Programme de colles : semaine 8, du 24/11 au 28/11

Les nouveautés par rapport à la semaine précédente sont en bleu.

1 Sommes et produits

La formule de Bernoulli, et la valeur de $\sum\limits_{k=1}^n k^3$ n'ont pas été vus en classe.

- binôme de Newton
- sommes doubles

2 Études de fonctions

Nous n'avons pas encore fait d'étude complète de fonctions en classe. On proposera des exercices d'applications directes des définitions ci-dessous. On insistera sur la différence entre f et f(x).

- ensemble de définition et d'arrivée, vocabulaire
- savoir déterminer l'ensemble de définition et de dérivabilité d'une fonction donnée
- opérations, composition
- fonctions monotones, strictement monotones
- fonctions paires, impaires, périodiques, interprétation graphique
- lien entre dérivée et sens de variation
- équation de la tangente au graphe en un point
- calculs de dérivées : dérivées des fonctions usuelles (dont arctan), dérivée d'un produit, d'un quotient, dérivées des composées usuelles, formule de la dérivée d'une composée

3 Informatique en langage Python

L'import de bibliothèque n'a pas été vu en classe. En particulier, on écrira les racines carrées avec des puissances 1/2.

La copie de liste n'a pas encore été abordée en classe.

Listes:

- création par append successifs depuis la liste vide, création par la syntaxe [f(k) for k in L] où L est une autre liste ou un range
- parcours d'une liste par ses indices
- fonctions sum, len, test in, concaténation de listes
- sous-listes L[p:q], L[p:], L[:q], L[p:q:r]
- modification d'un élément d'une liste
- suppression d'un élément d'une liste avec la commande L.pop(k) ou x = L.pop(k). La fonction del n'a pas été vue en classe.
- parcours par éléments. On recommande aux élèves d'utiliser en priorité les parcours par indices.

4 Questions de cours

Cette semaine, toutes les colles doivent suivre le schéma suivant :

- 1. une question de cours d'informatique
- 2. une question de cours de mathématiques
- 3. deux calculs de dérivées, du type des exercices 1 et 2 de la feuille de cours 6.2 : https://cahier-de-prepa.fr/bcpst1b-berthelot/download?id=6596
- 4. exercices sur le programme

Questions d'informatique:

- 1. Écrire une fonction Python prenant en argument un entier $n \in \mathbb{N}$ et renvoyant la liste $[u_0, u_1, \dots, u_n]$ où (u_n) est la suite définie par $u_0 = 2$ et $\forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{u_n} + 1$.
- 2. Écrire une fonction Python prenant en argument une liste de nombres et renvoyant la somme de ses éléments en effectuant un parcours par indices.
- 3. Écrire une fonction Python minimum prenant en argument une liste de nombres réels et renvoyant le minimum de cette liste.
- 4. Rappeler la définition de la moyenne et de l'écart type d'une série $(x_1, x_2, ..., x_n)$ de nombres réels. Écrire deux fonctions Python prenant en argument une liste de nombres réels et renvoyant respectivement leur moyenne et leur écart-type $(cf\ TP\ 8)$.
- 5. Écrire une fonction appartient prenant en argument une liste L et une variable a et renvoyant True si a apparaît dans L et False sinon. On n'utilisera pas l'instruction a in L.
- 6. Écrire une fonction Python transforme prenant en argument une liste et la renvoyant après avoir transformé tous les 4 qu'elle contient en des 5.

Questions de mathématiques :

- 1. Énoncer la formule du binôme de Newton.
- 2. À l'aide du binôme de Newton et du triangle de Pascal, développer rapidement $(1+x)^5$ et $(x-1)^5$ pour $x \in \mathbb{R}$ (ou des quantités similaires choisies par l'examinateur).
- 3. Calculer $\sum_{1 \le i, j \le n} ij$ ou $\sum_{0 \le j \le k \le n} \binom{n}{k} \binom{k}{j} a^j b^{k-j}$.
- 4. Si $f: D_f \longrightarrow \mathbb{R}$ et $g: D_g \longrightarrow \mathbb{R}$, donner la définition de $f \circ g$. On précisera son ensemble de définition en fonction de D_f et D_g . Calculer $f \circ g$ et $g \circ f$ pour deux fonctions f et g simples choisies par l'examinateur.
- 5. Soit I un intervalle de \mathbb{R} et soit $f: I \longrightarrow \mathbb{R}$. Donner la définition de "f est (strictement) (dé)croissante sur I".
- 6. Soit I un intervalle de \mathbb{R} et soit $f: I \longrightarrow \mathbb{R}$ une fonction à la fois croissante et décroissante sur I. Démontrer que f est constante sur I.
- 7. Soit $f: D \longrightarrow \mathbb{R}$. Donner la définition de "f est (im)paire".
- 8. Soient $f: \mathbb{R} \longrightarrow \mathbb{R}$ et $T \in \mathbb{R}$. Donner la définition de "f est T-périodique".
- 9. Soit $f: D \longrightarrow \mathbb{R}$ une fonction impaire. Montrer que si $0 \in D$ alors f(0) = 0.
- 10. Soit $x_0 \in \mathbb{R}$ et soit $f : \mathbb{R} \longrightarrow \mathbb{R}$ une fonction dérivable en x_0 . Donner l'équation de la tangente au graphe de f en x_0 .

Les questions de cours sont notées sur 10 points, le reste des exercices sur 10 autres points.