x \longmapsto \sin(x^3)$$

7.
$$x \longmapsto \ln(x) + 1$$

8.
$$x \longmapsto \sqrt{x}$$















